
Genetic Algorithms 
Computer programs that ({evolve" in ways that resemble 

natural selection can solve complex problems 
even their creators do not fully understand 

n·ving organisms are consummate 
problem solvers. They exhibit a ver­

satility that puts the best com­
puter programs to shame. This observa­
tion is especially galling for computer 
scientists, who may spend months or 
years of intellectual effort on an al­
gorithm, whereas organisms come by 
their abilities through the apparently 
undirected mechanism of evolution and 
natural selection. 

Pragmatic researchers see evolution's 
remarkable power as something to be 
emulated rather than envied. Natural 
selection eliminates one of the greatest 
hurdles in software design: specifying 
in advance all the features of a problem 
and the actions a program should take 
to deal with them. By harnessing the 
mechanisms of evolution, researchers 
may be able to "breed" programs that 
solve problems even when no person 
can fully understand their structure. In­
deed, these so-called genetic algorithms 
have already demonstrated the ability 
to make breakthroughs in the design of 
such complex systems as jet engines. 

Genetic algorithms make it possible 
to explore a far greater range of poten­
tial solutions to a problem than do con­
ventional programs. Furthermore, as re­
searchers probe the natural selection of 
programs under controlled and well-un-
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derstood conditions, the practical re­
sults they achieve may yield some in­
sight into the details of how life and in­
telligence evolved in the natural world. 

Most organisms evolve by means of 
two primary processes: natural selec­
tion and sexual reproduction. The first 
determines which members of a pop­
ulation survive to reproduce, and the 
second ensures mixing and recombina­
tion among the genes of their offspring. 
When sperm and ova fuse, matching 
chromosomes line up with one another 
and then cross over partway along their 
length, thus swapping genetic material. 
This mixing allows creatures to evolve 
much more rapidly than they would if 
each offspring simply contained a copy 
of the genes of a single parent, modified 
occasionally by mutation. (Although uni­
cellular organisms do not engage in 
mating as humans like to think of it, 
they do exchange genetic material, and 
their evolution can be described in anal­
ogous terms.) 

Selection is simple: if an organism 
fails some test of fitness, such as recog­
nizing a predator and fleeing, it dies. 
Similarly, computer scientists have little 
trouble weeding out poorly performing 
algorithms. If a program is supposed to 
sort numbers in ascending order, for ex­
ample, one need merely check whether 
each entry of the program's output is 
larger than the preceding one. 

People have employed a combination 
of crossbreeding and selection for mil­
lennia to breed better crops, racehorses 
or ornamental roses. It is not as easy, 
however, to translate these procedures 
for use on computer programs. The 
chief problem is the construction of a 
"genetic code" that can represent the 
structure of different programs, just as 
DNA represents the structure of a per­
son or a mouse. Mating or mutating the 
text of a FORTRAN program, for exam­
ple, would in most cases not produce a 
better or worse FORTRAN program but 
rather no program at all. 

The first attempts to mesh computer 
science and evolution, in the late 1950s 

and early 1960s, fared poorly because 
they followed the emphasis in biolOgi­
cal texts of the time and relied on muta­
tion rather than mating to generate new 
gene combinations. Then, in the early 
1960s, Hans]. Bremermann of the Uni­
versity of California at Berkeley added 
a kind of mating: the characteristics of 
offspring were determined by summing 
up corresponding genes in the two par­
ents. This mating procedure was limit­
ed, however, because it could apply only 
to characteristics that could be added 
together in a meaningful way. 

D uring this time, I had been in­
vestigating mathematical analy­
ses of adaptation and had be­

come convinced that the recombination 
of groups of genes by means of mating 
was a critical part of evolution. By the 
mid-1960s I had developed a program­
ming technique, the genetic algorithm, 
that is well suited to evolution by both 
mating and mutation. During the next 
decade, I worked to extend the scope of 
genetic algorithms by creating a genet­
ic code that could represent the struc­
ture of any computer program. 

