
Genetic Algorithms
Computer programs that ({evolve" in ways that resemble

natural selection can solve complex problems
even their creators do not fully understand

n·ving organisms are consummate
problem solvers. They exhibit a ver

satility that puts the best com
puter programs to shame. This observa
tion is especially galling for computer
scientists, who may spend months or
years of intellectual effort on an al
gorithm, whereas organisms come by
their abilities through the apparently
undirected mechanism of evolution and
natural selection.

Pragmatic researchers see evolution's
remarkable power as something to be
emulated rather than envied. Natural
selection eliminates one of the greatest
hurdles in software design: specifying
in advance all the features of a problem
and the actions a program should take
to deal with them. By harnessing the
mechanisms of evolution, researchers
may be able to "breed" programs that
solve problems even when no person
can fully understand their structure. In
deed, these so-called genetic algorithms
have already demonstrated the ability
to make breakthroughs in the design of
such complex systems as jet engines.

Genetic algorithms make it possible
to explore a far greater range of poten
tial solutions to a problem than do con
ventional programs. Furthermore, as re
searchers probe the natural selection of
programs under controlled and well-un-

JOHN H. HOLLAND has been investi
gating the theory and practice of algo
rithmic evolution for nearly 40 years. He
is a professor of psychology and of elec
trical engineering and computer science
at the University of Michigan. Holland
received a B.S. in physics from the Mas
sachusetts Institute of Technology in
1950 and served on the Logical Planning
Group for IBM's first programmed elec
tronic computer (the 701) from 1950 un
til 1952. He received an M.A. in math·
ematics and a Ph.D. in communication
SCiences from the University of Michi
gan. Holland has been a member of the
Steering Committee of the Santa Fe in
stitute since its inception in 1987 and is
an external professor there.

66 SCIENTIFIC AMERICAN July 1992

by John H. Holland

derstood conditions, the practical re
sults they achieve may yield some in
sight into the details of how life and in
telligence evolved in the natural world.

Most organisms evolve by means of
two primary processes: natural selec
tion and sexual reproduction. The first
determines which members of a pop
ulation survive to reproduce, and the
second ensures mixing and recombina
tion among the genes of their offspring.
When sperm and ova fuse, matching
chromosomes line up with one another
and then cross over partway along their
length, thus swapping genetic material.
This mixing allows creatures to evolve
much more rapidly than they would if
each offspring simply contained a copy
of the genes of a single parent, modified
occasionally by mutation. (Although uni
cellular organisms do not engage in
mating as humans like to think of it,
they do exchange genetic material, and
their evolution can be described in anal
ogous terms.)

Selection is simple: if an organism
fails some test of fitness, such as recog
nizing a predator and fleeing, it dies.
Similarly, computer scientists have little
trouble weeding out poorly performing
algorithms. If a program is supposed to
sort numbers in ascending order, for ex
ample, one need merely check whether
each entry of the program's output is
larger than the preceding one.

People have employed a combination
of crossbreeding and selection for mil
lennia to breed better crops, racehorses
or ornamental roses. It is not as easy,
however, to translate these procedures
for use on computer programs. The
chief problem is the construction of a
"genetic code" that can represent the
structure of different programs, just as
DNA represents the structure of a per
son or a mouse. Mating or mutating the
text of a FORTRAN program, for exam
ple, would in most cases not produce a
better or worse FORTRAN program but
rather no program at all.

The first attempts to mesh computer
science and evolution, in the late 1950s

and early 1960s, fared poorly because
they followed the emphasis in biolOgi
cal texts of the time and relied on muta
tion rather than mating to generate new
gene combinations. Then, in the early
1960s, Hans]. Bremermann of the Uni
versity of California at Berkeley added
a kind of mating: the characteristics of
offspring were determined by summing
up corresponding genes in the two par
ents. This mating procedure was limit
ed, however, because it could apply only
to characteristics that could be added
together in a meaningful way.

D uring this time, I had been in
vestigating mathematical analy
ses of adaptation and had be

come convinced that the recombination
of groups of genes by means of mating
was a critical part of evolution. By the
mid-1960s I had developed a program
ming technique, the genetic algorithm,
that is well suited to evolution by both
mating and mutation. During the next
decade, I worked to extend the scope of
genetic algorithms by creating a genet
ic code that could represent the struc
ture of any computer program.

