
Advances in Engineering Software 92 (2016) 65–88

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

A novel nature-inspired algorithm for optimization: Virus colony search

Mu Dong Li∗, Hui Zhao, Xing Wei Weng, Tong Han

Institute of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi’an, Shannxi 710038, PR China

a r t i c l e i n f o

Article history:

Received 23 June 2015

Revised 3 November 2015

Accepted 6 November 2015

Keywords:

Nature-inspired algorithms

Optimization

Virus colony search

Survival strategy

Unconstrained optimization problems

Engineering design problems

a b s t r a c t

This paper presents a new powerful nature-inspired method named Virus Colony Search (VCS). VCS simu-

lates diffusion and infection strategies for the host cells adopted by virus to survive and propagate in the cell

environment. With the strategies, the individual in the new algorithm explores and exploits the search space

more efficiently. To verify the performance of our VCS, both the unconstrained classic and CEC2014 modern

benchmark functions, and constrained engineering design optimization problems are employed. The experi-

mental results, considering both convergence and accuracy simultaneously, demonstrate the effectiveness of

VCS for global numerical and engineering optimization problems.

© 2015 Elsevier Ltd. All rights reserved.

1

a

o

a

a

a

s

h

t

o

p

e

c

b

D

C

h

o

o

i

d

t

e

l

p

e

(

E

i

b

E

f

s

b

[

i

i

m

d

n

t

a

T

[

[

N

v

h

h

0

. Introduction

Optimization is the process of searching for the global optima of

problem under a given circumstance. Lots of real-world complex

ptimization problems have emerged in many scientific fields such

s engineering, economics and business which cannot be solved with

reasonable time or accuracy solutions by classical methods [1].

Nature provides a rich source such as mechanisms, principles

nd concepts for designing artificial computational methods to solve

uch complex optimization problems. In recent years, researchers

ave developed many nature-inspired (NI) algorithms that mimic

he specific phenomena or behaviors of nature for the different

ptimization problems [2]. For example, genetic algorithm (GA) pro-

osed by Holland [3] represents a fairly abstract model of Darwinian

volution and biological genetics; particle swarm optimization (PSO)

onceived by Kennedy and Eberhart [4] mimics social behaviors of

ird flocking; ant colony optimization (ACO), proposed by Marco

origo [5], is inspired by the foraging behaviors of the ant colonies.

ompared with the classical heuristic methods, these algorithms

ave been confirmed with the excellent performance, especially for

ptimizing the multimodal, non-differentiable and discrete complex

ptimization problems. Meanwhile, these NIs have been widely used

n many scientific fields such as dynamic optimization [6], IIR filter

esign [7], image processing [8], mechanical design problems [9],

ask scheduling [10], data mining applications [11], and many other

ngineering problems [12–14].
∗ Corresponding author. Tel.: +86 18392193176.

E-mail addresses: modern_lee@163.com (M.D. Li), zhaohui_kgy@163.com

(H. Zhao), wengxingwei_kgy@163.com (X.W. Weng), hantong_kgy@163.com (T. Han).

N

p

p

i

t

ttp://dx.doi.org/10.1016/j.advengsoft.2015.11.004

965-9978/© 2015 Elsevier Ltd. All rights reserved.
Generally, NIs can be divided into three main classes: evo-

utionary algorithms (EA), swarm intelligence (SI) algorithms and

hysics-based (PB) algorithms [2]. EAs are inspired by the genetic and

volutionary behaviors of creatures. GA and differential evolution

DE) [15] algorithm can be described as representative algorithms in

As. The second main class of nature-inspired algorithms is swarm

ntelligence algorithms. Just like EAs, the SIs are usually inspired

y the behaviors of intelligent nature creatures. Different from the

As, the majority of SIs use genetic rules only and they always take

ull advantages of each solution in search space to provide better

olutions to the problem. Some of the popular SIs are PSO, artificial

ee colony (ABC) inspired by the honey-bees food searching behavior

16], cuckoo search (CS) inspired by parasitic bio-interactions in liv-

ng creatures [17], animal migration optimization (AMO) algorithm

nspired by the behavior of the animal migration [18], grey wolf opti-

izer (GWO) inspired by hunting mechanism of grey wolves [19] and

olphin echolocation algorithm (DEa) inspired by the behaviors of

avigation and hunting of dolphin [20]. Physics-based algorithms are

he third class of nature-inspired algorithms. Distinct from the EAs

nd SIs, the PBs are mostly inspired by physical rules in the nature.

here are some popular PBs such as charged system search (CSS)

21], ray optimization (RO) [22], colliding bodies optimization (CBO)

23] and gravitational search algorithm (GSA) algorithm [24].These

Is share the same following characteristics: (1) make use of random

ariables; (2) do not require substantial gradient information; (3)

ave several parameters need to be fitted for the problem [25]. Each

I algorithm has unique advantages with respect to robustness and

erformance in noisy environments, in the presence of uncertain

arameters, and in different problem spaces [26]. However, accord-

ng to the ‘‘no free-lunch’’ theorem, there is no one NI algorithm

o optimally solve all optimizing problems [27]. Therefore, new

http://dx.doi.org/10.1016/j.advengsoft.2015.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2015.11.004&domain=pdf
mailto:modern_lee@163.com
mailto:zhaohui_kgy@163.com
mailto:wengxingwei_kgy@163.com
mailto:hantong_kgy@163.com
http://dx.doi.org/10.1016/j.advengsoft.2015.11.004

66 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Fig. 1. The diagram for general growth of viruses in the cell environment.

3

r

f

e

i

i

s

i

r

3

t

p

v

w

i

r

a

d

V

w

p

a

t

E

t

A

l

w

t

b

s

high-performance NI algorithms are continuously needed to solve

specific optimizing problems.

This paper introduces a new simple and powerful NI algorithm

called Virus Colony Search (VCS).This algorithm simulates the virus

infection and diffusion strategies for the host cells to survive and

propagate in the cell environment. The main contribution of this pa-

per is the presentation of a new algorithm with further insight into

solving optimization problems. The proposed algorithm can achieve

a solution that has the least (or at most, a small) error compared

with the globally optimum solution within a minimal number of it-

erations, thus offering an improvement in terms of accuracy, conver-

gence rate and simplicity of the operations.

Preliminary studies show that the NIs such as CMA-ES, ABC, CS,

GSA, CoBiDE, GWO, AMO, SOS and other well-known optimization

algorithms are very promising and could be used as the compared al-

gorithms for evaluating VCS’s performance in solving unconstrained

global optimization problems. For constrained problems, VCS is com-

pared with the results in the previous lectures of different algorithms.

The rest of this paper is organized as follows. Section 2 introduces

the survival strategies of viruses. The detailed introduction of VCS is

described in Section 3. The experiment sets and statistical results for

different tests are shown in Section 4. Finally, Section 5 concludes the

work and suggests some directions for the future.

2. Survival strategy of viruses

The proposed VCS algorithm simulates the infection and diffusion

behaviors between viruses and host cells in the cell environment. In

order to live and propagate, virus has to live on a host cell by diffu-

sion and infection behaviors. Meanwhile, evolution behavior always

occurs during the process of adapting to a changing cell environment.

The following part in this section introduces the survival strategies of

virus colony and describes the roles of virus, host cell and immune

system.

A virus is a small infectious agent that survives only inside the

living cells of other organisms. Viruses are considered by some re-

searchers to be a life form, because they carry genetic material, repro-

duce, and evolve through natural selection [28]. The origins of viruses

in the evolutionary history of life are unclear, but their growth gen-

erally can be summarized as two processes in Fig. 1: viruses diffu-

sion and host cells infection. Meanwhile, the evolution and immune

response of the host immune system are also occurred along with

above two processes.

(1) Viruses diffusion: viruses randomly search for host cells to in-

fect so as to absorb essential elements for growth (Diffusion

process in Fig. 1). In this process, the random walk method of

Gaussian walks [29] can be used to describe this behavior.
(2) Host cells infection: When found a host cell, virus infects and

destroys it (Infection process in Fig. 1). Based on the essential

elements of the host cell, virus can survive and reproduce it-

self until the death of the host cell. In other words, the host

cell is “mutated” to be a virus with the process of reproduc-

tion. Inspired by evolutionary strategies with covariance ma-

trix adaptation (CMA-ES) algorithm [30], this process is real-

ized according to the CMA-ES operation to generate the new

viruses.

(3) Immune response: Because the host immune system plays a

major role to protect the host cell from infection or destruc-

tion, the virus will be selected during the growing process in

order to survive. In other words, viruses that have better ability

will be reserved for the next generation; otherwise they will be

killed by the host immune system. It means evolution chance

of the viruses which have not obtained a good ability will in-

crease.

. Virus colony search

According to the previous section, our Virus Colony Search algo-

ithm employs three strategies including: Gaussian walks method

or viruses diffusion, CMA-ES operation for host cells infection and

volution strategy for immune response. Actually, the first strategy

s used to improve the exploitation properties. The second strategy

s mainly to enhance the performance of exploration. For the third

trategy, it is proposed to make full use of worse individuals so as to

mprove the search efficiency. Loosely speaking, VCS uses five simple

ules to find a solution.

1. Two different groups: virus colony Vpop and host cell colony Hpop,

are used in the VCS.

2. Each virus in the diffusion process creates a new random individ-

ual.

3. Each virus infects one host cell.

4. The reproduction of each virus is based on destroying the host cell

to obtain nutrients.

5. According to the protection of the host immune system, only some

of the best viruses remain in each generation, and the rest of the

viruses are evolved so as to survive.

.1. Viruses diffusion

In general, viruses exist in some certain mediums such as air, wa-

er or circulation systems of some organisms. The random-walking

henomenon occurred in some mediums is the main activity of a

irus in this stage until it searched a host cell. Gaussian random walk,

hich has a promising performance in finding global optimum [31],

s often used as the diffusion rule to describe the phenomenon of

andom diffusion [32]. For improving the exploitation performance

nd avoiding local optimal, this method is selected and the viruses

iffusion is designed as:

pop′
i
= Gaussian(Gg

best
, τ) + (r1 · Gg

best
− r2 · V popi) (1)

here i is the random index selected from [1,2,3,…, N] and N is the

opulation size. G
g

best
is the best solution of the generation g. r1 and r2

re random values selected from [0, 1]. For the Gaussian parameters,

he standard deviation ι is calculated by log(g)/g · (V popi − G
g

best
). In

q. (1), the search direction (r1 · G
g

best
− r2 · V popi) is used to avoid

he local optimal which Vpopi is the ith current position of Vpop.

nd in order to improve the performance of local search, the term

og(g)/g is designed so as to decrease the size of Gaussian jumps

ith the generation increased. From Eq. (1), it can be observed that

he new individuals are generated around the global best solution

y the Gaussian distribution Gaussian(G
g

best
, τ) and adjusted by the

earch direction (r1 · G
g

best
− r2 · V popi). On the other hand, with the

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 67

g

I

d

w

3

t

t

t

i

i

t

t

c

r

(

t

t

p

a

H

w

v

t

X

a

b

X

w

i

p

a

w

s

a

b

σ

C

w

c

c

c

w

m

3

m

r

b

t

v

v

P

w

o

{

w

a

t

q

a

t

s

t

w

i

3

c

a

i

c

b

H

l

a

[

u

t

V

s

eneration increased, the value of log(g)/g is decreased gradually.

t leads to severe disturbance at the early generation while a slight

isturbance at the late generation around the global best solution,

hich can help the individuals to get closer to the solutions.

.2. Host cells infection

Once a host cell is infected, it will be invaded and destroyed by

he virus until its death. Actually, this process can be explained as

he process of interaction relations: the host cell provides the essen-

ial elements and the virus metabolizes the harmful substances lead-

ng to death of the host cell gradually. Finally, the host cell ‘mutates’

nto a new virus. This process is mainly used to realize the informa-

ion exchange and improve the exploration properties of the popula-

ion. CMA-ES method is a famous evolutionary algorithm. It not only

ontains the mutation operation, but also considers the interactive

elations between the individuals by covariance matrix adaptation

CMA), which adapts a full covariance matrix of a normal search (mu-

ation) distribution [30]. Therefore this method is quite suitable for

he behavior of the host cells infection and it is introduced in this pa-

er. In order to reflect the interactive relations between the viruses

nd the host cells. The main steps of it can be summarized as follows.

Step. 1. Update the Hpop by:

popg
i
= Xg

mean
+ σ g

i
× Ni(0, Cg) (2)

here Ni(0, Cg) is a normal distribution with mean 0 and D×D co-

ariance matrix Cg, g is the current generation, D is the dimension of

he problem and σ g > 0 is the step size. X
g
mean is initialized by:

0
mean

=
∑N

i=1 V popi

N
(3)

Step. 2. Select the best λ individuals from the previous phrase as

parental vector, and the center of the selected vector is calculated

ased on:

g+1
mean

= 1

λ

λ∑
i=1

ωi · V popλbest
i | ωi

= ln(λ + 1)
/(

λ∑
j=1

(ln(λ + 1) − ln(j))

)
(4)

here λ = �N/2�, ωi is the recombination weight and i denotes the

ndex of ith best individuals. Two so-called evolution paths are com-

uted. They track the history of changes of the population mean with

n exponential decay of the past.

pg+1
σ = (1 − cσ)pg

σ +
√

cσ (2 − cσ)λw
1

σ g
(Cg)−1/2(Xg+1

mean − Xg
mean)

(5)

pg+1
c = (1 − cc)pg

c + hσ

√
cc(2 − cc)λw

1

σ g
(Xg+1

mean − Xg
mean) (6)

here λ−1
w = ∑λ

i=1 w2
i
, (Cg)−1/2 is symmetric, positive and satisfies

(Cg)−1/2(Cg)−1/2 = (Cg)−1. The cumulation parameters are generally

et as cσ = (λw + 2)/(N + λw + 3), cc = 4/(N + 4) and hσ = 1 usu-

lly but hσ = 0 if ‖p
g+1
σ ‖ is large [30].

Step. 3. Update the step size σ g+1 and the covariance matrix Cg+1

y:

g+1 = σ g × exp

(
cσ

dσ

(∥∥pg+1
σ

∥∥
E‖N(0,I)‖ − 1

))
(7)

g+1 = (1 − c1 − cλ)Cg + c1 pg+1
c (pg+1

c)T

+ cλ

∑λ

i=1
wi

V popλbest
i

− Xg
mean

g
· (V popλbest

i
− Xg

mean
)

T

g
(8)
σ σ
here dσ = 1 + cσ + 2 max{0, (
√

λw − 1/
√

N + 1) − 1} is usually

lose to 1 and c1, cλ obey

1= 1

λw

((
1 − 1

λw

)
min

{
1,

2λw − 1

(N + 2)
2 + λw

}
+ 1

λw

2

(N + √
2)

2

)
(9)

λ = (λw − 1)c1 (10)

here 0 ≤ cλ ≤ 1 is the updating rate for updating the covariance

atrix C [30].