The result was the classifier sys­
tem, consisting of a set of rules, each 
of which performs particular actions 
every time its conditions are satisfied 
by some piece of information. The con­
ditions and actions are represented by 
strings of bits corresponding to the 
presence or absence of specific charac­
teristics in the rules' input and output. 
For each characteristic that was pres­
ent, the string would contain a 1 in the 
appropriate position, and for each that 
was absent, it would contain a O. For ex­
ample, a classifier rule that recognized 
dogs might be encoded as a string con­
taining l's for the bits corresponding to 
"hairy," "slobbers," "barks," "loyal" and 
"chases sticks" and O's for the bits cor­
responding to "metallic," "speaks Urdu" 
and "possesses credit cards." More real­
istically, the programmer should choose 
the Simplest, most primitive character­
istics so that they can be combined-as 
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in the game of 20 Questions-to classify 
a wide range of objects and situations. 

Although they excel at recognition, 
these rules can also be made to trigger 
actions by tying bits in their output to 
the appropriate behavior [see illustra­
tion on page 69]. Any program that can 
be written in a standard programming 
language such as FORTRAN or llSP can 
be rewritten as a classifier system. 

To evolve classifier rules that solve a 
particular problem, one simply starts 
with a population of random strings of 
l's and O's and rates each string ac­
cording to the quality of its result. De­
pending on the problem, the measure 
of fitness could be business profitabili­
ty, game payoff, error rate or any num­
ber of other criteria. High-quality strings 
mate; low-quality ones perish. As gen­
erations pass, strings associated with 
improved solutions will predominate. 

Furthermore, the mating process con­
tinually combines these strings in new 
ways, generating ever more sophisti­
cated solutions. The kinds of problems 
that have yielded to the technique range 
from developing novel strategies in 
game theory to designing complex me­
chanical systems. 

R ecast in the language of genetic 
algorithms, the search for a good 
solution to a problem is a search 

for particular binary strings. The uni­
verse of all possible strings can be con­
sidered as an imaginary landscape; val­
leys mark the location of strings that 
encode poor solutions, and the land­
scape's highest point corresponds to 
the best possible string. 

Regions in the solution space can also 
be defined by looking at strings that 
have l's or O's in speCified places-a 

kind of binary equivalent of map coor­
dinates. The set of all strings that start 
with a 1, for example, constitutes a re­
gion in the set of possibilities. So do all 
the strings that start with a 0 or that 
have a 1 in the fourth position, a 0 in 
the fifth and a 1 in the sixth and so on. 

One conventional technique for ex­
ploring such a landscape is hill climb­
ing: start at some random point, and if 
a slight modification improves the qual­
ity of your solution, continue in that di­
rection; otherwise, go in the opposite 
direction. Complex problems, howev­
er, make landscapes with many high 
points. As the number of dimensions of 
the problem space increases, the coun­
tryside may contain tunnels, bridges 
and even more convoluted topological 
features. Finding the right hill or even 
determining which way is up becomes 
increasingly difficult. In addition, such 
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CROSSOVER is the fundamental mechanism of genetic rear­
rangement for both real organisms and genetic algorithms. 

Chromosomes line up and then swap the portions of their ge­
netic code beyond the crossover point. 

search spaces are usually enormous. If 
each move in a chess game, for exam­
ple, has an average of 10 alternatives, 
and a typical game lasts for 30 moves 
on each side, then there are about 1060 
strategies for playing chess (most of 
them bad). 

Genetic algorithms cast a net over this 
landscape. The multitude of strings in 
an evolving population samples it in 
many regions simultaneously. Notably, 
the rate at which the genetic algorithm 
samples different regions corresponds 
directly to the regions' average "eleva­
tionn-that is, the probability of finding 
a good solution in that vicinity. 

This remarkable ability of genetic 
algorithms to focus their attention on 
the most promising parts of a solution 
space is a direct outcome of their ability 
to combine strings containing partial so­
lutions. First, each string in the popula­
tion is evaluated to determine the per­
formance of the strategy that it encodes. 
Second, the higher-ranking strings mate. 
Two strings line up, a point along the 
strings is selected at random and the 
portions to the left of that point are 
exchanged to produce two offspring: 
one containing the symbols of the first 
string up to the crossover point and 
those of the second beyond it, and the 
other containing the complementary 
cross [see illustration above]. Biological 
chromosomes cross over one another 
when two gametes meet to form a zy­
gote, and so the process of crossover in 
genetic algorithms does in fact close­
ly mimic its biological model. The off­
spring do not replace the parent strings; 
instead they replace low-fitness strings, 
which are discarded at each generation 
so that the total population remains the 
same size. 