The result was the classifier sys
tem, consisting of a set of rules, each
of which performs particular actions
every time its conditions are satisfied
by some piece of information. The con
ditions and actions are represented by
strings of bits corresponding to the
presence or absence of specific charac
teristics in the rules' input and output.
For each characteristic that was pres
ent, the string would contain a 1 in the
appropriate position, and for each that
was absent, it would contain a O. For ex
ample, a classifier rule that recognized
dogs might be encoded as a string con
taining l's for the bits corresponding to
"hairy," "slobbers," "barks," "loyal" and
"chases sticks" and O's for the bits cor
responding to "metallic," "speaks Urdu"
and "possesses credit cards." More real
istically, the programmer should choose
the Simplest, most primitive character
istics so that they can be combined-as

© 1992 SCIENTIFIC AMERICAN, INC

in the game of 20 Questions-to classify
a wide range of objects and situations.

Although they excel at recognition,
these rules can also be made to trigger
actions by tying bits in their output to
the appropriate behavior [see illustra
tion on page 69]. Any program that can
be written in a standard programming
language such as FORTRAN or llSP can
be rewritten as a classifier system.

To evolve classifier rules that solve a
particular problem, one simply starts
with a population of random strings of
l's and O's and rates each string ac
cording to the quality of its result. De
pending on the problem, the measure
of fitness could be business profitabili
ty, game payoff, error rate or any num
ber of other criteria. High-quality strings
mate; low-quality ones perish. As gen
erations pass, strings associated with
improved solutions will predominate.

Furthermore, the mating process con
tinually combines these strings in new
ways, generating ever more sophisti
cated solutions. The kinds of problems
that have yielded to the technique range
from developing novel strategies in
game theory to designing complex me
chanical systems.

R ecast in the language of genetic
algorithms, the search for a good
solution to a problem is a search

for particular binary strings. The uni
verse of all possible strings can be con
sidered as an imaginary landscape; val
leys mark the location of strings that
encode poor solutions, and the land
scape's highest point corresponds to
the best possible string.

Regions in the solution space can also
be defined by looking at strings that
have l's or O's in speCified places-a

kind of binary equivalent of map coor
dinates. The set of all strings that start
with a 1, for example, constitutes a re
gion in the set of possibilities. So do all
the strings that start with a 0 or that
have a 1 in the fourth position, a 0 in
the fifth and a 1 in the sixth and so on.

One conventional technique for ex
ploring such a landscape is hill climb
ing: start at some random point, and if
a slight modification improves the qual
ity of your solution, continue in that di
rection; otherwise, go in the opposite
direction. Complex problems, howev
er, make landscapes with many high
points. As the number of dimensions of
the problem space increases, the coun
tryside may contain tunnels, bridges
and even more convoluted topological
features. Finding the right hill or even
determining which way is up becomes
increasingly difficult. In addition, such

BEE ORCHID demonstrates the specificity with which natural
genetic selection can match an organism to a particular niche.
The flower, which resembles a female bumblebee, is fertilized
by male bees that attempt to mate with it. Mechanisms similar

to natural selection, the author says, can produce computer
programs (so-called genetic algorithms) capable of solving
such complex problems as the design of jet turbines or com
munications networks.

SCIENTIFIC AMERICAN July 1992 67
© 1992 SCIENTIFIC AMERICAN, INC

CROSSOVER is the fundamental mechanism of genetic rear
rangement for both real organisms and genetic algorithms.

Chromosomes line up and then swap the portions of their ge
netic code beyond the crossover point.

search spaces are usually enormous. If
each move in a chess game, for exam
ple, has an average of 10 alternatives,
and a typical game lasts for 30 moves
on each side, then there are about 1060
strategies for playing chess (most of
them bad).

Genetic algorithms cast a net over this
landscape. The multitude of strings in
an evolving population samples it in
many regions simultaneously. Notably,
the rate at which the genetic algorithm
samples different regions corresponds
directly to the regions' average "eleva
tionn-that is, the probability of finding
a good solution in that vicinity.