.3. Immune response

As mentioned earlier, according to influence of the host cell im-

une system, the viruses with better performance are more likely to

etain its ability to the next generation. However, worse viruses must

e evolved themselves in case of being killed by the immune sys-

em. Thus, the following steps are used to realize the evolution of the

iruses.

Step. 1. Calculate the performance ranks Pr according to fitness

alue of virus colony Vpop by:

rrank(i) = (N − i + 1)

N
(11)

here N is the population size of Vpop, rank(i) means the fitness rank

f the ith individual in Vpop.

Step. 2. Evolve the individuals of Vpop by:

V popi, j
′′ = V popk, j − rand · (V poph, j − V popi, j), if r > Prrank(i)

V popi, j
′′ = V popi, j, otherwise

(12)

here k, i, h are random indexes selected from [1, 2, 3, … , N], i	=k	=h

nd j ∈ [1, 2, 3, . . . , d]. rand and r are the random values chosen from

he [0, 1]. As shown in Eqs. (11) and (12), the better individuals are

uite possible to remain their better performance to the next gener-

tion.

In addition, the generation mechanisms of the new population ob-

ained by above three behaviors processes may lead to crossing the

earch boundary. Thus, the boundary checking method is used to con-

rol the search boundary.

Step. 1. if xi ,j<Low, then xi,j=rand×(Up-Low)+Low.

Step. 2. if xi,j>Up, then xi,j=rand×(Up-Low)+Low.

here Up and Low are the upper and lower bounds, respectively. xi ,j

s the jth dimension of ith solution.

.4. Framework of VCS

By combining the three simulated behaviors of virus and the host

ell, VCS is presented. The standard Virus Colony Search optimization

lgorithm can be described in Algorithm 1.

At each generation, for each virus, a viruses diffusion vector Vpop’i
s generated by the Gaussian random walk method (i. e. Eq. (1)). Then,

heck the search bounds of the new population and update the Vpop

y objective function values. Afterward, the host cell infection vector

popi
g+1 is created by the individuals of Vpop (i. e. Eq. (2)). Then se-

ect the λ best individuals for the calculation of the X
g+1
mean (i. e. Eq. (4))

nd other parameters (i. e. Eqs. (5–10)) according to CMA-ES method

30]. Again, check the search bounds of the new population Hpop and

pdate the Vpop. Finally, immune response process makes a contribu-

ion to the evolution of the viruses. If the ranks of the individuals in

pop are worse than the others, they are more likely to evolve them-

elves. The parameter Pr is used to calculate the performance ranks

68 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

4

of the individuals (i. e. Eq. (11)). According to Eq. (11), the individuals

with worse fitness values have the smaller value of Pr and the random

value r may greater than Pr with high probability. In result, they are

more likely to evolve by Eq. (12). Instead, the better individuals with

greater Pr may remain unchanged with high probability.

4. Experimental study

In this section, to study our new algorithm, experimental results

are carried out based on the constrained and unconstrained bench-

mark functions. The 10 well-known classic benchmark functions [19]

and 30 modern benchmark functions selected from CEC-2014 [33]

are considered as the unconstrained benchmark functions. For con-

strained benchmark functions, three engineering design optimiza-

tion problems commonly used in literature are employed in this pa-

per. In addition, all the experiments in this section are performed on

the computer with 3.20 GHz Intel(R) Core(TM) i5-3470 processor and

4GB of RAM using MATLAB 2013a.

4.1. Compared algorithms for unconstrained benchmarks

To evaluate optimization performance of our VCS for uncon-

strained benchmark functions, we compare VCS with eight state-

of-the-arts nature-inspired optimization algorithms and Appendix A

shows their download links.

(1) Artificial bee colony algorithm (ABC) [16] simulates the behav-

iors of bees for foregoing foods, which is a popular swarm in-

telligence algorithm. It divides the population into three main

groups: employed bees, onlooker bees and scout bees.
Algorithm 1: Pseudo Code of VCS algorithm.

Input: N: the population size

MaxFEs: maximum number of function evaluations

λ: number of the selected best individuals and λ = �N/2�
01 g=0; /∗The current generation∗/

02 Generate the Vpop by randomly sampling from the search space;

03 Evaluate the objective function values of each individual in Vpop

04 FEs=N;

05 While FEs<=MaxFEs do

/∗ Viruses diffusion ∗/

06 for i from 1 to N do

07 V pop′
i
= Gaussian(Gg

best
, σ) + (r1 · Gg

best
− r2 · V popi);

08 end for

09 Check the boundary;

10 Evaluate Vpop’; FEs=FEs+N;

11 Update Vpop with Vpop’;

/∗ Host cells infection ∗/

12 for i from 1 to N do

13 Hpopg
i

= Xg
mean + σ g

i
× Ni(0, Cg);

14 end for

15 Check the boundary;

16 Evaluate Hpop and update the Vpop; FEs=FEs+N;

Select the best λ individuals from the Vpop

Calculate the weighted mean of the λ best individuals by Xg+1
mean

=
1/λ

∑λ
i=1 ωi · V popλbest

i
| ωi = ln(λ + 1)/(

∑λ
j=1 (ln(λ + 1) − ln(j)));

/∗ Immune response ∗/

17 Calculate the Pr through Prrank(i) = (N − i + 1)/N;

18 for i from 1 to N do

19 for j from 1 to d do

20 if r > Pri , then V popi, j
′′ = V popk, j − rand · (V poph, j − V popi, j);

21 else V popi, j
′′ = V popi, j; end-if

22 end-for

23 end-for

24 Evaluate Vpop’’; FEs=FEs+N;

25 Update Vpop with Vpop’;

26 g=g+1;

27 end while

Output: the individual with the smallest objective function value in the

population.

c

t

s

v

m

a

l

d

C

m

T

g

t

o

m

s

p

e

s

e

r

d

(2) Cuckoo search (CS) is one of the famous nature-inspired algo-

rithms, developed in 2009 by Xin-She Yang and Suash Deb [17].

Based on brood parasitism of some cuckoo species, CS is en-

hanced by the Levy flights random walk method.

(3) Animal migration optimization (AMO) algorithm [18], pro-

posed in 2014, is a new swarm intelligence algorithm, which

is inspired by the animal migration behavior.

(4) Grew wolf optimizer (GWO) which borrows ideas from the

leadership hierarchy and hunting mechanism of grey wolves

in nature [19].

(5) Symbiosis organisms search (SOS) [35] that simulates the in-

teractive behavior seen among organisms in nature. Just like

our VCS, the processes of SOS for finding solutions contain

three main phases: mutualism phases, commensalism phase

and parasitism phase.

(6) Evolutionary strategies with covariance matrix adaptation

(CMA-ES) algorithm [30] is a classical evolutionary algorithm.

Meanwhile, it is introduced as an operator in the process of

host cell infection in VCS.

(7) Differential evolution based on covariance and bimodal distri-

bution (CoBiDE) algorithm is a novel DE variant [34]. It has two

main components: covariance matrix learning and bimodal

distribution parameter setting.

(8) The gravitational search algorithm (GSA) [24] is a well-known

physics-based algorithm, which performs the optimization by

using a collection of masses interacting with each other based

on the laws of gravity and motion.

.2. Experiment results on classic benchmarks

In order to evaluate the performance of VCS for optimizing the

lassic benchmark functions, a series of 10 classic benchmark func-

ions selected from [19] are used in this experiment. Appendix B

hows the basic descriptions of these functions which can be di-

ided into two main parts: unimodal functions (f01–f04) and multi-

odal functions (f05–f10). Among the multimodal functions, f05–f08

re the high-dimensional multimodal functions and f09–f10 are the

ow-dimensional multimodal functions. For each test function, 30 in-

ependent runs are performed with random seeds for each problem.

Our VCS has been compared with six NIs in this experiment:

MA-ES, CoBiDE, CS, AMO, ABC and GSA. For all the test functions,

aximum numbers of function evolution (MaxFEs) are given in

able 1. The setting values of the compared algorithms and VCS are

iven below.

(1) CMA-ES: λ = �N/2�, σ = 0.3 as in [30];

(2) CoBiDE: pb = 0.4, ps = 0.5 and mutation strategies and

crossover strategies as in [34];

(3) CS: b = 1.50, p0 = 0.25 as in [17];

(4) AMO: The number of animals in each group was set to 5 [18];

(5) GSA: Go = 100 and a = 20 [24];

(6) ABC: limit=(N•d)/2; Size of Employed-bee=Onlooker-

bee=(Colony size)/2 as in [36].

(7) VCS: λ = �N/2� and σ = 0.3.

To have a fair comparison, CS is adjusted based on fitness evolu-

ion numbers and ABC is modified according to [36]. In addition, in

rder to compare the above algorithms under the same number of

aximum generation (MaxG) for each test function, the population

ize of VCS is set to 50 since it has three phases. The same as VCS, the

opulation size of AMO and CS is 75 because there are two phases in

ach algorithm. As for the other compared algorithms, the population

ize is set to 150. As a result, every algorithm has the same function

volution numbers in each generation.

Table 2 reports the obtained mean results by the compared algo-

ithms over the unimodal functions (f01–f04) based on 30 indepen-

ent runs, where Best means the best solution, Worst stands for the

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 69

Table 1

Maximum number of function evolution for each classic benchmark function.

No. MaxFEs No. MaxFEs No. MaxFEs No. MaxFEs No. MaxFEs

f01 75,000 f03 450,000 f05 6,000 f07 6,000 f09 15,000

f02 150,000 f04 150,000 F06 12,000 f08 225,000 f10 15,000

Table 2

Statistical results obtained by CMA-ES, ABC, GSA, CS, CoBiDE, AMO and VCS through 30 independent runs for 4 unimodal functions.

No. Algorithms CMA-ES ABC GSA CS CoBiDE AMO VCS

f01 Best 1.5466E−18 2.7483E−03 1.3419E−18 1.3723E+01 3.5804E+00 2.7420E+02 0

Worst 7.2744E−18 3.0461E−02 4.0454E−18 4.9191E+01 9.4953E+00 1.2554E+03 0

Mean 4.1059E−18 1.4857E−02 2.4645E−18 3.0435E+01 6.2816E+00 6.9953E+02 0

SD 1.6378E−18 6.8874E−03 6.2305E−19 7.5333E+00 1.4058E+00 3.0429E+02 0

Rank 3 4 2 6 5 7 1

f02 Best 1.3105E−15 2.0094E+01 4.9108E−10 3.1230E+00 4.7077E+00 1.0420E+01 0

Worst 2.4015E−15 3.3388E+01 7.9136E−10 5.5631E+00 7.8040E+00 2.0371E+01 0

Mean 1.8909E−15 2.7076E+01 6.5711E−10 4.3347E+00 5.8303E+00 1.4578E+01 0

SD 2.4986E−16 3.2654E+00 7.3559E−11 5.8002E−01 6.3750E−01 2.5250E+00 0

Rank 2 6 3 4 5 7 1

f03 Best 9.1006E−26 4.6302E−03 2.2294E+01 9.1535E+00 4.7018E+00 2.5852E+02 0

Worst 3.4208E+00 1.9977E−01 2.2955E+01 2.1139E+01 8.3360E+00 8.3854E+03 2.1743E−29

Mean 1.3213E−01 5.5673E−02 2.2640E+01 1.7562E+01 6.6913E+00 2.1439E+03 1.9816E−30

SD 6.2471E−01 5.1536E−02 1.1932E−01 2.8057E+00 8.2613E−01 1.6885E+03 4.5362E−30

Rank 3 2 6 5 4 7 1

f04 Best 3.4427E−28 4.5529E−09 1.1188E−18 1.3857E−02 4.0085E−04 1.1724E+02 0

Worst 7.9388E−28 6.3186E−08 3.4994E−18 6.1930E−02 1.3594E−03 6.8062E+02 0

Mean 4.9261E−28 1.9228E−08 1.7988E−18 3.1263E−02 7.6752E−04 2.8593E+02 0

SD 1.0442E−28 1.3578E−08 5.1236E−19 1.2024E−02 2.1692E−04 1.1960E+02 0

Rank 2 4 3 6 5 7 1

Average rank 2.5000 4.0000 3.5000 5.2500 4.7500 7 1

Overall rank 2 5 3 6 4 7 1

Fig. 2. Evolution of the mean function values derived from the algorithms versus the number of FEs on 2 classic unimodal benchmarks.

w

s

b

t

o

fi

M

m

g

f

o

r

o

t

w

l

t

p

o

c

o

l

b

h

t

orst solution, Mean represents the mean solution and SD means the

tandard deviation. The best results are set in bold in the coming ta-

les. Meanwhile, the algorithms are sorted based on the mean solu-

ion from small to large. In addition, we calculate the mean rank and

btain the overall rank. From Table 2, it can be observed that VCS can

nd the global optimum for all the unimodal functions the specified

axFEs (see Table 1). Absolutely, VCS ranks the first according to the

ean value from the last row of Table 2. As we known, the conver-

ence rate of search algorithm is more important for the unimodal

unctions than the final results since there are other specific meth-

ds aiming at the unimodal functions. Fig. 2 shows the convergence

ate of VCS and the other compared algorithms from a graphical point

f view for four typical functions. As can be seen from Fig. 2, VCS has
he faster convergence rate for the four unimodal functions compared

ith the other six algorithms.

For the high-dimensional multimodal functions (f05∼f08) and the

ow-dimensional multimodal functions (f09–f10), Table 3 summarizes

he average results obtained by the algorithms based on 30 inde-

endent runs. The algorithms are ranked based on the mean value

f each test function and the average ranks for the six functions are

alculated. As these functions have many local minima, they are

ften used to scrutinize the ability of algorithms to escape from poor

ocal optima and obtain the near-global optima. From Table 3, it can

e found that VCS nearly finds all the global optimal values of the

igh-dimensional functions except for function f08. However, it has

he best mean value for f . As seen from the last row of Table 3, VCS
08

70 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Table 3

Statistical results obtained by CMA-ES, ABC, GSA, CS, CoBiDE, AMO and VCS through 30 independent runs for 6 multimodal functions.