Third, mutations modify a small frac­
tion of the strings: roughly one in every 
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10,000 symbols flips from 0 to 1, or vice 
versa. Mutation alone does not general­
ly advance the search for a solUtion, 
but it does provide insurance against 
the development of a uniform popula­
tion incapable of further evolution. 

T he genetic algorithm exploits the 
higher-payoff, or "target," regions 
of the solution space, because 

successive generations of reproduction 
and crossover produce increasing num­
bers of strings in those regions. The al­
gorithm favors the fittest strings as 
parents, and so above-average strings 
(which fall in target regions) will have 
more offspring in the next generation. 

Indeed, the number of strings in a giv­
en region increases at a rate proportion­
al to the statistical estimate of that re­
gion's fitness. A statistician would need 
to evaluate dozens of samples from 
thousands or millions of regions to es­
timate the average fitness of each re­
gion. The genetic algorithm manages to 
achieve the same result with far fewer 
strings and virtually no computation. 

The key to this rather surprising be­
havior is the fact that a single string 
belongs to all the regions in which any 
of its bits appear. For example, the 
string 11011001 is a member of regions 
11 ****,,* (where the * indicates that a 
bit's value is unspecified), 1***,,*',1, 
**0**00* and so forth. The largest re­
gions-those containing many unspeci­
fied bits-will typically be sampled by 
a large fraction of all the strings in a 
population. Thus, a genetic algorithm 
that manipulates a population of a few 
thousand strings actually samples a 
vastly larger number of regions. This 
implicit parallelism gives the genetic al­
gorithm its central advantage over oth­
er problem-solving processes. 

Crossover complicates the effects of 

implicit parallelism. The purpose of 
crossing strings in the genetic algorithm 
is to test new parts of target regions 
rather than testing the same string over 
and over again in successive genera­
tions. But the process can also "move" 
an offspring out of one region into an­
other, causing the sampling rate of dif­
ferent regions to depart from a strict 
proportionality to average fitness. That 
departure will slow the rate of evolution. 

The probability that the offspring of 
two strings will leave its parents' re­
gion depends on the distance between 
the 1 's and O's that define the region. 
The offspring of a string that samples 
10****, for example, can be outside 
that region only if crossover begins at 
the second position in the string-one 
chance in five for a string containing 
six genes. (The same building block 
would run a risk of only one in 999 if 
contained in a 1,000-gene string.) The 
offspring of a six-gene string that sam­
ples region 1 ***,' 1 runs the risk of leav­
ing its parents' region no matter where 
crossover occurs. 

Closely adjacent l's or O's that define 
a region are called compact building 
blocks. They are most likely to survive 
crossover intact and so be propagated 
into future generations at a rate propor­
tional to the average fitness of strings 
that carry them. Although a reproduc­
tion mechanism that includes crossover 
does not manage to sample all regions 
at a rate proportional to their fitness, it 
does succeed in doing so for all regions 
defined by compact building blocks. 
The number of compactly defined build­
ing blocks in a population of strings still 
vastly exceeds the number of strings, 
and so the genetic algorithm still ex­
hibits implicit parallelism. 

Curiously, an operation in natural ge­
netics called inversion occasionally rear-
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ranges genes so that those far apart in 
the parents may be placed close to one 
another in the offspring. This amounts 
to redefining a building block so that it 
is more compact and less subject to be­
ing broken up by crossover. If the build­
ing block specifies a region of high aver­
age fitness, then the more compact ver­
sion automatically displaces the less 
compact one because it loses fewer off­
spring to copying error. As a result, 
an adaptive system using inversion can 
discover and favor compact versions of 
useful building blocks. 

The genetic algorithm's impliCit par­
allelism allows it to test and exploit 
large numbers of regions in the search 
space while manipulating relatively few 
strings. Implicit parallelism also helps 
genetic algorithms to cope with nonlin­
ear problems-those in which the fit­
ness of a string containing two particu­
lar building blocks may be much great­
er (or much smaller) than the sum of 
the fitnesses attributable to each build­
ing block alone. 