This remarkable ability of genetic
algorithms to focus their attention on
the most promising parts of a solution
space is a direct outcome of their ability
to combine strings containing partial so
lutions. First, each string in the popula
tion is evaluated to determine the per
formance of the strategy that it encodes.
Second, the higher-ranking strings mate.
Two strings line up, a point along the
strings is selected at random and the
portions to the left of that point are
exchanged to produce two offspring:
one containing the symbols of the first
string up to the crossover point and
those of the second beyond it, and the
other containing the complementary
cross [see illustration above]. Biological
chromosomes cross over one another
when two gametes meet to form a zy
gote, and so the process of crossover in
genetic algorithms does in fact close
ly mimic its biological model. The off
spring do not replace the parent strings;
instead they replace low-fitness strings,
which are discarded at each generation
so that the total population remains the
same size.

Third, mutations modify a small frac
tion of the strings: roughly one in every

68 SCIENTIFIC AMERICAN July 1992

10,000 symbols flips from 0 to 1, or vice
versa. Mutation alone does not general
ly advance the search for a solUtion,
but it does provide insurance against
the development of a uniform popula
tion incapable of further evolution.

T he genetic algorithm exploits the
higher-payoff, or "target," regions
of the solution space, because

successive generations of reproduction
and crossover produce increasing num
bers of strings in those regions. The al
gorithm favors the fittest strings as
parents, and so above-average strings
(which fall in target regions) will have
more offspring in the next generation.

Indeed, the number of strings in a giv
en region increases at a rate proportion
al to the statistical estimate of that re
gion's fitness. A statistician would need
to evaluate dozens of samples from
thousands or millions of regions to es
timate the average fitness of each re
gion. The genetic algorithm manages to
achieve the same result with far fewer
strings and virtually no computation.

The key to this rather surprising be
havior is the fact that a single string
belongs to all the regions in which any
of its bits appear. For example, the
string 11011001 is a member of regions
11 ****,,* (where the * indicates that a
bit's value is unspecified), 1***,,*',1,
000* and so forth. The largest re
gions-those containing many unspeci
fied bits-will typically be sampled by
a large fraction of all the strings in a
population. Thus, a genetic algorithm
that manipulates a population of a few
thousand strings actually samples a
vastly larger number of regions. This
implicit parallelism gives the genetic al
gorithm its central advantage over oth
er problem-solving processes.

Crossover complicates the effects of

implicit parallelism. The purpose of
crossing strings in the genetic algorithm
is to test new parts of target regions
rather than testing the same string over
and over again in successive genera
tions. But the process can also "move"
an offspring out of one region into an
other, causing the sampling rate of dif
ferent regions to depart from a strict
proportionality to average fitness. That
departure will slow the rate of evolution.

The probability that the offspring of
two strings will leave its parents' re
gion depends on the distance between
the 1 's and O's that define the region.
The offspring of a string that samples
10****, for example, can be outside
that region only if crossover begins at
the second position in the string-one
chance in five for a string containing
six genes. (The same building block
would run a risk of only one in 999 if
contained in a 1,000-gene string.) The
offspring of a six-gene string that sam
ples region 1 ***,' 1 runs the risk of leav
ing its parents' region no matter where
crossover occurs.

Closely adjacent l's or O's that define
a region are called compact building
blocks. They are most likely to survive
crossover intact and so be propagated
into future generations at a rate propor
tional to the average fitness of strings
that carry them. Although a reproduc
tion mechanism that includes crossover
does not manage to sample all regions
at a rate proportional to their fitness, it
does succeed in doing so for all regions
defined by compact building blocks.
The number of compactly defined build
ing blocks in a population of strings still
vastly exceeds the number of strings,
and so the genetic algorithm still ex
hibits implicit parallelism.

Curiously, an operation in natural ge
netics called inversion occasionally rear-

© 1992 SCIENTIFIC AMERICAN, INC

ranges genes so that those far apart in
the parents may be placed close to one
another in the offspring. This amounts
to redefining a building block so that it
is more compact and less subject to be
ing broken up by crossover. If the build
ing block specifies a region of high aver
age fitness, then the more compact ver
sion automatically displaces the less
compact one because it loses fewer off
spring to copying error. As a result,
an adaptive system using inversion can
discover and favor compact versions of
useful building blocks.

The genetic algorithm's impliCit par
allelism allows it to test and exploit
large numbers of regions in the search
space while manipulating relatively few
strings. Implicit parallelism also helps
genetic algorithms to cope with nonlin
ear problems-those in which the fit
ness of a string containing two particu
lar building blocks may be much great
er (or much smaller) than the sum of
the fitnesses attributable to each build
ing block alone.