No. Algorithms CMA-ES ABC GSA CS CoBiDE AMO VCS

f05 Best 2.1600E+02 2.1430E+02 1.4224E+02 2.5648E+02 2.8735E+02 2.0867E+02 0

Worst 2.9468E+02 2.6995E+02 2.1671E+02 3.1577E+02 3.4648E+02 2.6796E+02 0

Mean 2.4845E+02 2.4081E+02 1.8010E+02 2.9583E+02 3.1979E+02 2.4232E+02 0

SD 1.8676E+01 1.6164E+01 1.9757E+01 1.5054E+01 1.7891E+01 1.5658E+01 0

Rank 5 3 2 6 7 4 1

f06 Best 9.7327E+00 1.4552E+01 3.9747E+00 1.6479E+01 1.5618E+01 1.0899E+01 8.8818E−16

Worst 2.1074E+01 1.7464E+01 5.8987E+00 1.9320E+01 1.8524E+01 1.4297E+01 8.8818E−16

Mean 1.8479E+01 1.6152E+01 4.8523E+00 1.8494E+01 1.7373E+01 1.2654E+01 8.8818E−16

SD 2.5365E+00 5.8207E−01 4.8096E−01 6.4563E−01 5.6357E−01 9.2371E−01 0

Rank 6 4 2 7 5 3 1

f07 Best 3.5130E+01 1.5131E+02 3.7085E+02 1.5819E+02 1.6160E+02 3.5736E+01 0

Worst 7.4494E+01 2.8103E+02 5.7022E+02 2.7205E+02 3.0761E+02 1.0138E+02 0

Mean 5.1799E+01 2.2930E+02 4.6054E+02 2.1598E+02 2.3909E+02 6.8466E+01 0

SD 1.0415E+01 3.3075E+01 4.6377E+01 2.9080E+01 3.6583E+01 1.6680E+01 0

Rank 2 5 7 4 6 3 1

f08 Best 1.2618E−29 8.6578E−16 6.3881E−21 1.1712E−01 6.2759E−08 9.2321E−01 1.5705E-32

Worst 3.1182E−29 2.2395E−15 4.6089E−02 9.7532E−01 5.6866E−07 1.3212E+01 1.5705E−32

Mean 2.3958E−29 1.2126E−15 1.5363E−03 6.3884E−01 2.1831E−07 6.1927E+00 1.5705E−32

SD 4.8182E−30 2.9913E−16 8.4147E−03 2.1463E−01 1.3920E−07 2.9376E+00 5.5674E−48

Rank 2 3 5 6 4 7 1

f16 Best −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00

Worst −9.7215E-01 −1.0316E+00 −1.0276E+00 −1.0316E+00 −1.0316E+00 −1.0315E+00 −1.0316E+00

Mean −1.0277E+00 −1.0316E+00 −1.0313E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00

SD 1.0634E−02 6.1573E−12 9.0421E−04 6.4362E−08 7.5083E−11 2.5353E−05 2.7610E−14

Rank 7 2 6 4 3 5 1

f21 Best −1.0153E+01 −1.0153E+01 −1.0153E+01 −1.0095E+01 −1.0153E+01 −1.0107E+01 −1.0153E+01

Worst −2.6828E+00 −1.0144E+01 −2.6829E+00 −9.2301E+00 −1.0133E+01 −2.5616E+00 −1.0153E+01

Mean −5.4214E+00 −1.0152E+01 −6.4844E+00 −9.7455E+00 −1.0151E+01 −7.7682E+00 −1.0153E+01

SD 3.6607E+00 2.2751E−03 3.7466E+00 2.5613E−01 3.8507E−03 2.1549E+00 9.0434E−14

Rank 7 2 6 4 3 5 1

Average rank 4.8333 3.1667 4.6667 5.1667 4.6667 4.5000 1.0000

Overall rank 6 2 3 7 3 5 1

I

t

(

T

t

s

p

F

a

3

t

t

W

t

r

G

g

m

4

t

p

m

n

d

t

o

f

o

a

ranks first for the classic multimodal functions, while CS performs

the worst for these functions. Fig. 3 shows the difference between

VCS and other compared algorithms in terms of convergence rate in

solving four classic high-dimensional multimodal functions. When

examined Fig. 3, VCS algorithm converges more rapidly for the

functions compared with the other algorithms.

For the overall comparison on the 10 classic benchmark functions,

the pair-wise comparison between the VCS and the other competi-

tors based on the Wilcoxon signed ranks test [37] with a confidence

level of 0.95 (α = 0.05) is employed. The Wilcoxon signed ranks test,

which is a simple, yet safe and robust, nonparametric test for pair-

wise statistical comparisons, is usually used to detect the significant

differences between two sample means, that is, the performance of

two algorithms.

Table 4 summarizes the test results based on the best solution

for each function with 30 independent runs, where ‘+’ in the tables

means the reference algorithm performed better than the compared

algorithms, ‘–’ indicates it performs worse and ‘=’ means the both

two algorithms performed equally. R+ represents the sum of ranks

for the problems in which VCS outperformed the compared one, and

R− means the sum of ranks for the opposite. In addition, the multiple

comparisons among all the algorithms are performed by using the

Friedman test which is a multiple comparisons test that aims to

detect significant differences between the properties of two or more

algorithms [37]. It’s necessary to emphasize that the Friedman test

is accomplished in this paper by using the KEEL software [38]. The

average rankings obtained by Friedman test can be used as indicators

to illustrate how successful the algorithm is. In other words, the

lower the rank, the more successful the algorithm is. Based on the

average value and standard deviation for each test function, Table 5

reports the ranks of Mean and SD among seven algorithms obtained

by the Friedman’s test with a confidence level of 0.95 (α = 0.05), in

which Iman-Davenport’s procedure is used as a post hoc procedure.
n Table 5, the result of p-values of Iman-Davenport is obtained by

he compared algorithm (i.e. CMA-ES, ABC) vs. the control algorithm

VCS) respectively. When examined the results of last row ‘+\≈\−’ in

able 4, it can be found that VCS has obviously high ‘+’ counts than

he other competitors. It means that VCS exhibits the statistically

uperior performance than the six compared algorithms in the

air-wise Wilcoxon signed ranks test at the 95% significance level.

rom the results of Table 5, it can be observed that VCS ranks first

ccording to the mean value and standard deviation obtained by the

0 independent runs for each classic benchmark.

With regard to the time consumption for optimization of these 10

est functions, Table 6 presents the results of mean time obtained by

he VCS and other compared algorithms with 30 independent runs.

e rank the algorithms from smallest mean time of the test functions

o the highest mean time. As can be concluded from Table 6, CMA-ES

anks first among the algorithms. VCS ranks fifth, but it is better than

SA and AMO. As it significantly outperforms the other compared al-

orithms for the 10 benchmark functions, it is acceptable with a little

ore time consumption.

.3. Experiment results on CEC2014 benchmarks

We used 30 IEEE CEC2014 benchmark functions designed for

he special issue and competition on single objective and com-

lex real-parameter numerical optimization problems in this experi-

ent. These benchmark functions have several novel features such as

ovel basic problems, composing test problems by extracting features

imension-wise from several problems, graded level of linkages, ro-

ated trap problems, and so on. Table 7 summarizes several features

f the 30 benchmark functions and the detailed descriptions of these

unctions are provided in [30]. To evaluate the performance of VCS

n optimizing the CEC2014 benchmark functions, the results of VCS

re compared with six state-of-the-art algorithms: CS [17], GWO [19],

M
.D

.Li
et

a
l./A

d
va

n
ces

in
E

n
g

in
eerin

g
So

ftw
a

re
9

2
(2

0
16

)
6

5
–

8
8

7
1

Table 4

The results of Wilcoxon signed ranks test based on the best solution for each benchmarks with 30 independently runs (α = 0.05).

No. CMA-ES vs VCS ABC vs VCS GSA vs VCS CS vs VCS CoBiDE vs VCS AMO vs VCS

p-value R+ R− Win p-value R+ R− Win p-value R+ R− Win p-value R+ R− Win p-value R+ R− Win p-value R+ R− Win

f01 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f02 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f03 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f04 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f05 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f06 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f07 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f08 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f09 1.7344E−06 465 0 + 1.1259E−05 446 19 + 3.8477E−02 108 28 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f10 1.7344E−06 465 0 + 1.7344E−06 465 0 + 7.2179E−03 300 78 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
+/≈/− 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0

72 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Fig. 3. Evolution of the mean function values derived from the algorithms versus the number of FEs on 4 classic multimodal benchmarks.

Table 5

The results of Friedman test based on the mean value for clasic benchmark functions with 30 independent runs, in which Iman-Davenport’s procedure is used as a

post hoc procedure (VCS is the control method and α = 0.05).

Friedman test p-values of Iman-Davenport Mean Rank p-values of Iman-Davenport SD Rank

CMA-ES 0.007006 3.5 0.007118 3.95

ABC 0.043545 3.7 0.038434 3.6

GSA 0.026051 3.9 0.001594 4.4

CS 0.000433 5.15 0.000525 4.7

CoBiDE 0.002262 4.7 0.001594 4.4

AMO 0.000238 5.3 0.000011 5.6

VCS 1 1.75 1 1.35

a

t

r

w

t

r

t

c

GSA [24], CMA-ES [30], SOS [35] and CoBiDE [34]. The dimension of

the problems is set to 30 and the MaxFEs is 300,000. For a fair com-

parison, the algorithms are performed in the experiment under the

condition of same MaxFEs and MaxG. In result, the population size is

set to 37 for SOS because it has four phases, and it is set to 50 for

VCS. For CS, the population size is set to 75. For the other algorithms,

the population size is set to 150. The parameters settings for CMA-

ES, GSA, CS, CoBiDE and VCS are the same as previous experiment.

There are no specific algorithm parameters in SOS [35] and we set
=2−1×(2/MaxG) of GWO as in [19]. In addition, the Matlab codes of

he compared algorithms can be downloaded from Appendix A.

Tables 8–11 summarize the results of the objective function er-

or values (f(x)−f(x∗)) over 30 independent runs for each function,

here x is the best solution in the population when the algorithm

erminates and x∗ is the global optimal solution. We rank the algo-

ithms from smallest mean solution to the highest solution. At last,

he average ranks and the overall ranks obtained by algorithms are

oncluded.

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 73

Table 6

Mean time consumption in seconds about CMA-ES, ABC, GSA, CS, CoBiDE, AMO and VCS through 30 independent runs on 10 classic functions (NA: not available).

No. CMA-ES ABC GSA CS CoBiDE AMO VCS

f01 6.0732E−01 7.2153E−01 2.0257E+01 1.4508E+00 1.3013E+00 1.1062E+01 4.3008E+00

f02 1.8813E+00 2.0398E+00 4.0973E+01 3.4780E+00 3.1653E+00 2.2546E+01 8.9607E+00

f03 5.6802E+00 6.0942E+00 2.1886E+02 1.0328E+01 9.6300E+00 6.6935E+01 2.9299E+01

f04 1.3200E+00 1.4905E+00 4.2966E+01 2.9499E+00 2.6355E+00 2.2047E+01 8.9581E+00

f05 6.7926E−02 7.7808E−02 1.7010E+00 1.3423E−01 1.2153E−01 9.3260E−01 3.4826E−01

f06 1.8146E−01 2.0194E−01 3.5487E+00 3.2520E−01 2.9531E−01 1.9092E+00 7.3655E−01

f07 7.7338E−02 8.8203E−02 1.7040E+00 1.4809E−01 1.3456E−01 9.3206E−01 4.2084E−01

f08 6.9515E+00 7.2124E+00 7.2054E+01 9.4189E+00 9.0250E+00 3.8914E+01 1.2221E+01

f09 8.8203E−02 1.3077E−01 2.2372E+00 2.2373E−01 1.9757E−01 3.5757E−01 3.0984E−01

f10 3.0458E−01 3.3745E−01 2.5434E+00 4.3127E−01 4.0314E−01 7.5416E−01 5.5618E−01

Mean time 1.7159E+00 1.8394E+00 4.0684E+01 2.8888E+00 2.6909E+00 1.6638E+01 6.6111E+00

Overall rank 1 2 7 4 3 6 5

Table 7

The brief descriptions of the CEC2014 benchmark functions.

No. Types Name Optimum

f01(CEC) Unimodal

fnctions

Rotated high conditioned elliptic function 100

f02(CEC) Rotated bent cigar function 200

f03(CEC) Rotated discus function 300

f04(CEC) Simple

mul-

ti-

modal

functions

Shifted and rotated Rosenbrock’s function 400

f05(CEC) Shifted and rotated Ackley’s function 500

f06(CEC) Shifted and rotated Weierstrass function 600

f07(CEC) Shifted and rotated Griewank’s function 700

f08(CEC) Shifted Rastrigin’s function 800

f09(CEC) Six Hump Camel Back 900

f10(CEC) Shifted and rotated Rastrigin’s Function 1000

f11(CEC) Shifted and rotated Schwefel’s Function 1100

f12(CEC) Shifted and rotated Katsuura Function 1200

f13(CEC) Shifted and rotated HappyCat Function 1300

f14(CEC) Shifted and rotated HGBat Function 1400

f15(CEC) Shifted and rotated Expanded Griewank’s plus Rosenbrock’s Function 1500

f16(CEC) Shifted and rotated Expanded Scaffer’s F6 Function 1600

f17(CEC) Hybrid

functions

Hybrid function 1 (N = 3) 1700

f18(CEC) Hybrid function 2 (N = 3) 1800

f19(CEC) Hybrid function 3 (N = 4) 1900

f20(CEC) Hybrid function 4 (N = 4) 2000

f21(CEC) Hybrid function 5 (N = 5) 2100

f22(CEC) Hybrid function 6 (N = 5) 2200

f23(CEC) Composition

functions

Composition function 1 (N = 5) 2300

f24(CEC) Composition function 2 (N = 3) 2400

f25(CEC) Composition function 3 (N = 3) 2500

f26(CEC) Composition function 4 (N = 5) 2600

f27(CEC) Composition function 5 (N = 5) 2700

f28(CEC) Composition function 6 (N = 5) 2800

f29(CEC) Composition function 7 (N = 3) 2900

f30(CEC) Composition function 8 (N = 3) 3000

Search range: [−100, 100] Dimension: Dim = 30

Table 8

Statistical results obtained by CMA-ES, GSA, GWO, CS, CoBiDE, SOS and VCS through 30 independent runs on CEC2014 unimodal functions.

No. Algorithms CMA-ES GSA GWO CS CoBiDE SOS VCS

f01(CEC) Best 1.8646E+04 1.9183E+07 7.3791E+06 2.2519E+06 5.4866E-01 2.8294E+07 0

Worst 4.1790E+05 3.6521E+07 8.3884E+06 4.7135E+06 1.2756E+01 1.4610E+08 1.5064E−08

Mean 9.3682E+04 2.6618E+07 7.8168E+06 3.2207E+06 3.3429E+00 6.9465E+07 5.1440E−10

SD 8.0449E+04 4.0526E+06 3.0989E+05 6.7652E+05 3.3469E+00 2.9151E+07 2.7489E−09

Rank 3 6 5 4 2 7 1

f02(CEC) Best 1.9224E+10 5.3749E+03 3.3780E+08 6.3682E+01 2.7410E−03 1.9174E+09 0

Worst 3.1841E+10 1.1466E+04 3.3987E+08 2.6373E+02 3.2915E−02 4.9364E+09 0

Mean 2.5541E+10 7.8523E+03 3.3861E+08 1.4753E+02 1.0187E−02 3.6133E+09 0

SD 3.8502E+09 1.6593E+03 6.0011E+05 4.6467E+01 5.6804E−03 7.7578E+08 0

Rank 7 4 5 3 2 6 1

f03(CEC) Best 6.0588E+03 6.3986E+04 2.1569E+04 9.7031E-01 2.4180E−07 1.0780E+04 0

Worst 3.3837E+04 8.0944E+04 3.8009E+04 2.4785E+00 1.2453E−06 7.6645E+04 1.1369E−13

Mean 1.4476E+04 7.3237E+04 2.7520E+04 1.7565E+00 5.1207E−07 2.3792E+04 1.3263E−14

SD 5.6579E+03 4.0313E+03 7.5329E+03 4.6287E−01 2.3716E−07 1.3519E+04 2.8649E−14

Rank 4 7 6 3 2 5 1

Average rank 4.6667 5.6667 5.3333 3.3333 2 6 1

Overall rank 4 6 5 3 2 7 1

74 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Table 9

Statistical results obtained by CMA-ES, GSA, GWO, CS, CoBiDE, SOS and VCS through 30 independent runs on CEC2014 simple multimodal functions.