Linear problems present a reduced 
search space because the presence of a 
1 or a 0 at one position in a string has 
no effect on the fitness attributable to 
the presence of a 1 or 0 somewhere 
else. The space of 1,000-digit strings, 
for example, contains more than 31,000 
possibilities, but if the problem is lin­
ear, an algorithm need investigate only 
strings containing 1 or 0 at each posi­
tion, a total of just 2,000 possibilities. 

When the problem is nonlinear, the 
difficulty increases sharply. The average 
fitness of strings in the region ,,01***, 
for example, could be above the popu­
lation average, even though the fitness­
es associated with ,,0;,*** and ** 1 *** 
are below the population average. Non­
linearity does not mean that no useful 
building blocks exist but merely that 
blocks consisting of single l's or O's 
will be inadequate. That characteristic, 
in turn, leads to an explosion of possi­
bilities: the set of all strings 20 bits in 
length contains more than three billion 
building blocks. Fortunately, implicit 
parallelism can still be exploited. In a 
population of a few thousand strings, 
many compact building blocks will ap­
pear in 100 strings or more, enough to 
provide a good statistical sample. Build­
ing blocks that exploit nonlinearities to 
attain above-average performance will 
automatically be used more often in fu­
ture generations. 

In addition to coping with nonlineari­
ty, the genetic algorithm helps to solve 
a conundrum that has long bedeviled 
conventional problem-solving methods: 
striking a balance between exploration 
and exploitation. Once one finds a good 
strategy for playing chess, for exam-

pIe, it is possible to concentrate on ex­
ploiting that strategy. But this choice 
carries a hidden cost because exploita­
tion makes the discovery of truly novel 
strategies unlikely. Improvements come 
from trying new, risky things. Because 
many of the risks fail, exploration in­
volves a degradation of performance. 
Deciding to what degree the present 
should be mortgaged for the future is 
a classic problem for all systems that 
adapt and learn. 

The genetic algorithm's approach to 
this obstacle turns on crossover. Al­
though crossover can interfere with 
the exploitation of a building block by 
breaking it up, this process of recombi­
nation tests building blocks in new 
combinations and new contexts. Cross­
over generates new samples of above­
average regions, confirming or disprov­
ing the estimates produced by earlier 
samples. Furthermore, when crossover 

breaks up a building block, it produces 
a new block that enables the genetic al­
gorithm to test regions it has not previ­
ously sampled. 

The game known as the Prisoner's 
Dilemma illustrates the genetic algo­
rithm's ability to balance exploration 
against exploitation. This long-studied 
game presents its two players with a 
choice between "cooperation" and "de­
fection": if both players cooperate, they 
both receive a payoff; if one player de­
fects, the defector receives a higher 
payoff and the cooperator receives 
nothing; if both defect, they both receive 
a minimal payoff [see table on page 71]. 
For example, if player A cooperates and 
player B defects, then player A receives 
no payoff and player B receives a pay­
off of five points. 

Political scientists and sociologists 
have studied the Prisoner's Dilemma be­
cause it provides a Simple, clear-cut ex-

How to Build a Classifier System 

B uilding a computer algorithm that 
can evolve requires a way of rep­

resenting the program so that any 
change in its genotype (the bits that 
compose the program) leads to a 
meaningful change in its phenotype 

(what the program does). A classifier 
consists simply of strings represent­
ing possible characteristics of the pro­
gram's input and actions to take 
(be/ow). Changing any symbol in a 
string changes its behavior. 

A classifier system to emulate a frog, for ex­
ample, might contain strings that react to 
objects that the frog sees. Depending on an 
object's motion, size, location and other at­
tributes, the frog would attack, pursue or ig­
nore it. Several strings may match the same 
input string; the one with the fewest "don't 
care" symbols governs the system's actions. 

INPUT 

IF OBJECT IS MOVING, FLEE 

IF OBJECT IS MOVING, IN THE AIR, SMALL AND NEAR, PURSUE 

OUTPUT 

IF OBJECT IS MOVING, IN THE AIR, SMALL, NEAR AND STRIPED, DO NOTHING 
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ample of the difficulties of cooperation. 
Game theory predicts that each player 
should minimize the maximum dam­
age the other player can inflict: that is, 
both players should defect. Yet when 
two people play the game together re­
peatedly, they typically learn to cooper­
ate with each other to raise their joint 
payoff. One of the most effective known 
strategies for the Prisoner's Dilemma is 
"tit for tat," which begins by cooperat­
ing but thereafter mimics the last play 
of the other player. That is, it "punish­
es" a defection by defecting the next 
time, and it rewards cooperation by co­
operating the next time. 