Linear problems present a reduced
search space because the presence of a
1 or a 0 at one position in a string has
no effect on the fitness attributable to
the presence of a 1 or 0 somewhere
else. The space of 1,000-digit strings,
for example, contains more than 31,000
possibilities, but if the problem is lin
ear, an algorithm need investigate only
strings containing 1 or 0 at each posi
tion, a total of just 2,000 possibilities.

When the problem is nonlinear, the
difficulty increases sharply. The average
fitness of strings in the region ,,01***,
for example, could be above the popu
lation average, even though the fitness
es associated with ,,0;,*** and ** 1 ***
are below the population average. Non
linearity does not mean that no useful
building blocks exist but merely that
blocks consisting of single l's or O's
will be inadequate. That characteristic,
in turn, leads to an explosion of possi
bilities: the set of all strings 20 bits in
length contains more than three billion
building blocks. Fortunately, implicit
parallelism can still be exploited. In a
population of a few thousand strings,
many compact building blocks will ap
pear in 100 strings or more, enough to
provide a good statistical sample. Build
ing blocks that exploit nonlinearities to
attain above-average performance will
automatically be used more often in fu
ture generations.

In addition to coping with nonlineari
ty, the genetic algorithm helps to solve
a conundrum that has long bedeviled
conventional problem-solving methods:
striking a balance between exploration
and exploitation. Once one finds a good
strategy for playing chess, for exam-

pIe, it is possible to concentrate on ex
ploiting that strategy. But this choice
carries a hidden cost because exploita
tion makes the discovery of truly novel
strategies unlikely. Improvements come
from trying new, risky things. Because
many of the risks fail, exploration in
volves a degradation of performance.
Deciding to what degree the present
should be mortgaged for the future is
a classic problem for all systems that
adapt and learn.

The genetic algorithm's approach to
this obstacle turns on crossover. Al
though crossover can interfere with
the exploitation of a building block by
breaking it up, this process of recombi
nation tests building blocks in new
combinations and new contexts. Cross
over generates new samples of above
average regions, confirming or disprov
ing the estimates produced by earlier
samples. Furthermore, when crossover

breaks up a building block, it produces
a new block that enables the genetic al
gorithm to test regions it has not previ
ously sampled.

The game known as the Prisoner's
Dilemma illustrates the genetic algo
rithm's ability to balance exploration
against exploitation. This long-studied
game presents its two players with a
choice between "cooperation" and "de
fection": if both players cooperate, they
both receive a payoff; if one player de
fects, the defector receives a higher
payoff and the cooperator receives
nothing; if both defect, they both receive
a minimal payoff [see table on page 71].
For example, if player A cooperates and
player B defects, then player A receives
no payoff and player B receives a pay
off of five points.

Political scientists and sociologists
have studied the Prisoner's Dilemma be
cause it provides a Simple, clear-cut ex-

How to Build a Classifier System

B uilding a computer algorithm that
can evolve requires a way of rep

resenting the program so that any
change in its genotype (the bits that
compose the program) leads to a
meaningful change in its phenotype

(what the program does). A classifier
consists simply of strings represent
ing possible characteristics of the pro
gram's input and actions to take
(be/ow). Changing any symbol in a
string changes its behavior.

A classifier system to emulate a frog, for ex
ample, might contain strings that react to
objects that the frog sees. Depending on an
object's motion, size, location and other at
tributes, the frog would attack, pursue or ig
nore it. Several strings may match the same
input string; the one with the fewest "don't
care" symbols governs the system's actions.

INPUT

IF OBJECT IS MOVING, FLEE

IF OBJECT IS MOVING, IN THE AIR, SMALL AND NEAR, PURSUE

OUTPUT

IF OBJECT IS MOVING, IN THE AIR, SMALL, NEAR AND STRIPED, DO NOTHING

SCIENTIFIC AMERICAN July 1992 69
© 1992 SCIENTIFIC AMERICAN, INC

INITIAL POPULATION MATING INTERMEDIATE POPULATION MATING

0.60 �.J!..:;.;"-"-_____ ----'