No. Algorithms CMA-ES GSA GWO CS CoBiDE SOS VCS

f04(CEC) Best 1.6648E+03 2.2364E+02 1.5638E+02 1.3712E+01 1.5273E+01 2.9519E+02 0

Worst 3.6348E+03 3.6994E+02 1.5803E+02 8.0239E+01 1.7528E+01 5.2217E+02 6.4965E+01

Mean 2.5006E+03 3.1281E+02 1.5693E+02 6.0822E+01 1.6535E+01 4.1011E+02 2.1655E+00

SD 5.2836E+02 2.8508E+01 4.6474E−01 1.9447E+01 6.1149E−01 6.5770E+01 1.1861E+01

Rank 7 5 4 3 2 6 1

f05(CEC) Best 2.0000E+01 1.9998E+01 2.0793E+01 2.0784E+01 2.0506E+01 2.0389E+01 2.0234E+01

Worst 2.0000E+01 1.9999E+01 2.0962E+01 2.0944E+01 2.0743E+01 2.0646E+01 2.0569E+01

Mean 2.0000E+01 1.9999E+01 2.0803E+01 2.0875E+01 2.0613E+01 2.0559E+01 2.0449E+01

SD 1.2054E−05 3.7032E−04 3.1061E−02 3.7509E−02 4.9072E−02 6.3232E−02 7.5477E−02

Rank 2 1 6 7 5 4 3

f06(CEC) Best 3.3851E+01 1.8305E+01 1.1612E+01 2.2535E+01 2.6397E+01 2.0358E+01 2.0517E−01

Worst 4.1502E+01 2.5393E+01 1.1702E+01 2.7693E+01 3.1539E+01 2.5612E+01 1.2326E+01

Mean 3.9060E+01 2.1678E+01 1.1626E+01 2.5867E+01 2.9433E+01 2.3295E+01 7.5446E+00

SD 1.8249E+00 1.5922E+00 2.2479E−02 1.2244E+00 1.2975E+00 1.5534E+00 3.0275E+00

Rank 7 3 2 5 6 4 1

f07(CEC) Best 1.6363E+02 0 7.7558E+00 9.3253E−05 3.2746E−08 1.8808E+01 0

Worst 2.7677E+02 0 7.8025E+00 2.4310E−03 9.1176E−06 4.5360E+01 0

Mean 2.2944E+02 0 7.7765E+00 8.7341E−04 4.6984E−07 3.3330E+01 0

SD 2.3613E+01 0 1.4540E-02 6.8749E−04 1.6505E−06 6.9197E+00 0

Rank 7 1 5 4 3 6 1

f08(CEC) Best 2.2310E+02 1.2338E+02 8.1032E+01 5.5353E+01 2.0908E+01 7.0217E+01 1.9899E+00

Worst 3.1431E+02 1.7213E+02 8.2620E+01 1.0421E+02 3.2159E+01 9.6115E+01 9.7506E+01

Mean 2.7691E+02 1.4045E+02 8.1521E+01 7.6318E+01 2.8001E+01 8.1628E+01 2.9086E+01

SD 2.0542E+01 9.9125E+00 4.8146E−01 9.6242E+00 2.7575E+00 6.8428E+00 2.7970E+01

Rank 7 6 5 3 1 4 2

f09(CEC) Best 5.9698E+00 1.3830E+02 8.6809E+01 1.1063E+02 9.9647E+01 1.2275E+02 6.0692E+01

Worst 3.5870E+02 1.8307E+02 8.8598E+01 1.9086E+02 1.5528E+02 1.9829E+02 2.0695E+02

Mean 3.1612E+02 1.5996E+02 8.7582E+01 1.4277E+02 1.3246E+02 1.6888E+02 1.3293E+02

SD 6.1211E+01 1.1394E+01 5.2755E−01 2.0350E+01 1.2412E+01 1.7462E+01 4.3262E+01

Rank 7 5 1 4 2 6 3

f10(CEC) Best 2.4983E−01 2.8860E+03 2.0527E+03 1.6318E+03 2.1188E+03 1.0922E+03 1.3091E+00

Worst 6.1371E+03 4.0538E+03 2.0623E+03 2.3642E+03 2.9888E+03 1.7484E+03 2.7687E+03

Mean 2.5646E+02 3.3925E+03 2.0557E+03 2.0434E+03 2.5415E+03 1.3840E+03 1.3845E+02

SD 1.1184E+03 3.1447E+02 2.7058E+00 1.8731E+02 1.9107E+02 1.9598E+02 5.1157E+02

Rank 2 7 5 4 6 3 1

f11(CEC) Best 3.1229E−01 3.4046E+03 2.0037E+03 2.9400E+03 5.0625E+03 3.7636E+03 1.1927E+03

Worst 7.5363E+02 4.9657E+03 2.0216E+03 3.9844E+03 6.0817E+03 5.3848E+03 4.6321E+03

Mean 1.5910E+02 4.1207E+03 2.0107E+03 3.4496E+03 5.6222E+03 4.4798E+03 2.0707E+03

SD 2.0332E+02 4.0622E+02 5.0576E+00 2.2241E+02 2.5377E+02 4.1001E+02 6.4105E+02

Rank 1 5 2 4 7 6 3

f12(CEC) Best 4.6648E−05 3.8717E−06 1.5043E−01 5.4709E−01 7.2543E−01 6.5808E−01 2.1283E−02

Worst 6.3185E+00 5.7610E−03 1.5958E−01 1.0959E+00 1.3288E+00 1.2600E+00 8.8849E−01

Mean 2.1114E−01 9.0976E−04 1.5224E−01 8.4278E−01 1.0689E+00 8.2918E−01 4.6944E−01

SD 1.1535E+00 1.2838E−03 1.8504E−03 1.1701E−01 1.3670E−01 1.4366E−01 2.1133E−01

Rank 3 1 2 6 7 5 4

f13(CEC) Best 3.0478E+00 2.4236E−-01 4.1202E−01 2.2991E−01 3.0897E−01 5.3491E−01 1.7509E−01

Worst 4.1519E+00 3.8007E−01 4.3334E−01 4.0208E−-01 4.6378E−01 1.1267E+00 4.5974E−01

Mean 3.6897E+00 3.3139E−01 4.2395E−01 3.1620E−01 4.1123E−01 7.7901E−01 3.0058E−01

SD 2.6688E−01 3.1350E−02 9.1352E−03 3.8937E−02 4.6462E−02 1.4776E−01 6.7759E−02

Rank 7 3 5 2 4 6 1

f14(CEC) Best 5.2995E+01 1.8786E−01 6.8862E−-01 1.9160E−01 1.8639E−01 6.0416E−01 1.8180E−01

Worst 8.8239E+01 2.7160E−01 7.9910E−-01 2.7321E−01 2.9964E−01 1.9571E+01 3.4302E−01

Mean 7.0192E+01 2.3011E−01 7.2211E−01 2.3719E−01 2.5570E−01 9.7569E+00 2.6678E−01

SD 9.0881E+00 2.1927E−02 4.1523E−02 2.0520E−02 2.7765E−02 3.8714E+00 4.4628E−02

Rank 7 1 5 2 3 6 4

f15(CEC) Best 2.1795E+00 6.8504E+00 1.8376E+01 8.6516E+00 1.0236E+01 9.5107E+01 1.8706E+00

Worst 1.4113E+05 1.4266E+01 1.8768E+01 1.4740E+01 1.4947E+01 1.0233E+03 5.8358E+00

Mean 1.0166E+04 1.0547E+01 1.8497E+01 1.1216E+01 1.3109E+01 2.4954E+02 3.5165E+00

SD 3.2394E+04 1.6874E+00 1.0467E-01 1.4303E+00 1.1555E+00 2.0512E+02 1.1467E+00

Rank 7 2 5 3 4 6 1

f16(CEC) Best 1.1641E+01 1.3309E+01 1.0478E+01 1.1927E+01 1.2079E+01 1.0353E+01 8.4000E+00

Worst 1.4858E+01 1.4035E+01 1.0484E+01 1.2777E+01 1.2898E+01 1.2107E+01 1.1239E+01

Mean 1.4082E+01 1.3697E+01 1.0479E+01 1.2494E+01 1.2603E+01 1.1275E+01 1.0025E+01

SD 7.2818E−01 1.7303E−01 1.6244E−03 1.8355E−01 1.9095E−01 3.7043E−01 7.3970E−01

Rank 7 6 2 4 5 3 1

Average rank 5.4615 3.5385 3.7692 3.9231 4.2308 5.0000 2.0000

Overall rank 7 2 3 4 5 6 1

g

p

F

3

f

For the unimodal functions (f01(CEC)–f03(CEC)), Table 8 reports

the results obtained by the algorithms with 30 independent runs.

Fig. 4 shows the convergence rate of the algorithms for two typical

unimodal functions of CEC2014. The results from Table 8 obviously

reflect that VCS performs better than the compared algorithms for

the three CEC2014 unimodal functions. Meanwhile, it can find the
lobal optimum for the three benchmark functions. The promising

erformance of convergence rate and accuracy can also be stressed in

ig. 4.

Table 9 summarizes the results obtained by the algorithms with

0 independent runs for the simple multimodal functions (f04(CEC)–

16(CEC)). For a graphical point of view, the convergence rates of the

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 75

Table 10

Statistical results obtained by CMA-ES, GSA, GWO, CS, CoBiDE, SOS and VCS through 30 independent runs on CEC2014 hybrid functions.

No. Algorithms CMA-ES GSA GWO CS CoBiDE SOS VCS

f17(CEC) Best 1.4094E+03 5.0532E+05 4.9695E+05 6.9128E+03 1.4470E+03 7.8940E+05 4.9765E+02

Worst 2.1128E+04 1.2834E+06 7.5276E+05 2.1280E+04 2.0384E+03 1.7760E+07 1.6270E+03

Mean 5.2311E+03 8.5506E+05 6.4191E+05 1.2739E+04 1.7995E+03 5.6800E+06 9.9098E+02

SD 3.7367E+03 1.7431E+05 8.1755E+04 3.1786E+03 1.3399E+02 3.6949E+06 2.9295E+02

Rank 3 6 5 4 2 7 1

f18(CEC) Best 6.1396E+08 2.4138E+02 1.1505E+04 1.0458E+02 2.9247E+01 8.2086E+04 1.7280E+01

Worst 2.1799E+09 7.7730E+02 1.1710E+04 2.0473E+02 5.6614E+01 9.8794E+05 1.9363E+04

Mean 1.5227E+09 3.9029E+02 1.1524E+04 1.4187E+02 4.5941E+01 4.9498E+05 1.8850E+03

SD 3.9300E+08 1.2508E+02 3.9422E+01 2.4367E+01 6.2499E+00 2.2637E+05 3.7912E+03

Rank 7 3 5 2 1 6 4

f19(CEC) Best 1.7474E+02 4.0395E+01 1.1911E+01 8.3471E+00 1.1465E+01 1.3799E+01 2.5066E+00

Worst 3.2950E+02 1.6062E+02 1.1937E+01 1.0674E+01 1.5616E+01 1.1974E+02 6.3258E+01

Mean 2.5343E+02 1.3230E+02 1.1914E+01 9.8128E+00 1.3706E+01 3.7980E+01 9.7539E+00

SD 3.9547E+01 2.7529E+01 5.6631E−03 7.1036E−01 8.4427E−01 2.9302E+01 1.7928E+01

Rank 7 4 3 2 5 6 1

f20(CEC) Best 5.7168E+02 5.3242E+04 8.5773E+03 8.9498E+01 1.9646E+01 1.3252E+03 1.1106E+01

Worst 1.6925E+04 1.1110E+05 8.7663E+03 1.3874E+02 3.1446E+01 5.3553E+04 1.7490E+02

Mean 4.5100E+03 8.2162E+04 8.6373E+03 1.1183E+02 2.5259E+01 1.5919E+04 7.5878E+01

SD 3.8909E+03 1.3461E+04 5.7698E+01 1.2278E+01 3.2411E+00 1.0913E+04 4.6494E+01

Rank 4 7 5 3 1 6 2

f21(CEC) Best 1.6894E+03 1.0812E+05 6.6503E+05 1.3108E+03 4.5545E+02 1.0258E+05 1.3748E+02

Worst 1.2299E+04 2.8053E+05 7.2753E+05 2.0159E+03 9.3076E+02 2.8184E+06 2.2953E+04

Mean 6.8341E+03 1.7890E+05 6.8655E+05 1.6478E+03 7.0633E+02 7.8598E+05 1.3223E+03

SD 2.7677E+03 3.1880E+04 2.1239E+04 1.8697E+02 1.3084E+02 6.1237E+05 4.0948E+03

Rank 4 5 6 3 1 7 2

f22(CEC) Best 5.4451E+02 6.1397E+02 3.2162E+02 1.5216E+02 1.1036E+02 2.1809E+02 2.3168E+01

Worst 2.0901E+03 1.3690E+03 3.8299E+02 4.5297E+02 4.1603E+02 8.9681E+02 5.0746E+02

Mean 1.5963E+03 9.3864E+02 3.5852E+02 3.0321E+02 2.5065E+02 5.3606E+02 2.3188E+02

SD 2.8397E+02 1.7978E+02 2.7359E+01 6.9544E+01 8.0520E+01 1.7375E+02 1.3033E+02

Rank 7 6 4 3 2 5 1

Average rank 5.3333 5.1667 4.6667 2.8333 2.0000 6.1667 1.8333

Overall rank 6 5 4 3 2 7 1

Fig. 4. Evolution of the mean function error values derived from the algorithms versus the number of FEs on two CEC2014 unimodal benchmarks.

a

F

i

p

m

b

f

t

t

C

m

C

t

t

c

a

t

lgorithms for several typical multimodal functions are shown in

ig. 5 and the graphical analysis results of the ANOVA tests are shown

n Fig. 6.