Robert Axelrod of the University of 
Michigan, working with Stephanie For­
rest, now at the University of New Mex­
ico, decided to find out if the genetic 
algorithm could discover the tit-for-tat 
strategy. Applying the genetic algorithm 
first requires translating possible strate­
gies into strings. One simple way is to 
base the next response on the outcome 
of the last three plays. Each iteration 
has four possible outcomes, and so a 
sequence of three plays yields 54 pos­
sibilities. A 54-bit string contains one 
gene (or bit position) for each. The first 
gene, for instance, would be allocated 
to the case of three consecutive mutual 
cooperations and the last to three mu­
tual defections. The value of each gene 
would be either 1 or 0 depending on 
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GENE POOL of algorithms consists of strings of l's and O's. Each string is evaluated 
for fitness, and the best strings mate (second column) and produce offspring by 
means of crossover (indicated by a vertical black line). Strings of intermediate 
fitness simply survive to the next generation, and the least fit perish. If particular 
patterns of bits (shown here by colored areas) improve the fitness of strings that 
carry them, repeated cycles of evaluation and mating (succeeding columns) will 
cause the proportion of these high-quality "building blocks" to increase. The pattern 
corresponding to each building block appears in the rightmost column; asterisks 
represent bits whose values are unspecified. 

whether the preferred response to its 
corresponding history was cooperation 
or defection. For example, the 54-bit 
string consisting of all O's would desig­
nate the strategy that defects in all cas­
es. Even for such a simple game, there 
are 264 (approximately 15 quadrillion) 
different strategies. 

Axelrod and Forrest supplied the ge­
netic algorithm with a small random 
collection of strings representing strate­
gies. The fitness of each string was sim­
ply the average of the payoffs its strate­
gy received under repeated play. All 
these strings had low fitnesses because 
most strategies for playing the Prison­
er's Dilemma are not very good. Quickly 
the genetic algorithm discovered and ex­
ploited tit for tat, but further evolution 
introduced an additional improvement. 
The new strategy, discovered while the 
genetic algorithm was already playing at 
a high level, exploited players that could 
be "bluffed"-lured into cooperating re­
peatedly in the face of defection. It re­
verted to tit for tat, however, when the 
history indicated the player could not 
be bluffed. 

B iological evolution operates, of 
course, not to produce a single 
superindividual but rather to pro­

duce interacting species well adapted 
to one another. (Indeed, in the biologi­
cal realm there is no such thing as a 

best individual.) Similarly, the genetic 
algorithm can be used, with modifica­
tions, to govern the evolution not mere­
ly of individual rules or strategies but 
of classifier-system "organisms" com­
posed of many rules. Instead of select­
ing the fittest rules in isolation, com­
petitive pressures can lead to the evo­
lution of larger systems whose abilities 
are encoded in the strings that make 
them up. 

Re-creating evolution at this higher 
level requires several modifications to 
the original genetic algorithm. Strings 
still represent condition-action rules, 
and each rule whose conditions are met 
generates an action as before. Rating 
each rule by the number of correct ac­
tions it generates, however, will favor 
the evolution of individual "superrules" 
instead of finding clusters of rules that 
interact usefully. To redirect the search 
toward interacting rules, the procedure 
is modified by forcing rules to compete 
for control of the system's actions. Each 
rule whose conditions are met com­
petes with all other rules whose condi­
tions are met, and the strongest rules 
determine what the system will do in 
that given situation. If the system's ac­
tions lead to a successful outcome, all 
the winning rules are strengthened; oth­
erwise they are weakened. 

Another way of looking at this meth­
od is to consider each rule string as a 
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hypothesis about the classifier's world. 
A rule enters the competition only when 
it "claims" to be relevant to the current 
situation. Its ability to compete depends 
on how much of a contribution it has 
made to solving similar problems. As 
the genetic algorithm proceeds, strong 
rules mate and form offspring rules 
that combine their parents' building 
blocks. These offspring, which replace 
the weakest rules, amount to plausible 
but untried hypotheses. 