0.45 L.:..:..:�-L... _____ ----'

1110(§'bt�110001111100111011111 1 X

1000101100100111100101110101111 1-_______________
_

0.30 GI 1�00�10�1�01�10�1�01�00�0�1 0�1�100�1�00�1100�1�0 1-------------:)� 0.30 11001 010110101000101�0010010010 1 X

0.25 111110011 1100100110100000000011 1) 0.25 1111100111100100110100000000011 1 X

0.20 10011111000011110110011011100101 X

0.20 11000100000000100101�001101qooo l X

0.10 1110101100000101101010010100110 1 X

0.10 1010010� 101o o,110111110101111111 1 X

ample of the difficulties of cooperation.
Game theory predicts that each player
should minimize the maximum dam
age the other player can inflict: that is,
both players should defect. Yet when
two people play the game together re
peatedly, they typically learn to cooper
ate with each other to raise their joint
payoff. One of the most effective known
strategies for the Prisoner's Dilemma is
"tit for tat," which begins by cooperat
ing but thereafter mimics the last play
of the other player. That is, it "punish
es" a defection by defecting the next
time, and it rewards cooperation by co
operating the next time.

Robert Axelrod of the University of
Michigan, working with Stephanie For
rest, now at the University of New Mex
ico, decided to find out if the genetic
algorithm could discover the tit-for-tat
strategy. Applying the genetic algorithm
first requires translating possible strate
gies into strings. One simple way is to
base the next response on the outcome
of the last three plays. Each iteration
has four possible outcomes, and so a
sequence of three plays yields 54 pos
sibilities. A 54-bit string contains one
gene (or bit position) for each. The first
gene, for instance, would be allocated
to the case of three consecutive mutual
cooperations and the last to three mu
tual defections. The value of each gene
would be either 1 or 0 depending on

70 SCIENTIFIC AMERICAN July 1992

GENE POOL of algorithms consists of strings of l's and O's. Each string is evaluated
for fitness, and the best strings mate (second column) and produce offspring by
means of crossover (indicated by a vertical black line). Strings of intermediate
fitness simply survive to the next generation, and the least fit perish. If particular
patterns of bits (shown here by colored areas) improve the fitness of strings that
carry them, repeated cycles of evaluation and mating (succeeding columns) will
cause the proportion of these high-quality "building blocks" to increase. The pattern
corresponding to each building block appears in the rightmost column; asterisks
represent bits whose values are unspecified.

whether the preferred response to its
corresponding history was cooperation
or defection. For example, the 54-bit
string consisting of all O's would desig
nate the strategy that defects in all cas
es. Even for such a simple game, there
are 264 (approximately 15 quadrillion)
different strategies.

Axelrod and Forrest supplied the ge
netic algorithm with a small random
collection of strings representing strate
gies. The fitness of each string was sim
ply the average of the payoffs its strate
gy received under repeated play. All
these strings had low fitnesses because
most strategies for playing the Prison
er's Dilemma are not very good. Quickly
the genetic algorithm discovered and ex
ploited tit for tat, but further evolution
introduced an additional improvement.
The new strategy, discovered while the
genetic algorithm was already playing at
a high level, exploited players that could
be "bluffed"-lured into cooperating re
peatedly in the face of defection. It re
verted to tit for tat, however, when the
history indicated the player could not
be bluffed.

B iological evolution operates, of
course, not to produce a single
superindividual but rather to pro

duce interacting species well adapted
to one another. (Indeed, in the biologi
cal realm there is no such thing as a

best individual.) Similarly, the genetic
algorithm can be used, with modifica
tions, to govern the evolution not mere
ly of individual rules or strategies but
of classifier-system "organisms" com
posed of many rules. Instead of select
ing the fittest rules in isolation, com
petitive pressures can lead to the evo
lution of larger systems whose abilities
are encoded in the strings that make
them up.

Re-creating evolution at this higher
level requires several modifications to
the original genetic algorithm. Strings
still represent condition-action rules,
and each rule whose conditions are met
generates an action as before. Rating
each rule by the number of correct ac
tions it generates, however, will favor
the evolution of individual "superrules"
instead of finding clusters of rules that
interact usefully. To redirect the search
toward interacting rules, the procedure
is modified by forcing rules to compete
for control of the system's actions. Each
rule whose conditions are met com
petes with all other rules whose condi
tions are met, and the strongest rules
determine what the system will do in
that given situation. If the system's ac
tions lead to a successful outcome, all
the winning rules are strengthened; oth
erwise they are weakened.