According to the results from Table 9, it is obvious that VCS

resents much better performance than the other algorithms for

ost simple multimodal functions. More specifically, VCS ranks best

ased on the mean error value of 30 independent runs for f04(CEC),

06(CEC), f07(CEC), f10(CEC), f13(CEC), f15(CEC) and f16(CEC), and it can find

he global optimum for f04(CEC) and f07(CEC). While GSA performs bet-
er than the compared algorithms on f05(CEC), f12(CEC) and f14(CEC).

MA-ES ranks first for f11(CEC) and GWO performs the best perfor-

ance for f09(CEC). For f08(CEC), VCS performs the comparable with

oBiDE. Generally speaking, VCS ranks first for the CEC2014 mul-

imodal functions compared with the other algorithms according

o the overall rank in the last line of Table 9. From the graphi-

al results of Fig. 5 and Fig. 6, it can be concluded that VCS has

better performance of convergence rate and global optimization

han the compared algorithms for most listed typical functions,

76 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Table 11

Statistical results obtained by CMA-ES, GSA, GWO, CS, CoBiDE, SOS and VCS through 30 independent runs on CEC2014 composition functions.

No. Algorithms CMA-ES GSA GWO CS CoBiDE SOS VCS

f23(CEC) Best 4.4865E+02 2.0000E+02 3.2632E+02 3.1524E+02 3.1401E+02 3.2174E+02 200

Worst 6.8559E+02 2.0000E+02 3.2676E+02 3.1524E+02 3.1401E+02 3.3895E+02 200

Mean 5.5069E+02 2.0000E+02 3.2645E+02 3.1524E+02 3.1401E+02 3.3172E+02 200

SD 5.9239E+01 3.3474E−09 1.1153E−01 2.4473E−07 2.7507E−09 4.0455E+00 0

Rank 7 2 5 4 3 6 1

f24(CEC) Best 2.0001E+02 2.0001E+02 2.0000E+02 2.2730E+02 2.0238E+02 2.5830E+02 200

Worst 2.3710E+02 2.0004E+02 2.0000E+02 2.3331E+02 2.4714E+02 2.7624E+02 200

Mean 2.0217E+02 2.0002E+02 2.0000E+02 2.2969E+02 2.3327E+02 2.6580E+02 200

SD 8.3106E+00 5.0426E−03 2.2977E−04 1.3854E+00 1.3127E+01 4.0523E+00 0

Rank 4 3 2 5 6 7 1

f25(CEC) Best 2.0645E+02 2.0000E+02 2.0838E+02 2.0620E+02 2.0019E+02 2.1235E+02 200

Worst 2.0986E+02 2.0000E+02 2.0840E+02 2.0928E+02 2.0020E+02 2.2269E+02 200

Mean 2.0829E+02 2.0000E+02 2.0839E+02 2.0766E+02 2.0019E+02 2.1621E+02 200

SD 9.1352E−01 6.2944E−11 5.8837E−03 8.9509E−01 6.4084E−04 2.5961E+00 0

Rank 5 2 6 4 3 7 1

f26(CEC) Best 1.0019E+02 1.0999E+02 1.0023E+02 1.0026E+02 1.0035E+02 1.0057E+02 1.0015E+02

Worst 3.8955E+02 2.0002E+02 1.0032E+02 1.0043E+02 1.0052E+02 1.0102E+02 200

Mean 1.2489E+02 1.7574E+02 1.0025E+02 1.0034E+02 1.0043E+02 1.0074E+02 1.0358E+02

SD 5.8099E+01 3.3153E+01 2.1780E-−02 4.1301E−02 4.2066E−02 1.2249E−01 1.8210E+01

Rank 6 7 1 2 4 5 3

f27(CEC) Best 4.0067E+02 2.4464E+02 5.5715E+02 4.0686E+02 8.2477E+02 4.2017E+02 200

Worst 1.2850E+03 1.8996E+03 5.6143E+02 4.2596E+02 1.1465E+03 9.4685E+02 2.0000E+02

Mean 1.0698E+03 8.4540E+02 5.5855E+02 4.1320E+02 1.0914E+03 5.0286E+02 200

SD 2.2866E+02 5.6485E+02 1.0359E+00 4.1258E+00 6.6155E+01 1.4766E+02 8.4444E−14

Rank 6 5 4 2 7 3 1

f28(CEC) Best 1.9180E+03 2.9771E+02 1.6569E+03 9.1006E+02 3.6550E+02 1.1414E+03 200

Worst 3.8344E+03 1.8267E+03 1.6583E+03 1.0818E+03 3.6859E+02 1.7475E+03 2.0000E+02

Mean 2.7227E+03 7.7441E+02 1.6576E+03 9.8426E+02 3.6747E+02 1.3347E+03 2.0000E+02

SD 6.0676E+02 3.8619E+02 4.5857E−01 4.2457E+01 6.3722E−01 1.3634E+02 1.5351E−13

Rank 7 3 6 4 2 5 1

f29(CEC) Best 8.2229E+06 2.0003E+02 9.5785E+03 1.3693E+03 2.1349E+02 1.3661E+04 200

Worst 4.8809E+07 2.0005E+02 9.6263E+03 2.8273E+03 2.1757E+02 4.7505E+05 1.7865E+03

Mean 2.6550E+07 2.0004E+02 9.6004E+03 1.7352E+03 2.1548E+02 1.1060E+05 9.7943E+02

SD 9.0269E+06 3.5678E−03 1.3329E+01 2.5011E+02 9.4134E-01 1.1404E+05 3.8188E+02

Rank 7 1 5 4 2 6 3

f30(CEC) Best 4.1640E+05 2.0001E+02 3.0828E+04 1.8935E+03 4.8714E+02 8.6639E+03 2.0000E+02

Worst 9.0590E+05 6.3313E+04 3.2893E+04 4.0682E+03 8.7817E+02 8.9358E+04 3.6488E+03

Mean 6.4777E+05 2.3116E+04 3.1416E+04 2.6249E+03 7.2650E+02 3.7318E+04 1.8598E+03

SD 1.3141E+05 2.4399E+04 6.3652E+02 4.9666E+02 9.9648E+01 2.1243E+04 8.9493E+02

Rank 7 4 5 3 1 6 2

Average rank 6.1250 3.3750 4.2500 3.5000 3.5000 5.6250 1.6250

Overall rank 7 2 5 3 3 6 1

f

t

b

w

c

fi

F

p

p

r

m

r

p

s

r

o

V

p

9

t

d

S

c

while CMA-ES performs better convergence rate than the VCS on

f11(CEC).

For the hybrid functions (f17(CEC)–f22(CEC)), Table 10 reports the re-

sults obtained by the algorithms with 30 independent runs. Figs. 7

and 8 show the convergence rates and ANOVA tests of the algorithms

for several hybrid functions. As mentioned above, the CEC2014 hybrid

functions are more complex than the above two groups and all the

algorithms can hardly find the global optimum for these six hybrid

functions. However, according to the results from Table 10, VCS per-

forms more acceptable results than the other compared algorithms.

Meanwhile, the best solutions of the VCS for the six functions rank

first and it can be concluded that VCS has a promising ability for

searching global optimization, but the stability of VCS is relatively

poor. Based on the overall rank in the last line of Table 10, VCS per-

forms the best among the compared algorithms on the hybrid func-

tions. According to the graphical results of Figs. 7 and 8, VCS performs

better preference for the four typical hybrid functions.

Table 11 summarizes the results obtained by the algorithms with

30 independent runs for the composition functions (f23(CEC)–f30(CEC)).

The graphical analysis results of the ANOVA tests are presented in

Fig. 9. According to the results from Table 11, it can be concluded that

VCS presents the satisfactory results, especially for f23(CEC)∼f25(CEC),

f27(CEC) and f28(CEC). In addition, it can be observed that VCS can find

the minimum best solutions for all composition functions. GWO per-

forms better for optimizing the f26(CEC) and GSA shows better results
or f29(CEC). Overall, VCS ranks first for the eight composition func-

ions. From the graphical results of Fig. 9, VCS performs obviously

etter than the compared algorithms.

For the overall comparison on the CEC2014 benchmark functions,

e perform the pair-wise comparison between the VCS and the other

ompetitors based on the Wilcoxon signed ranks test with a con-

dence level of 0.95 (α = 0.05). And the multiple comparisons by

riedman’s test with a confidence level of 0.95 (α = 0.05) are em-

loyed, in which Iman-Davenport’s procedure is used as a post hoc

rocedure for Friedman test and the VCS is used as a control algo-

ithm [37]. Again, the Friedman test is accomplished in this experi-

ent by using the KEEL software [38]. Table 12 summarizes the test

esults based on the best solution for each function with 30 inde-

endent runs and Table 13 reports the ranks of Mean and SD among

even algorithms obtained by the Friedman test. When examined the

esults of last row ‘+\≈\−’ in Table 12, it can be observed that VCS has

bviously high ‘+’ counts than the other competitors. It means that

CS exhibits the statistically superior performance than the six com-

ared algorithms in the pair-wise Wilcoxon signed ranks test at the

5% significance level. From the results of Table 13, it can be founded

hat VCS ranks first according to the mean value of the 30 indepen-

ent runs for each CEC2014 benchmark. However, GWO ranks first on

D and VCS ranks third on it.

According to above statistical results and analysis, it can be

oncluded that VCS performs extremely better optimization

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 77

Fig. 5. Evolution of the mean function error values derived from the algorithms versus the number of FEs on six CEC2014 simple multimodal benchmarks.

78 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Fig. 6. ANOVA test for all algorithms on four CEC2014 simple multimodal benchmarks. Here 1, 2, 3, 4, 5, 6 and 7 is the algorithm index of CMA-ES, GSA, GWO, CS, CoBiDE, SOS and

VCS, respectively.

Fig. 7. Convergence rate of the mean function error values derived from the algorithms versus the number of FEs on two CEC2014 hybrid functions benchmarks.

M
.D

.Li
et

a
l./A

d
va

n
ces

in
E

n
g

in
eerin

g
So

ftw
a

re
9

2
(2

0
16

)
6

5
–

8
8

7
9

Table 12

The results of Wilcoxon signed ranks test based on the best solution for each benchmark function of CEC 2014 with 30 independently runs (α = 0.05).

No. CMA-ES vs VCS GSA vs VCS GWO vs VCS CS vs VCS CoBiDE vs VCS SOS vs VCS

p-value R+ R− win p-value R+ R− win p-value R+ R− win p-value R+ R− win p-value R+ R− win p-value R+ R- win

f01 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f02 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f03 1.7344E−06 465 0 + 1.7333E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7311E−06 465 0 +
f04 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 3.1123E−05 435 30 + 1.7344E−06 465 0 +
f05 1.7344E−06 0 465 − 1.7344E−06 0 465 − 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.9209E−06 464 1 + 8.4661E−06 449 16 +
f06 1.7344E−06 465 0 + 1.7344E−06 465 0 + 3.1817E−06 459 6 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f07 1.7344E−06 465 0 + 1.0000E−00 0 0 ≈ 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f08 1.7344E−06 465 0 + 1.7344E−06 465 0 + 3.8822E−06 457 8 + 4.2857E−06 456 9 + 5.7165E−01 260 205 ≈ 3.1817E−06 459 6 +
f09 3.1817E−06 459 6 + 8.7297E−03 360 105 + 7.5137E−05 40 425 -− 2.5364E−01 288 177 ≈ 9.7539E-−01 234 231 ≈ 1.9646E−03 383 82 +
f10 7.0356E−01 214 251 ≈ 1.7344E−06 465 0 + 1.9209E−06 464 1 + 1.9209E−06 464 1 + 1.9209E−06 464 1 + 6.3391E−06 452 13 +
f11 1.7344E−06 0 465 - 2.1266E−06 463 2 + 8.7740E−01 240 225 ≈ 3.8822E−06 457 8 + 1.7344E−06 465 0 + 1.9209E−06 464 1 +
f12 3.1123E−05 30 435 − 1.7344E−06 0 465 - 5.2165E−06 11 454 - 2.3534E−06 462 3 + 1.7344E−06 465 0 + 2.8786E−06 460 5 +
f13 1.7344E−06 465 0 + 4.7162E−02 329 136 + 2.8786E−06 460 5 + 1.6503E−01 300 165 ≈ 6.9838E−06 451 14 + 1.7344E−06 465 0 +
f14 1.7344E−06 465 0 + 3.8811E−04 60 405 - 1.7344E−06 465 0 + 3.3789E−03 90 375 - 2.2888E−01 174 291 − 1.7344E−06 465 0 +
f15 4.9080E−01 266 199 ≈ 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f16 1.7344E−06 465 0 + 1.7344E−06 465 0 + 4.9916E−03 369 96 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f17 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f18 1.7344E−06 465 0 + 9.7772E−02 152 313 - 2.3534E−06 462 3 + 9.8421E−03 107 358 - 2.0515E−04 52 413 − 1.7344E−06 465 0 +
f19 1.7344E−06 465 0 + 1.7344E−06 465 0 + 2.7653E−03 378 87 + 2.7653E−03 378 87 + 2.7653E−03 378 87 + 1.2506E−04 419 46 +
f20 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.4839E−03 387 18 + 6.3391E−06 13 452 - 1.7344E−06 465 0 +
f21 2.8434E−05 436 29 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 3.1123E−05 435 30 + 4.2767E−02 331 134 + 1.7344E−06 465 0 +
f22 1.7344E−06 465 0 + 1.7344E−06 465 0 + 8.9187E−05 426 42 + 7.7309E−03 362 103 + 7.0356E−01 251 214 ≈ 3.8822E−06 457 8 +
f23 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f24 1.7344E−06 465 0 + 1.7344E−-06 465 0 + 1.5411E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f25 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f26 9.7110E−05 422 43 + 3.1817E−06 459 6 + 1.7138E−01 166 299 ≈ 6.3198E−05 427 38 + 3.1123E−05 435 30 + 3.1123E−05 435 30 +
f27 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.6933E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f28 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 + 1.7344E−06 465 0 +
f29 1.7344E−06 465 0 + 1.9209E−06 1 464 - 1.7344E−06 465 0 + 3.1817E−06 459 6 + 1.9209E−06 1 464 - 1.7344E−06 465 0 +
f30 1.7344E−06 465 0 + 2.0671E−02 345 120 + 1.7344E−06 465 0 + 2.7653E−03 378 87 + 5.7517E−06 12 453 − 1.7344E−06 465 0 +
+/≈/- 25/2/3 24/1/5 26/2/2 26/2/2 22/3/5 30/0/0

80 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Fig. 8. ANOVA test for all algorithms on two CEC2014 hybrid functions benchmarks. Here 1, 2, 3, 4, 5, 6 and 7 is the algorithm index of CMA-ES, GSA, GWO, CS, CoBiDE, SOS and

VCS, respectively.