Competition among rules provides 
the system with a graceful way of han­
dling perpetual novelty. When a system 
has strong rules that respond to a par­
ticular situation, that is the equivalent 
of saying that it has certain well-validat­
ed hypotheses. Offspring rules, which 
begin life weaker than do their parents, 
can win the competition and influence 
the system's behavior only when there 
are no strong rules whose conditions 
are satisfied-in other words, when the 
system does not know what to do. If 
their actions help, they survive; if not, 
they are soon replaced. Thus, the off­
spring do not interfere with the sys­
tem's action in well-practiced situations 
but wait gracefully in the wings as hy­
potheses about what to do under novel 
circumstances. 

Adding competition in this way 
strongly affects the evolution of a clas­
sifier system. Shortly after the system 
starts running, it evolves rules with sim­
ple conditions-treating a broad range 
of situations as if they were identical. 
The system exploits such rules as de­
faults that specify something to be done 
in the absence of more detailed infor­
mation. Because the default rules make 
only coarse discriminations, however, 
they are often wrong and so do not 
grow in strength. As the system gains 
experience, reproduction and crossover 
lead to the development of more com­
plex, speCific rules that rapidly become 
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strong enough to dictate behavior in 
particular cases. 

Eventually the system develops a hi­
erarchy: layers of exception rules at the 
lower levels handle most cases, but the 
default rules at the top level of the hi­
erarchy come into play when none of 
the detailed rules has enough informa­
tion to satisfy its conditions. Such de­
fault hierarchies bring relevant experi­
ence to bear on novel situations while 
preventing the system from becoming 
bogged down in overly detailed options. 

The same characteristics that make 
evolving classifier systems adept at han­
dling perpetual novelty also do a good 
job of handling situations where the 
payoff for a given action may come 
only long after the action is taken. The 
earliest moves of a chess game, for ex­
ample, may set the stage for later victo­
ry or defeat. 

To train a classifier system for such 
long-term goals, a programmer gives 
the system a payoff each time it com­
pletes a task. The credit for success (or 
the blame for failure) can propagate 
through the hierarchy to strengthen (or 
weaken) individual rules even if their 
actions had only a distant effect on the 
outcome. Over the course of many gen­
erations the system develops rules that 
act ever earlier to set the stage for later 
payoffs. It therefore becomes increas­
ingly able to anticipate the consequenc­
es of its actions. 

G enetic algorithms have now been 
tested in a wide variety of con­
texts. David E. Goldberg of the 

University of Illinois, for example, has 
developed algorithms that learn to con­
trol a gas pipeline system modeled on 
the one that carries natural gas from the 
Southwest to the Northeast. The pipe­
line complex consists of many branches, 
all carrying various amounts of gas; the 
only controls available are compressors 

that increase pressure in a particular 
branch of the pipeline and valves to 
regulate the flow of gas to and from 
storage tanks. Because of the tremen­
dous lag between manipulating valves 
or compressors and the actual pressure 
changes in the lines, there is no analyt­
ic solution to the problem, and human 
controllers, like Goldberg's algorithm, 
must learn by apprenticeship. 

Goldberg's system not only met gas 
demand at costs comparable to those 
achieved in practice, but it also devel­
oped a hierarchy of default rules ca­
pable of responding properly to holes 
punched in the pipeline (as happens 
all too often in reality at the blade of 
an errant bulldozer). Lawrence Davis of 
Tica Associates in Cambridge, Mass., 
has used similar techniques to design 
communications networks; his soft­
ware's goal is to carry the maximum 
possible amount of data with the mini­
mum number of transmission lines and 
switches interconnecting them. 

A group of researchers at General 
Electric and Rensselaer Polytechnic In-

The Prisoner's Dilemma 

PLAYER 

(A) 
COOPERATE 

(A) 
DEFECT 

(B) 
COOPERATE 

3/3 

0/5 

(B) 
DEFECT 

5/0 

0/0 

IN PRISONER'S DILEMMA each play­
er can either cooperate or defect and 
receives a payoff based on the other's 
choice. If both cooperate, for example, 
both receive three points. Mutual defec­
tion is the safest strategy, but repeated 
play often leads to cooperation instead. 
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SOFlW ARE TO DESIGN JET TURBINE includes a genetic algorithm that combines 
the best features of designs produced by other programs. Engineers using the algo­
rithm achieved better results than with more conventional software aids. 

stitute recently put a genetic algorithm 
to good use in the design of a high-by­
pass jet engine turbine such as those 
that power commercial airliners. Such 
turbines, which consist of multiple stag­
es of stationary and rotating blade rows 
enclosed in a roughly cylindrical duct, 
are at the center of engine-development 
projects that last five years or more and 
consume up to $ 2 billion. 