Another way of looking at this meth
od is to consider each rule string as a

© 1992 SCIENTIFIC AMERICAN, INC

INTERMEDIATE POPULATION MATING FINAL POPULATION KEY

� 0.70 11000100001010001110 L-'--. ""'--_---'-'-:..:.....:.--'..:..::�

� 0.60 L-________ -L __ ��

� 0.60 101010010100011101001010001110 � 0.55 1 1010100101000111010010100011101
� 0.55 I 1010100101000101000W010ll00ll I)(

�0.50 1110g1 10001111101110101111 1)(
�0.50 1000101100100111100101110101111 1)(

hypothesis about the classifier's world.
A rule enters the competition only when
it "claims" to be relevant to the current
situation. Its ability to compete depends
on how much of a contribution it has
made to solving similar problems. As
the genetic algorithm proceeds, strong
rules mate and form offspring rules
that combine their parents' building
blocks. These offspring, which replace
the weakest rules, amount to plausible
but untried hypotheses.

Competition among rules provides
the system with a graceful way of han
dling perpetual novelty. When a system
has strong rules that respond to a par
ticular situation, that is the equivalent
of saying that it has certain well-validat
ed hypotheses. Offspring rules, which
begin life weaker than do their parents,
can win the competition and influence
the system's behavior only when there
are no strong rules whose conditions
are satisfied-in other words, when the
system does not know what to do. If
their actions help, they survive; if not,
they are soon replaced. Thus, the off
spring do not interfere with the sys
tem's action in well-practiced situations
but wait gracefully in the wings as hy
potheses about what to do under novel
circumstances.

Adding competition in this way
strongly affects the evolution of a clas
sifier system. Shortly after the system
starts running, it evolves rules with sim
ple conditions-treating a broad range
of situations as if they were identical.
The system exploits such rules as de
faults that specify something to be done
in the absence of more detailed infor
mation. Because the default rules make
only coarse discriminations, however,
they are often wrong and so do not
grow in strength. As the system gains
experience, reproduction and crossover
lead to the development of more com
plex, speCific rules that rapidly become

0.60 lOll! 1 1110,011001101001010001110 1
0.65 1011 1111JOll00ll0l0 l 00 l 0l l 00ll I
0.70 1 011�11110011001101010010110011 1
0.60 I 011�1111doll00ll0l00l0l000lllO l
0.70 I 011U1111O,Ol1000100001010001110 1
0.60 1101010010100010100010010110011 1
0.65 1 011�11 1 100110001000100101100111
0.70 110101 00101000101000010100011101

1 • • ··· 0 1 1 1· 1

1 • • • • • • .. 1 0 0 1 .. 1 0 .. · 1
1 1 1.1 0 0 .. • ·· 1

0.60 11010100101000111010010100011101

strong enough to dictate behavior in
particular cases.

Eventually the system develops a hi
erarchy: layers of exception rules at the
lower levels handle most cases, but the
default rules at the top level of the hi
erarchy come into play when none of
the detailed rules has enough informa
tion to satisfy its conditions. Such de
fault hierarchies bring relevant experi
ence to bear on novel situations while
preventing the system from becoming
bogged down in overly detailed options.

The same characteristics that make
evolving classifier systems adept at han
dling perpetual novelty also do a good
job of handling situations where the
payoff for a given action may come
only long after the action is taken. The
earliest moves of a chess game, for ex
ample, may set the stage for later victo
ry or defeat.

To train a classifier system for such
long-term goals, a programmer gives
the system a payoff each time it com
pletes a task. The credit for success (or
the blame for failure) can propagate
through the hierarchy to strengthen (or
weaken) individual rules even if their
actions had only a distant effect on the
outcome. Over the course of many gen
erations the system develops rules that
act ever earlier to set the stage for later
payoffs. It therefore becomes increas
ingly able to anticipate the consequenc
es of its actions.

G enetic algorithms have now been
tested in a wide variety of con
texts. David E. Goldberg of the

University of Illinois, for example, has
developed algorithms that learn to con
trol a gas pipeline system modeled on
the one that carries natural gas from the
Southwest to the Northeast. The pipe
line complex consists of many branches,
all carrying various amounts of gas; the
only controls available are compressors

that increase pressure in a particular
branch of the pipeline and valves to
regulate the flow of gas to and from
storage tanks. Because of the tremen
dous lag between manipulating valves
or compressors and the actual pressure
changes in the lines, there is no analyt
ic solution to the problem, and human
controllers, like Goldberg's algorithm,
must learn by apprenticeship.