Table 13

The results of Friedman test based on the mean value for CEC2014 benchmark functions with 30 independent runs, in which Iman-Davenport’s procedure is used as

a post hoc procedure (VCS is the control method and α = 0.05).

Friedman test p-values of Iman-Davenport Mean Rank p-values of Iman-Davenport SD rank

CMA-ES 0.000000 5.5167 0.000188 5.9333

GSA 0.000131 4.1 0.654001 4.1

GWO 0.000062 4.2 0.029162 2.6333

CS 0.004124 3.5667 0.198837 3.1333

CoBiDE 0.031444 3.1667 0.055829 2.7833

SOS 0.000000 5.4833 0.002086 5.5667

VCS 1 1.9667 1 3.85

t

t

B

e

s

e

o

t

g

s

s

i

t

c

λ
w

w

l

o

u

l

v

I

d

l

i

i

c

c

c

performance on convergence rate and accuracy compared with CMA-

ES, GSA, GWO, CS, CoBiDE and SOS for CEC2014 benchmark functions.

4.4. Search behaviors and parameters analysis of VCS

This section experimentally studies the influence of the three

search phases, as well as two important parameters for the optimiza-

tion performance of VCS. To evaluate the search strategies of VCS, we

set three conditions: VCS without virus diffusion phase (VCS1), VCS

without host cell infection phase (VCS2) and VCS without immune

response phase (VCS3). These three conditions and standard VCS are

tested on the several classic as well as CEC2014 benchmark functions.

The f01, f03, f07 and f09 are used as the classic benchmark functions,

and the f02(CEC), f07(CEC), f19(CEC) and f25(CEC) selected from CEC2014 are

used as the modern benchmarks. In addition, the population for these

three conditions is set to 75 because each of them has two phases. The

other parameters are set according to its previous experiments.

Table 14 represents the average results of 10 runs for each con-

dition and standard VCS. Fig. 10 shows the convergence rate of

three conditions and standard VCS. The obtained results from Table

14 show that different condition for different benchmark function

presents different performance. It’s clear that VCS performs best for

the eight test functions. Without the Gaussian random walk in the

virus diffusion phase which has a promising performance in con-

vergence rate, VCS1 performs the worst performance on f01, f07 and

f25CEC. VCS2 exhibits the worst performance on f03, f02CEC and f07CEC

because the host cell infection phase can help the individuals to ex-

change the information so as to avoid local optimal. VCS3 shows the

more proper performance compared with VCS1 and VCS2, but worse

than VCS. It is because that the immune response phase is mainly

used to adjust the individuals slightly so as to get closer to the solu-
ions. Fig. 10 shows that VCS1 converges fast than the other condi-

ions for f03 and f02(CEC). While VCS performs best for f07 and f19(CEC).

ased on the results from Table 14 and Fig. 10, we can observe that

ach behavior in VCS can significantly affect the quality of final re-

ults, and they also show that three behaviors together make a coher-

nt system to solve optimization problems.

There are two important parameters in VCS namely the number

f selected best individuals λ and the step size σ . In order to learn

he influence of the two parameters on the performance of the al-

orithm, the following two experiments are performed on the above

elected 8 benchmark functions. Tabled 15 and 16 summarize the re-

ults obtained by the different two parameter settings based on 30

ndependent runs. The population size N=50 and the other parame-

ers are set according to its previous experiments. From Table 15, we

an observe that there is no significant difference with the different

for f01 and f25(CEC). For f03, f09 and f19(CEC), VCS performs the best

hen λ = �N/2�. Meanwhile, it can be found that VCS exhibits the

orse performance when λ=N or λ = �N/10� and it means that the

arger or smaller λ value is not helpful to improve the performance

f VCS. As we know, the primary design goal for λ is to make full

se of best individuals as well as avoid local optimum. It means that

arger λ value leads to useless of the best individuals and smaller λ
alue generates the high probability to run into partial optimization.

n addition, because the number of the selected best individuals can

irectly affect the computational complexity, the more numbers, the

arger time consumption. It can be proved from the results of Time

n Table 15 that the time consumption becomes larger with the λ
ncreased. Fig. 11 shows the convergence rate on f07 and f02(CEC). It

an be seen that VCS with λ = �N/2� converges faster than the other

onditions. Considering the trade-off between time consumption and

onvergence accuracy, λ is set to λ = �N/2� in this paper.

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 81

Fig. 9. ANOVA test for all algorithms on six CEC2014 composition functions benchmarks. Here 1, 2, 3, 4, 5, 6 and 7 is the algorithm index of CMA-ES, GSA, GWO, CS, CoBiDE, SOS

and VCS, respectively.

82 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Fig. 10. Evolution of the mean function error values derived from the different conditions of VCS versus the number of FEs on four benchmark functions.

Fig. 11. Evolution of the mean function error values derived from the different λ of VCS versus the number of FEs on two benchmark functions.

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 83

Table 14

Research on the influence of different search behaviors of VCS for optimizing 8 typical test functions.

No. VCS1 VCS2 VCS3 VCS

Mean SD Mean SD Mean SD Mean SD

f01 4.9610E−29 4.9966E−29 0 0 5.3614E−307 0 0 0

f03 1.4156E−29 1.6084E−29 1.8783E+01 5.3982E−01 1.7598E-27 1.4997E−28 2.4208E−30 3.9914E−30

f07 1.2179E+00 6.0279E−02 0 0 0 0 0 0

f09 −1.0316E+00 5.5698E−13 −1.0316E+00 1.4673E−14 −1.0316E+00 5.7406E−06 −1.0316E+00 8.3411E−16

f02(CEC) 0 0 1.7889E+03 3.7294E+03 0 0 0 0

f07(CEC) 0 0 1.2506E−13 3.5951E-14 0 0 0 0

f19(CEC) 6.0075E+00 2.0995E+00 1.1163E+01 1.8247E+01 1.7382E+01 1.9295E+01 3.7478E+00 7.7829E−01

f25(CEC) 2.0000E+02 1.4430E−13 200 0 200 0 200 0

Table 15

Research on the influence of λ on the performance of VCS for optimizing 8 typical test functions (σ = 0.3).

F λ N �N4/5� �N2/3� �N/2� �N/3� �N/5� �N/7� �N/10�
f01 Mean 0 0 0 0 0 0 0 0

SD 0 0 0 0 0 0 0 0

Time 4.1586E+00 4.1210E+00 4.1071E+00 4.0963E+00 4.0853E+00 4.0366E+00 3.9716E+00 3.8854E+00

f03 Mean 3.3151E−29 3.2682E−29 5.3322E−30 1.1278E−30 2.2803E−30 9.4170E−30 1.3045E−29 6.1753E−31

SD 4.1455E−29 4.5193E−29 4.2999E−30 2.8566E−30 7.2109E−31 1.6705E−30 8.3041E−30 1.9528E−30

Time 2.8925E+01 2.8199E+01 2.7755E+01 2.6250E+01 2.5646E+01 2.5434E+01 2.5306E+01 2.5189E+01

f07 Mean 0 0 0 0 0 0 0 5.5511E−17

SD 0 0 0 0 0 0 0 1.7554E−16

Time 4.6325E−01 4.5161E−01 4.4519E−01 4.0554E−01 4.0308E−01 4.0250E−01 4.0035E-−01 3.9878E−01

f09 Mean −1.0316E+00 -−1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00

SD 2.8986E−11 4.5602E−12 9.8566E−14 9.7271E−14 1.4482E−11 2.4303E−11 3.5243E−11 1.4299E−11

Time 3.0212E−01 2.9494E−01 2.9324E−01 2.8960E−01 2.8824E−01 2.8822E−01 2.8383E−01 2.8014E-01

f02(CEC) Mean 0 0 0 0 0 0 8.5265E−15 8.5265E−15

SD 0 0 0 0 0 0 1.3729E−14 1.3729E−14

Time 4.5213E+01 4.2374E+01 4.0127E+01 3.7576E+01 3.2854E+01 2.8635E+01 2.6443E+01 2.6132E+01

f07(CEC) Mean 9.8573E−04 9.8647E−04 0 0 0 1.7241E−03 1.9717E−03 2.2188E−03

SD 3.1171E−03 3.1195E−03 0 0 0 5.4521E−03 4.3158E−03 3.5726E−03

Time 5.1061E+01 4.9781E+01 4.6254E+01 4.2911E+01 3.6998E+01 2.5037E+01 2.2949E+01 2.2933E+01

f19(CEC) Mean 4.1571E+00 4.1672E+00 3.6910E+00 3.4649E+00 3.9994E+00 3.9566E+00 4.5904E+00 5.1323E+00

SD 9.6638E−01 1.3612E+00 1.8496E+00 6.1255E−-01 5.0452E-01 1.4250E+00 1.8485E+01 1.2616E+00

Time 2.8013E+01 2.7614E+01 2.7329E+01 2.6614E+01 2.6058E+01 2.5875E+01 2.5167E+01 2.4319E+01

f25(CEC) Mean 200 200 200 200 200 200 200 200

SD 0 0 0 0 0 0 0 0

Time 1.8945E+02 1.6134E+02 1.3571E+02 1.1241E+02 9.6867E+01 5.8431E+01 3.4949E+01 3.0905E+01

Table 16

Research on the influence of σ on the performance of VCS for optimizing 8 typical test functions (λ = 0.5N).

Function σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9 σ = 1.5 σ = 2.0 σ = 3.0

f01 Mean 0 0 0 0 0 0 0 0

SD 0 0 0 0 0 0 0 0

f03 Mean 1.8834E-30 1.9177E-30 2.3035E-30 4.8421E-30 5.6369E-30 6.0841E-30 2.3925E-29 2.6217E-29

SD 3.2471E-30 7.7834E-30 6.1684E-30 9.2544E-30 6.3660E-30 8.2488E-30 3.9619E-30 4.0815E-30

f07 Mean 0 0 0 0 0 0 0 0

SD 0 0 0 0 0 0 0 0

f09 Mean −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00

SD 2.2827E−10 1.8185E−14 1.9868E−13 4.5417E−12 8.7286E−12 4.6584E−10 3.1597E−10 1.5167E−10

f02(CEC) Mean 0 0 0 0 0 0 0 0

SD 0 0 0 0 0 0 0 0

f07(CEC) Mean 7.3960E−02 0 0 0 0 1.3164E−03 2.4792E−03 3.2045E−03

SD 2.3388E−03 0 0 0 0 2.8696E−03 3.1184E−03 4.1976E−03

f19(CEC) Mean 4.3594E+00 3.8618E+00 5.3759E+00 1.1725E+01 1.2368E+01 1.6300E+01 1.6784E+01 1.6912E+01

SD 7.9491E−01 9.3612E−01 2.2377E+00 2.8850E+01 1.8856E+01 2.5209E+01 2.5277E+01 1.8870E+01

f25(CEC) Mean 200 200 200 200 200 200 200 200

SD 0 0 0 0 0 0 0 0

t

t

s

b

r

e

o

M

m

o

e

f

c

d

b

g

results.

According to Eq. (2) in host cell infection behavior, we can observe

hat the parameter σ is used to control the amplitude for generating

he new individuals. A larger σ is effective for global search, while a

maller σ is useful for local search. From the results of Table 16, it can

e concluded that VCS exhibits the same convergence rate and accu-

acy for f01, f07, f02(CEC) and f25(CEC) with different settings of σ . How-

ver, VCS performs the best when σ = 0.1 for optimizing f03, which

wes to its promising performance for local search if σ is smaller.

eanwhile, it shows the best performance when σ = 0.3 for opti-
izing f09, f07(CEC) and f19(CEC). In addition, VCS performs the worse

ptimization qualities if the algorithm has a larger σ from Table 16,

specially for the complicated test function (i. e. f02(CEC), f07(CEC) and

19(CEC)). It is mainly because the larger σ leads to poor quality to get

loser to the best solution. Fig. 12 shows the convergence rate with

ifferent σ for VCS on the two test functions. Considering the balance

etween the global search and local search, we set σ=0.3 in VCS for

iving full play to optimization performance according to the above

84 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Fig. 12. Evolution of the mean function error values derived from the different σ of VCS versus the number of FEs on two benchmark functions.

Fig. 13. Pressure vessel design problem.

Fig. 14. Tension/compression spring design problem.

t

g

n

E

a

(

o

o

t

t

f

e

o

G

4

d

m

w

1

u

(

D

a

s

o

4.5. Experiment on the constrained optimization problem

Three well-known constrained engineering design optimization

problems (see Appendix C) are used in this section: pressure ves-

sel design problem, tension/compression spring problem and welded

beam design problem. To evaluate the performance of VCS for opti-

mizing the three constrained problems, the same constraint handling

mechanism used in [39] is employed for VCS, and the results of 30

independent runs on each problem are summarized in Tables 17–22.

In addition, the results of the compared algorithms for these three

problems are directly taken from the related studies in the literature.

For each problem, the population size of VCS is set to 20.

4.5.1. Pressure vessel problem

Pressure vessel design problem is a mixed type of optimization

problem. Fig. 13 shows a cylindrical pressure vessel capped at both

ends by hemispherical heads. The objective is to minimize the total

cost (f(x)), including the cost of forming, material and welding. There

are four variables in this problem: the thickness Ts (x1), thickness of

the head Th (x2), the inner radius R (x3) and the length of the cylin-

drical section of the vessel L (x4).

Many researchers have been previously solved this problem as a

benchmark structural optimization problem such as Gandomi et al

[39], who applied the bat algorithm; Bernardino et al. [40], who em-

ployed a hybrid genetic algorithm based on artificial immune system

(AIS-GA); Huang et al. [41], who used the co-evolutionary differential

evolution (CDE); Wang et al. [42], who employed the differential evo-

lution with level comparison (DELC); Gao and Hailu [43], who used
he proposed comprehensive learning particle swarm optimizer al-

orithm (CLPSO); Hsieh [44], who used the bacterial gene recombi-

ation algorithm (BGRA); water cycle algorithm (WCA) designed by

skandar [45]; mine blast algorithm (MBA) proposed by Sadollah et

l. [46] and gaussian quantum-behaved particle swarm optimization

G-QPSO) [47].

Tables 17 and 18 summarize the best results and statistical results

btained by VCS based on 30 independent runs and other different

ptimizer from the above literature for this problem. From Table 18,

he results obtained by VCS with 36,020 function evaluations are bet-

er than the compared algorithms except for BGRA. However, VCS of-

ers the competitive best solutions in much less number of function

valuations than offered by the BGRA. Meanwhile, the best cost value

f VCS is much lower than that of AIS-GA, CDE, CLPSO, BA, DELC and

-QPSO.

.5.2. Tension/compression spring design problem

Spring design optimization problem is a well-known engineering

esign problem to investigate the superiority of an algorithm. The

ain objective of the problem is to design a spring for a minimum

eight by achieving optimum values of the variables as shown in Fig.