The design of a turbine involves at 
least 100 variables, each of which can 
take on a different range of values. The 
resulting search space contains more 
than 10387 points. The "fitness" of the 
turbine depends on how well it satisfies 
a series of 50 or so constraints, such as 
the smooth shape of its inner and out­
er walls or the pressure, velocity and 
turbulence of the flow at various points 
inside the cylinder. Evaluating a single 
design requires running an engine sim­
ulation that takes about 30 seconds on 
a typical engineering workstation. 

In one fairly typical case, an engi­
neer working alone took about eight 
weeks to reach a satisfactory design. 
So-called expert systems, which use in­
ference rules based on experience to 
predict the effects of a change of one 
or two variables, can help direct the de­
signer in seeking out useful changes. 
An engineer using such an expert sys­
tem took less than a day to design an 
engine with twice the improvements of 
the eight-week manual design. 

Such expert systems, however, soon 
get stuck at points where further 
improvements can be made only by 
changing many variables simultaneous-
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ly. These dead ends occur because it is 
practically impossible to sort out all the 
effects associated with different multi­
ple changes, let alone to specify the re­
gions of the design space within which 
previous experience remains valid. 

To get away from such a point, the 
designer must find new building blocks 
for a solution. Here is where the genet­
ic algorithm comes into play. Seeding 
the algorithm with designs produced 
by the expert system, an engineer took 
only two days to find a design with 
three times the improvements of the 
manual version (and half again as many 
as using the expert system alone). 

This example points up both a 
strength and a limitation of simple ge­
netic algorithms: they are at their best 
when exploring complex landscapes to 
locate regions of enhanced opportuni­
ty. But if a partial solution can be im­
proved further by making small chang­
es in a few variables, it is best to aug­
ment the genetic algorithm with other, 
more standard methods. �thOUgh genetic algorithms mimic 

the effects of natural selection, 
until now they have operated 

on a much smaller scale than does bio­
logical evolution. My colleagues and I 
have run classifier systems containing 
as many as 8,000 rules, but this size is 
at the low end of viability for natural 
populations. Large animals that are not 
endangered may number in the mil­
lions, insect populations in the trillions 
and bacteria in the quintillions or more. 
These large numbers greatly enhance 

the advantages of implicit parallelism. 
As maSSively parallel computers be­

come more common, it will be feasible 
to evolve software populations whose 
size more closely approaches those of 
natural species. Indeed, the genetic al­
gorithm lends itself nicely to such ma­
chines. Each processor can be devoted to 
a single string because the algorithm's 
operations focus on single strings or, 
at most, a pair of strings during cross­
over. As a result, the entire population 
can be processed in parallel. 

We still have much to learn about 
classifier systems, but the work done 
so far suggests they will be capable of 
remarkably complex behavior. Rick L. 
Riolo of the University of Michigan has 
already observed genetic algorithms 
that display "latent learning" (a phe­
nomenon in which an animal such as a 
rat explores a maze without reward and 
is subsequently able to find food placed 
in the maze much more quickly). 

At the Santa Fe Institute, Forrest, W. 
Brian Arthur, John H. Miller, Richard G. 
Palmer and I have used classifier sys­
tems to simulate economic agents of 
limited rationality. These agents evolve 
to the point of acting on trends in a 
simple commodity market, producing 
speculative bubbles and crashes. 

The simulated worlds these agents 
inhabit show many similarities to natu­
ral ecosystems: they exhibit counter­
parts to such phenomena as symbio­
sis, parasitism, biological "arms races," 
mimicry, niche formation and specia­
tion. Still other work with genetic algo­
rithms has shed light on the conditions 
under which evolution will favor sexual 
or asexual reproduction. Eventually ar­
tificial adaptation may repay its debt to 
nature by increasing researchers' un­
derstanding of natural ecosystems and 
other complex adaptive systems. 
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