Goldberg's system not only met gas
demand at costs comparable to those
achieved in practice, but it also devel
oped a hierarchy of default rules ca
pable of responding properly to holes
punched in the pipeline (as happens
all too often in reality at the blade of
an errant bulldozer). Lawrence Davis of
Tica Associates in Cambridge, Mass.,
has used similar techniques to design
communications networks; his soft
ware's goal is to carry the maximum
possible amount of data with the mini
mum number of transmission lines and
switches interconnecting them.

A group of researchers at General
Electric and Rensselaer Polytechnic In-

The Prisoner's Dilemma

PLAYER

(A)
COOPERATE

(A)
DEFECT

(B)
COOPERATE

3/3

0/5

(B)
DEFECT

5/0

0/0

IN PRISONER'S DILEMMA each play
er can either cooperate or defect and
receives a payoff based on the other's
choice. If both cooperate, for example,
both receive three points. Mutual defec
tion is the safest strategy, but repeated
play often leads to cooperation instead.

SCIENTIFIC AMERICAN July 1992 71

© 1992 SCIENTIFIC AMERICAN, INC

SOFlW ARE TO DESIGN JET TURBINE includes a genetic algorithm that combines
the best features of designs produced by other programs. Engineers using the algo
rithm achieved better results than with more conventional software aids.

stitute recently put a genetic algorithm
to good use in the design of a high-by
pass jet engine turbine such as those
that power commercial airliners. Such
turbines, which consist of multiple stag
es of stationary and rotating blade rows
enclosed in a roughly cylindrical duct,
are at the center of engine-development
projects that last five years or more and
consume up to $ 2 billion.

The design of a turbine involves at
least 100 variables, each of which can
take on a different range of values. The
resulting search space contains more
than 10387 points. The "fitness" of the
turbine depends on how well it satisfies
a series of 50 or so constraints, such as
the smooth shape of its inner and out
er walls or the pressure, velocity and
turbulence of the flow at various points
inside the cylinder. Evaluating a single
design requires running an engine sim
ulation that takes about 30 seconds on
a typical engineering workstation.

In one fairly typical case, an engi
neer working alone took about eight
weeks to reach a satisfactory design.
So-called expert systems, which use in
ference rules based on experience to
predict the effects of a change of one
or two variables, can help direct the de
signer in seeking out useful changes.
An engineer using such an expert sys
tem took less than a day to design an
engine with twice the improvements of
the eight-week manual design.

Such expert systems, however, soon
get stuck at points where further
improvements can be made only by
changing many variables simultaneous-

72 SCIENTIFIC AMERICAN ruly 1992

ly. These dead ends occur because it is
practically impossible to sort out all the
effects associated with different multi
ple changes, let alone to specify the re
gions of the design space within which
previous experience remains valid.

To get away from such a point, the
designer must find new building blocks
for a solution. Here is where the genet
ic algorithm comes into play. Seeding
the algorithm with designs produced
by the expert system, an engineer took
only two days to find a design with
three times the improvements of the
manual version (and half again as many
as using the expert system alone).

This example points up both a
strength and a limitation of simple ge
netic algorithms: they are at their best
when exploring complex landscapes to
locate regions of enhanced opportuni
ty. But if a partial solution can be im
proved further by making small chang
es in a few variables, it is best to aug
ment the genetic algorithm with other,
more standard methods. �thOUgh genetic algorithms mimic

the effects of natural selection,
until now they have operated

on a much smaller scale than does bio
logical evolution. My colleagues and I
have run classifier systems containing
as many as 8,000 rules, but this size is
at the low end of viability for natural
populations. Large animals that are not
endangered may number in the mil
lions, insect populations in the trillions
and bacteria in the quintillions or more.
These large numbers greatly enhance

the advantages of implicit parallelism.
As maSSively parallel computers be

come more common, it will be feasible
to evolve software populations whose
size more closely approaches those of
natural species. Indeed, the genetic al
gorithm lends itself nicely to such ma
chines. Each processor can be devoted to
a single string because the algorithm's
operations focus on single strings or,
at most, a pair of strings during cross
over. As a result, the entire population
can be processed in parallel.

We still have much to learn about
classifier systems, but the work done
so far suggests they will be capable of
remarkably complex behavior. Rick L.
Riolo of the University of Michigan has
already observed genetic algorithms
that display "latent learning" (a phe
nomenon in which an animal such as a
rat explores a maze without reward and
is subsequently able to find food placed
in the maze much more quickly).