4. It contains four nonlinear inequality constraints and three contin-

ous variables: the wire diameter w (x1), the mean coil diameter d

x2) and the length (or number of coils) L (x3).

This problem has been solved previously using BA, AIS-GA, CDE,

ELC, BGRA, WCA, MBA, G-QPSO and hybrid evolutionary algorithm

nd adaptive constraint handling technique (HEAA) [48]. Table 19

hows the comparisons of the best solutions obtained by VCS and

ther compared algorithms. Table 20 lists the statistical results of

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 85

Table 17

Comparing of the best solution obtained by the different algorithms for pressure vessel design problem (NA: Not available).

DV AIS-GA [40] CDE [41] DELC [42] CLPSO [43] BGRA [44] WCA [45] MBA [46] G-QPSO [47] VCS

x1 0.8125 0.812500 0.8125 0.8125 0.75 0.7781 0.7802 0.8125 0.7781686413715

x2 0.4375 0.437500 0.4375 0.4375 0.375 0.3846 0.3856 0.4375 0.3846491626265

x3 42.094967 42.098411 42.0984455 42.0984 38.8601036 40.3196 40.4292 42.0984 40.3196187240987

x4 176.67972 176.637690 176.636595 176.6366 221.3654714 200.0000 198.4964 176.6372 199.9999999999998

g1(x) 0.000007 −6.677E−07 NA −8.8000E−07 −8.29972E−13 −2.95E−11 0 −8.79E−07 −3.62510022000e−12

g2(x) 0.035914 −0.035881 NA −0.0359 −0.00427461 −7.15E−11 0 −3.58E−02 −1.44484424424e−12

g3(x) 0.0625 −3.683016 NA 3.1227 −1.57971E−05 −1.35E−06 −86.3645 −0.2179 0

g4(x) −63.320282 −63.36231 NA −63.3634 −18.6345 −40.0000 −41.5035 −63.3628 −40.0000000000002

f(x) 6060.138 6059.7340 6059.7143 6059.7143 5850.383061 5885.3327 5889.3216 6059.7208 5885.332773601229

Table 18

Comparing of statistical results obtained by the different algorithms for pressure vessel design problem (NFEs: number of function evaluations).

Algorithm Worst Mean Best SD Runs NFEs

BA [39] 6,318.95 6,179.13 6,059.71 137.223 50 15,000

AIS-GA [40] 6845.496 6385.942 6060.138 NA 30 80,000

CDE [41] 6371.0455 6085.2303 6059.7340 43.0130 50 204,800

DELC [42] 6,059.7143 6,059.7143 6,059.7143 2.1E-11 30 30,000

CLPSO [43] NA 6066.0311 6059.7143 12.2718 100 60,000

BGRA [44] 5850.3944511879 5850.383062429 5850.3830609 7.49E−03 30 200,000

WCA [45] 6590.2129 6198.6172 5885.3327 213.0490 25 27,500

MBA [46] 6392.5062 6200.64765 5889.3216 160.34 100 70,650

G-QPSO [47] 7544.4925 6440.3786 6059.7208 448.4711 50 8000

VCS 6854.186813925565 6122.332086401949 5885.339709022323 204.15272 100 7980

6214.691405673249 5911.620312729348 5885.332773601229 57.358871 100 36,020

Table 19

Comparing of the best solution obtained by the different algorithms for tension/compression spring design problem.

DV AIS-GA [40] CDE [41] DELC [42] BGRA [44] WCA [45] MBA [46] G-QPSO [47] HEAA [48] VCS

x1 0.0516608 0.051609 0.051689061 0.05167471 0.051680 0.051656 0.051515 0.0516895376 0.051685684299756

x2 0.3560323 0.354714 0.356717741 0.35637260 0.356522 0.355940 0.352529 0.3567292035 0.356636508703361

x3 11.329555 11.410831 11.28896566 11.3092294 11.300410 11.344665 11.538862 11.288293703 11.29372966824506

g1(x) −0.000006 −3.90E−05 NA −1.1709E−09 −1.65E−13 0 −4.83E−05 NA −5.29158938888e−11

g2(x) −0.000013 −1.83E−04 NA −2.8630E−08 −7.9E−14 0 −3.57E−05 NA −2.672018162286e−11

g3(x) −4.052324 −4.048627 NA −4.0531 −4.053399 −4.052248 −4.0455 NA −4.053625168175300

g4(x) −0.728204 −0.729118 NA −0.727968 −0.727864 −0.728268 −0.73064 NA −0.727785204664589

f(x) 0.0126666 0.0126702 0.012665233 0.012665237 0.012665 0.012665 0.012665 0.012665233 0.012665222962643

Table 20

Comparing of statistical results obtained by the different algorithms for tension/compression spring design problem.

Algorithm Worst Mean Best SD Runs NFEs

BA [39] 0.0168954 0.01350052 0.012665233 0.001420272 50 5,000

AIS-GA [40] 0.013880 0.012974 0.012666 NA 30 36,000

CDE [41] 0.012790 0.012703 0.0126702 2.7000E−05 50 204,800

DELC [42] 0.012665575 0.012665267 0.012665233 1.3E−07 30 20,000

BGRA [44] 0.012755029 0.0012682401 0.0126652373 1.9963E−05 30 200,000

WCA [45] 0.012952 0.012746 0.012665 8.06E−05 25 11,750

MBA [46] 0.012900 0.012713 0.012665 6.30E−05 100 7650

G-QPSO [47] 0.017759 0.013524 0.012665 0.001268 50 2000

HEAA [48] 0.012665240 0.012665234 0.012665233 1.4E−09 30 24,000

VCS 0.016324508126357 0.013249353201184 0.012665233297529 6.15806e−04 30 2000

0.012995994270332 0.012720016028153 0.012665222962643 6.52696e−05 30 11,720

t

s

o

o

e

0

V

b

4

v

(

m

u

s

l

s

m

h

(

M

i

o

his problem obtained by VCS with two sets and compares the re-

ults with solutions reported by previous researchers. The first set

f results corresponds to 11,720 function evaluations and the sec-

nd set corresponds to 2000 function evaluations using VCS. When

xamined Table 20, it can be found that the best function value is

.012665222962643 with 11,720 function evaluations obtained by

CS. In addition, based on 2000 NFEs, VCS can archive the acceptable

est result compared with G-QPSO.

.5.3. Welded beam design problem

The welded beam design optimization problem (see Fig. 15) in-

olves four design variables including the width h (x1) and length l

x) of the welded area, the depth t (x) and thickness b (x) of the
2 3 4
ain beam. The main goal is to minimize the overall fabrication cost,

nder the bending stress σ d (30,000 psi), appropriate constraints of

hear stress τ d (13,600 psi), maximum end deflection δd (0.25 in) and

oading condition P (6000 lb).

The optimization methods previously applied to this problem

uch as CDE, DELC, WCA, MBA, genetic algorithm based co-evolution

odel (GA3) [49], hybrid particle swarm optimization (HPSO) [50],

ybrid nelder-mead simplex search and particle swarm optimization

NM-PSO) [51], hybrid genetic algorithm (HGA) [52], DE [53], and

GA [54].

The comparison of best solution with previous methods is given

n Table 21. Table 22 lists the statistical results obtained by VCS and

ther nine algorithms. From Table 22, it can be observed that the best

86 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

Table 21

Comparing of the best solution obtained by the different algorithms for welded beam design problem.

DV CDE [41] DELC [42] WCA [45] MBA [46] GA3 [49] HPSO [50] NM-PSO [51] HGA [52] VCS

h (x1) 0.203137 0.20572964 0.205728 0.205729 0.205986 0.20573 0.20583 0.2057 0.205729639786080

l (x2) 3.542998 3.47048867 3.470522 3.470493 3.471328 3.470489 3.468338 3.4705 3.470488665627995

t (x3) 9.033498 9.03662391 9.036620 9.036626 9.020224 9.036624 9.036624 9.0366 9.036623910357633

b (x4) 0.206179 0.20572964 0.205729 0.205729 0.206480 0.20573 0.20573 0.2057 0.205729639786080

g1(x) −44.578568 NA −0.034128 −0.001614 −0.103049 -0.025399 −0.02525 1.988676 −1.81898940354e−12

g2(x) −44.663534 NA −3.49E−05 −0.016911 −0.231747 −0.053122 −0.053122 4.481548 0

g3(x) −0.003042 NA −1.19E−06 −2.40E−07 −5E−04 0 0.0001 0 −3.33066907387e−16

g4(x) −3.423726 NA −3.432980 −3.432982 −3.430044 −3.432981 −3.433169 −3.433213 −3.432983785362249

g5(x) −0.078137 NA −0.080728 −0.080729 −0.080986 −0.08073 −0.08083 −0.080700 −0.080729639786080

g6(x) −0.235557 NA −0.235540 −0.235540 −0.235514 −0.235540 −0.235540 −0.235538 −0.235540322584754

g7(x) −38.028268 NA −0.013503 −0.001464 −58.646888 −0.031555 −0.031555 2.603347 −1.81898940354e-12

f(x) 1.733462 1.724852 1.724856 1.724853 1.728226 1.724852 1.724717 1.724852 1.724852308597364

Table 22

Comparing of statistical results obtained by the different algorithms for welded beam design problem.

Algorithm Worst Mean Best SD Runs NFEs

CDE [41] 1.824105 1.768158 1.733461 0.022194 50 204,800

DELC [42] 1.724852 1.724852 1.724852 4.1E−13 30 20,000

WCA [45] 1.744697 1.726427 1.724856 4.29E−03 25 46,450

MBA [46] 1.724853 1.724853 1.724853 6.94E−19 100 47,340

GA3 [49] 1.785835 1.771973 1.748309 1.12E−02 11 900,000

HPSO [50] 1.814295 1.749040 1.724852 4.01E−02 30 81,000

NM-PSO [51] 1.733393 1.726373 1.724717 3.50E−03 30 80,000

DE [53] 1.824105 1.768158 1.733461 2.21E−02 100 204,800

MGA [54] 1.9950 1.9190 1.8245 5.37E−02 30 NA

VCS 1.724854932783389 1.724852837940976 1.724852329051929 8.35206e−07 30 12,020

1.724852308597365 1.724852308597367 1.724852308597364 2.44432e−15 30 36,020

Fig. 15. Welded beam design Problem.

c

I

p

t

u

T

h

t

s

p

a

t

o

m

d

d

v

A

solution is obtained by NM-PSO with an objective function value of

f(x) = 1.724717 after 80,000 function evaluations. By using the pro-

posed algorithm, the best solution of f(x) = 1.724852308597364 is

obtained with 36,020 function evaluations, which ranks second from

the statistical results. It is worth to mention that the best solution of

f(x) by applying the VCS method is 1.724852329051929 after 12,020

function evaluations with SD=8.35206e-07, which is also a satisfac-

tory result with less NFEs compared with CDE, WCA, GA3, HPSO, DE

and MGA.

5. Conclusion

Nature-inspired algorithms which mimic the specific phenomena

or behaviors of nature have become a hotspot in the optimization

computation in recent years. This paper proposes a new optimiza-

tion algorithm namely virus colony search algorithm, which simu-

lates the virus diffusion and infection strategies for the host cells in

the cell environment. Our method employs three main behaviors in-
luding: viruses diffusion, host cells infection and immune response.

n the first behavior, each virus in the colony performs the diffusion

rocess realized by the Gaussian random walk method to generate

he new virus around its current position. The second behavior sim-

lates the infection process for host cell based on CMA-ES method.

he last behavior mimics the immune response phenomena of the

ost cell system by evolving some worse viruses based on the statis-

ical approach. The simulation and the statistical results for the con-

traint and unconstraint optimization problems, show that the pro-

osed VCS algorithm can equal or outperforms other nature-inspired

lgorithms used in this paper. In addition, the VCS offers competi-

ive solutions compared with other metaheuristic optimizers based

n the reported results in this research. For future work, the perfor-

ance of time consumption and robustness for optimizing the high-

imensional complex functions needs to be further enhanced. In ad-

ition, the binary virus colony search algorithm is expected to be de-

eloped for the combinational optimization problems.

ppendix A

CoBiDE: http://ist.csu.edu.cn/YongWang.htm

CMA-ES: http://dces.essex.ac.uk/staff/qzhang/

ABC: http://mf.erciyes.edu.tr/abc/software.htm

CS: http://www.mathworks.com/matlabcentral/fileexchange/

29809-cuckoo-search-cs-algorithm

GWO: http://www.mathworks.cn/matlabcentral/fileexchange/

44974-grey-wolf-optimizer–gwo-

GSA: http://www.mathworks.com/matlabcentral/fileexchange/

27756-gravitational-search-algorithm-gsa

AMO: http://yinmh.nenu.edu.cn/

SOS: http://www.mathworks.com/matlabcentral/fileexchange/

47465-sos-m

VCS: It can be obtained from Cor. Author (MuDong Li): Email:

modern_lee@163.com

http://ist.csu.edu.cn/YongWang.htm
http://dces.essex.ac.uk/staff/qzhang/
http://mf.erciyes.edu.tr/abc/software.htm
http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
http://www.mathworks.cn/matlabcentral/fileexchange/44974-grey-wolf-optimizer-gwo-
http://www.mathworks.com/matlabcentral/fileexchange/27756-gravitational-search-algorithm-gsa
http://yinmh.nenu.edu.cn/
http://www.mathworks.com/matlabcentral/fileexchange/47465-sos-m

M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88 87

A

B

B

B

A

C

S

C

S

C

S

w

R

[

ppendix B

.1. Four classic unimodal benchmark functions

f01(x) = ∑D
i=1 x2

i
, Dim = 30, Range = [−100, 100], Optimum = 0

(Sphere)

f02(x) = maxi{|xi|, 1 ≤ i ≤ D}, Dim = 30, Range = [−100, 100],

Optimum = 0 (Schwefel 2.21)

f03(x) = ∑D
i=1 100(x2

i+1
− x2

i
)

2 + (xi − 1)2
, Dim = 30, Range =

[−30, 30], Optimum = 0 (Rosenbrock)

f04(x) = ∑D
i=1 (�xi + 0.5�)2

, Dim = 30, Range = [−100, 100], Op-

timum = 0 (Step)

.2. Four classic high-dimensional multimodal benchmark functions

f05(x) = ∑D
i=1 (x2

i
− 10 cos(2πxi) + 10), Dim = 30, Range =

[−5.12, 5.12], Optimum = 0 (Rastrigin)

f06(x) = 20 + e − 20 exp(−0.2

√
1
D

∑D
i=1 x2

i
) − exp(1

D

∑D
i=1

cos(2πxi)), Dim = 30, Range = [−32, 32], Optimum =
8.8818e-16 (Ackley)

f07(x) = 1
4000

∑D
i=1 (x2

i
) − (

∏D
i=1 cos(

xi√
i
)) + 1, Dim = 30, Range =

[−600, 600], Optimum = 0 (Griewank)

f08(x) = π
D {10sin2(πyi) + ∑D−1

i−1 (yi − 1)2
[1 + 10sin2(πyi+1)] +

(yD − 1)} + ∑D
i−1 u(xi, 10, 100, 4) yi = 1 + xi+1

4 u(xi, a, k, m)