At the Santa Fe Institute, Forrest, W.
Brian Arthur, John H. Miller, Richard G.
Palmer and I have used classifier sys
tems to simulate economic agents of
limited rationality. These agents evolve
to the point of acting on trends in a
simple commodity market, producing
speculative bubbles and crashes.

The simulated worlds these agents
inhabit show many similarities to natu
ral ecosystems: they exhibit counter
parts to such phenomena as symbio
sis, parasitism, biological "arms races,"
mimicry, niche formation and specia
tion. Still other work with genetic algo
rithms has shed light on the conditions
under which evolution will favor sexual
or asexual reproduction. Eventually ar
tificial adaptation may repay its debt to
nature by increasing researchers' un
derstanding of natural ecosystems and
other complex adaptive systems.

FURTIlER READING

INDUCTION: PROCESSES OF INFERENCE,

LEARNING, AND DISCOVERY. J. H. Hol
land, K. J. Holyoak, R. E. Nisbett and P.
R. Thagard. MIT Press, 1986.

GENETIC ALGORITHMS AND SIMUIATED

ANNEAuNG. Edited by Lawrence Davis.
Morgan Kaufmann, 1987.

GENETIC ALGORITHMS IN SEARCH, OP

TIMIZATION, AND MACHINE LEARNING.

D. E. Goldberg. Addison-Wesley, 1989.
GENETIC ALGORlTHMS: PROCEEDINGS OF

THE FOURTH INTERNATIONAL CONFER

ENCE. Edited by Richard Belew and
Lashon Booker. Morgan Kaufmann, 1991.

ADAPTATION IN NATURAL AND ARTIFI

CIAL SYSTEMS. J. H. Holland. MIT Press,
1992.

COMPLEX ADAPTIVE SYSTEMS. J. H. Hol
land in Dazda/us, Vol. 121, No.1, pages
17-30; Winter 1992.

© 1992 SCIENTIFIC AMERICAN, INC

Effortlessly contour and
colormap surfaces generated f--iT�,
from random sample pOints.

Pull a lever to adjust a variable, as the
revolutionary Graphics Equalizer�
animates changes to your curve-fits
and formulas on-screen.

Automate your presentation
with master slides, outliner,
speaker & handout notes.

Pop up the extraordinary
graph gallery of over 160
business, technical,
and statistical graph types.

Access your numbers
instantly from your
favorite Windows
or DOS spreadsheet.

Hot-link multiple
data files directly to
Stanford Graphics'
proprietary 4-0
70-trillion
cell spreadsheet.

Instantly identify
& modify your data
points with the
Intelligent Data Cursor.�
Simply drag a bar or
line to change a cell in
your spreadsheet!

Click on the Calculator
for on-the-fly business,
financial or scientific
com putations.

STANFORD GRAPHICS FOR WINDOWS
Finally ... presentation graphics with numerical clout!

"Stanford is a breakthrough product that combines
technical charting. data analysis, and presentation
tools. Basically, it's fabulous." *

- PC Magazine
March. 1992

Does your presentation software give
you all beauty and no brains? Where is
the substance behind those pretty pic
tures?What if your presentation program
had enough data-handling muscle to
meet the needs of business and statistical
and scientific users?

With on-screen curve fitting. formula
solVing. statistics, and data manipulation,
Stanford Graphics advances both the art
and science of technical presentations.

All this and Windows too. Stanford
Graphics takes full advantage of the latest

"Stanford Graphics offers the best of both worlds.
It combines top-notch presentation features with
unprecedented technical sophistication. � were
greatly impressed:' _ Infoworld.

Sept.. 1991

STANFORD GRAPHICS"

"Stanford Graphics slams the competition .. :'

- Infoworld
April. 1992

in Windows 3.0 and 3.1 technology, with
sophisticated DDE, OLE, and TrueType
font support.

Stanford Graphics for Windows:
Presentation and Analysis.

Finally, form and substance.

3IlL 3-� UISII±INS ,r Call Toll Free for Details

1-800-729-4723
2780 Skypark Drive, Torrance, CA 90505

P R E 5 E N T A T I O N .. A N A L Y 5 I 5 Tel: (310) 325-1339 FAX: (310) 325-1505

© 1992 SCIENTIFIC AMERICAN, INC