=
{

k(xi − a)m
xi > a

0 − a < xi < a

k(−xi − a)m
xi < a

,

Dim = 30, Range = [−50, 50], Optimum = 0 (Penalized)

.3. Two classic low-dimensional multimodal benchmark functions

f09(x) = 4x2
1

− 2.1x4
1

+ 1/3x6
1

+ x1x2 − 4x2
2

+ x4
2
, Dim = 2, Range =

[−5, 5], Optimum = -1.03163 (Six Hump Camel Back)

f10(x) = − ∑5
i=1 [(X − ai)(X − ai)

T + ci]
−1

, Dim = 4, Range = [0,

10], Optimum = -10.1532 (Langermann 5)

ppendix C

.1. Pressure vessel problem

f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

ubject to:

g1(X) = −x1 + 0.0193x3 ≤ 0
g2(X) = −x2 + 0.00954x3 ≤ 0

g3(X) = −πx2
3x4 − 4/3πx2

3 + 1, 296, 000 ≤ 0
g4(X) = x4 − 240 ≤ 0
0 ≤ x1, x2 ≤ 100
10 ≤ x3, x4 ≤ 200

.2. Tension/compression spring design problem

f (x) = (x3 + 2)x1
2x2

ubject to

g1(X) = 1 − x3
2x3/71785x4

1 ≤ 0

g2(X) = x2(4x2 − x1)/12566x3
1(x2 − x1) + 1/5108x2

1 − 1 ≤ 0

g3(X) = 1 − 140.45x1/x2
2x3 ≤ 0

g4(X) = 2(x1 + x2)/3 − 1 ≤ 0
0.05 ≤ x1 ≤ 2.00
0.25 ≤ x2 ≤ 1.30
2.00 ≤ x3 ≤ 15.00
.3. Welded beam design problem

f (x) = 1.10471x1
2x2 + 0.04811x3x4(14.0 + x2)

ubject to:

g1(x) = τ (x) − τd ≤ 0

g2(x) = σ (x) − σd ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = 0.10471x2
1 + 0.04811x3x4(14 + x2) − 5 ≤ 0

g5(x) = 0.125 − x1 ≤ 0

g6(x) = δ(x) − δd ≤ 0

g7(x) = P − Pc(x) ≤ 0

0.1 ≤ x1, x4 ≤ 2

0.1 ≤ x2, x3 ≤ 10

here,

τ (x) =
√

(τ ′(x))
2 + 2τ ′(x)τ ′′(x)x2/2R + (τ ′′(x))

2

τ ′(x) = P/
√

2x1x2 τ ′′(x) = MR/J

M = P(L + x2/2) R =
√

x2
2
/4 + (x1 + x3)

2
/4

J = 2{√2x1x2[x2
2/12 + (x1 + x3)

2/4]}
σ (x) = 6PL/x2

3x4 δ(x) = 4PL3/Ex3
3x4

Pc(x) = 4.013E(
√

x2
3
x6

4
/36/L2)(1 −

√
E/4Gx3/2L)

P = 6000lb L = 14in E = 30 × 106psi G = 12 × 106psi

τd = 13, 600psi σd = 30, 000psi δd = 0.25in

eferences

[1] Talbi EG. Metaheuristics: From Design to Implementation, vol. 74. John Wiley &
Sons; 2009.

[2] Yang X-S. Nature-inspired nature-based Algorithms. Luniver Press; 2008.

[3] Holland J. Adaptation in natural and artificial systems. Cambridge, MA: MIT Press;
1992.

[4] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of sixth in-
ternational symposium on micro machine and human science (SMMHS-1995);

1995. p. 39–43.
[5] Socha K, Dorigo M. Ant colony optimization for continuous domains. Eur J Oper

Res 2008;185(3):1155–73.

[6] Helbig M, Engelbrecht AP. Performance measures for dynamic multi-objective
optimization algorithms. Inf Sci 2013;250:61–81.

[7] Upadhyay P, Kar R, Mandal D, Ghoshal SP. Craziness based particle swarm opti-
mization algorithm for IIR. AEU-Int J Electron C 2014;68(5):369–78.

[8] Mylonas SK, Stavrakoudis DG, Theocharis JB. GeneSIS: a GA-based fuzzy segmen-
tation algorithm for remote sensing images. Knowl-Based Syst 2013;54:86–102.

[9] Rao RV, Savasani VJ, Vakharia DP. Teaching-learning-based optimization: A novel

method for constrained mechanical design optimization problems. Comput Aided
Des 2011;43:303–15.

[10] Kim HJ, Kang SH. Communication-aware task scheduling and voltage selection
for total energy minimization in a multiprocessor system using Ant Colony Opti-

mization. Inf Sci 2011;181(18):3995–4008.
[11] Chen Y-J, Wong M-L, Li H-B. Applying Ant Colony Optimization to configuring

stacking ensembles for data mining. Expert Syst Appl 2014;41(6):2688–702.

[12] Behera S, Sahoo S, Pati BB. A review on optimization algorithms and application
to wind energy integration to grid. Renew Sust Energ Rev 2015;48:214–27.

[13] Su Z-K, Wang H-L. A novel robust hybrid gravitational search algorithm for
reusable launch vehicle approach and landing trajectory optimization. Neuro-

computing 2015;162:116–27.
[14] Gao X-X, Yang H-X, Lin L, Koo P. Wind turbine layout optimization using multi-

population genetic algorithm and a case study in Hong Kong offshore. J Wind Eng

Ind Aerod 2015;139:89–99.
[15] Price KV, Storn RM, Lampinen JA. Differential evolution: a practical approach to

global optimization. Berlin, Germany: Springer-Verlag; 2005.
[16] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. J Global Optim 2007;39:459–
71.

[17] Yang X-S, Deb S. Cuckoo search via levy flights. In: Proceedings of World Congress
on Nature and Biologically Inspired Computing (NABIC-2009); 2009. p. 210–14.

[18] Li X, Zhang J, Yin M. Animal migration optimization: an optimization algorithm

inspired by animal migration behavior. Neural Comput Appl 2014;24:1867–77.
[19] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014;69:46–

61.
20] Kaveh A, Farhoudi N. A new optimization method: dolphin echolocation. Adv Eng

Softw 2013;59:53–70.

http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0001
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0001
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0002
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0002
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0003
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0003
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0005
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0005
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0005
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0006
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0006
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0006
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0007
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0007
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0007
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0007
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0007
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0008
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0008
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0008
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0008
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0009
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0009
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0009
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0009
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0010
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0010
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0010
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0011
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0011
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0011
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0011
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0012
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0012
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0012
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0012
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0013
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0013
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0013
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0014
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0014
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0014
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0014
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0014
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0016
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0016
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0016
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0017
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0017
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0017
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0018
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0018
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0018
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0018
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0019
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0019
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0019
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0019
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0020
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0020
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0020

88 M.D. Li et al. / Advances in Engineering Software 92 (2016) 65–88

[

[21] Kaveh A, Talatahari S. A novel heuristic optimization method: charged system

search. Acta Mech 2010;213:267–89.

[22] Kaveh A, Khayatazad M. A novel meta-heuristic method: ray optimization. Com-
put Struct 2012;112-113:283–94.

[23] Kaveh A, Mahdavi VR. Colliding bodies optimization: a novel meta-heuristic
method. Comput Struct 2014;139:18–27.

[24] Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: a gravitational search algorithm.
Inf Sci 2009;179:2232–48.

[25] Boussaïd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Inf Sci

2013;237:82–117.
[26] Ishibuchi H, Yoshida T, Murata T. Balance between genetic search and local search

in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE
Trans Evol Comput 2003;7:204–23.

[27] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans
Evol Comput 1997;1:67–82.

[28] Steinhardt E, Israeli C, Lambert RA. Studies on the cultivation of the virus of vac-

cinia. J Inf Dis 1913;13(2):294–300.
[29] Kaplan DT, Peacock LG. Coarse-grained embeddings of time series: random walks,

Gaussian random processes, and deterministic chaos. Physica D 1993;64(4):431–
54.

[30] Hansen N, Müller SD, Koumoutsakos P. Reducing the time complexity of the de-
randomized evolution strategy with covariance matrix adaptation (CMAES). Evol

Comput 2003;11(1):1–18.

[31] Vicsek T. Fractal growth phenomena. World Scientific Publishing Company Incor-
porated; 1992.

[32] Falconer KJ. Random fractals. Math Proc Camb Philos Soc 1986;100(3):559–82.
[33] Liang J., Qu B.-Y., Suganthan P.N. Problem definitions and evaluation criteria for

the CEC 2014 special session and competition on single objective real-parameter
numerical optimization. Technical Report, 2013, p. 1-32.

[34] Wang Y, Li H-X, Huang T-W, Li L. Differential evolution based on covariance

matrix learning and bimodal distribution parameter setting. Appl Soft Comput
2014;18:232–47.

[35] Cheng M-Y, Prayogo D. Symbiotic Organisms Search: A new metaheuristic opti-
mization algorithm. Comput Struct 2014;139:98–112.

[36] Mernik M, Liu S-H, Karaboga MD, Črepinšek M. On clarifying misconceptions
when comparing variants of the artificial bee colony algorithm by offering a new

implementation. Inf Sci 2015;291:115–27.

[37] Derrac J, Garcia S, Molina D, Herrera F. A practical tutorial on the use of nonpara-
metric statistical tests as a methodology for comparing evolutionary and swarm

intelligence algorithms. Swarm Evol Comput 2011;1:3–18.
[38] Alcalá-Fdez J, et al. KEEL: a software tool to assess evolutionary algorithms to data
mining problems. Soft Comput 2009;13:307–18 < http://www.keel.es/ >.

[39] Gandomi A, Yang X-S, Alavi A, Talatahari S. Bat algorithm for constrained opti-
mization tasks. Neural Comput Appl 2013;22(6):1239–55.

[40] Bernardino H, Barbosa I, Lemonge A. A hybrid genetic algorithm for con-
strained optimization problems in mechanical engineering. In: Proceedings of

ieee congress on evolutionary computation (CEC-2007); 2007. p. 646–53.
[41] Huang F-Z, Wang L, He Q. An effective co-evolutionary differential evolution for

constrained optimization. Appl Math Comput 2007;186(1):340–56.

[42] Wang L, Li LP. An effective differential evolution with level comparison for con-
strained engineering design. Struct Multidiscip Opt 2010;41:947–63.

[43] Gao L, Hailu A. Comprehensive learning particle swarm optimizer for constrained
mixed-variable optimization problems. Int J Comput Intell Syst 2010;3(6):832–

42.
44] Hsieh TJ. A bacterial gene recombination algorithm for solving constrained opti-

mization problems. Appl Math Comput 2014;231:187–204.

[45] Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm–A
novel metaheuristic optimization method for solving constrained engineering

optimization problems. Comput Struct 2012;110-111:151–66.
[46] Sadollah A, Bahreininejad A, Eskandar H, Hamdi M. Mine blast algorithm: a new

population based algorithm for solving constrained engineering optimization
problems. Appl Soft Comput 2013;13(5):2592–612.

[47] Coelho LDS. Gaussian quantum-behaved particle swarm optimization approaches

for constrained engineering design problems. Expert Syst Appl 2010;37:1676–83.
[48] Wang Y, Cai Z, Zhou Y, Fan Z. Constrained optimization based on hybrid evolu-

tionary algorithm and adaptive constraint handling technique. Struct Multidisc
Optim 2009;37:395–413.

[49] Coello CAC. Use of a self-adaptive penalty approach for engineering optimization
problems. Comput Ind 2000;41:113–27.

[50] He Q, Wang L. A hybrid particle swarm optimization with a feasibility-based rule

for constrained optimization. Appl Math Comput 2007;186:1407–22.
[51] Zahara E, Kao YT. Hybrid Nelder-Mead simplex search and particle swarm

optimization for constrained engineering design problems. Expert Syst Appl
2009;36:3880–6.

[52] Yuan Q, Qian F. A hybrid genetic algorithm for twice continuously differentiable
NLP problems. Comput Chem Eng 2010;34:36–41.

[53] Lampinen J. A constraint handling approach for the differential evolution algo-

rithm. IEEE Trans Evol Comput 2002:1468–73.
[54] Coello CAC. Constraint-handling using an evolutionary multiobjective optimiza-

tion technique. Civ Eng Environ Syst 2000;17:319–46.

http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0021
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0021
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0021
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0022
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0022
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0022
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0023
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0023
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0023
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0024
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0024
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0024
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0024
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0025
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0025
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0025
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0025
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0026
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0026
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0026
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0026
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0027
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0027
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0027
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0028
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0028
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0028
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0028
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0029
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0029
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0029
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0030
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0030
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0030
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0030
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0031
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0031
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0032
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0032
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0033
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0033
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0033
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0033
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0033
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0034
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0034
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0034
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0035
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0035
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0035
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0035
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0035
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0036
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0036
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0036
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0036
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0036
http://www.keel.es/
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0038
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0038
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0038
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0038
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0038
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0039
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0039
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0039
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0039
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0040
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0040
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0040
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0040
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0041
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0041
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0041
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0042
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0042
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0042
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0043
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0043
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0044
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0044
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0044
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0044
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0044
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0045
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0045
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0045
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0045
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0045
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0046
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0046
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0047
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0047
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0047
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0047
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0047
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0048
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0048
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0049
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0049
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0049
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0050
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0050
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0050
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0051
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0051
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0051
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0052
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0052
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0053
http://refhub.elsevier.com/S0965-9978(15)00170-2/sbref0053

	A novel nature-inspired algorithm for optimization: Virus colony search
	1 Introduction
	2 Survival strategy of viruses
	3 Virus colony search
	3.1 Viruses diffusion
	3.2 Host cells infection
	3.3 Immune response
	3.4 Framework of VCS

	4 Experimental study
	4.1 Compared algorithms for unconstrained benchmarks
	4.2 Experiment results on classic benchmarks
	4.3 Experiment results on CEC2014 benchmarks
	4.4 Search behaviors and parameters analysis of VCS
	4.5 Experiment on the constrained optimization problem
	4.5.1 Pressure vessel problem
	4.5.2 Tension/compression spring design problem
	4.5.3 Welded beam design problem

	5 Conclusion
	 Appendix A
	 Appendix B
	B.1 Four classic unimodal benchmark functions
	B.2 Four classic high-dimensional multimodal benchmark functions
	B.3 Two classic low-dimensional multimodal benchmark functions

	 Appendix C
	C.1 Pressure vessel problem
	C.2 Tension/compression spring design problem
	C.3 Welded beam design problem

	 References

