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This paper proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO
algorithm mimics the hunting mechanism of antlions in nature. Five main steps of hunting prey such
as the random walk of ants, building traps, entrapment of ants in traps, catching preys, and re-building
traps are implemented. The proposed algorithm is benchmarked in three phases. Firstly, a set of 19
mathematical functions is employed to test different characteristics of ALO. Secondly, three classical
engineering problems (three-bar truss design, cantilever beam design, and gear train design) are solved
by ALO. Finally, the shapes of two ship propellers are optimized by ALO as challenging constrained real
problems. In the first two test phases, the ALO algorithm is compared with a variety of algorithms in the
literature. The results of the test functions prove that the proposed algorithm is able to provide very com-
petitive results in terms of improved exploration, local optima avoidance, exploitation, and convergence.
The ALO algorithm also finds superior optimal designs for the majority of classical engineering problems
employed, showing that this algorithm has merits in solving constrained problems with diverse search
spaces. The optimal shapes obtained for the ship propellers demonstrate the applicability of the proposed
algorithm in solving real problems with unknown search spaces as well. Note that the source codes of the
proposed ALO algorithm are publicly available at http://www.alimirjalili.com/ALO.html.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction operators when seeking for global optima in search spaces.
In recent years metaheuristic algorithms have been used as pri-
mary techniques for obtaining the optimal solutions of real engi-
neering design optimization problems [1–3]. Such algorithms
mostly benefit from stochastic operators [4] that make them dis-
tinct from deterministic approaches. A deterministic algorithm
[5–7] reliably determines the same answer for a given problem
with a similar initial starting point. However, this behaviour results
in local optima entrapment, which can be considered as a disad-
vantage for deterministic optimization techniques [8]. Local
optima stagnation refers to the entrapment of an algorithm in local
solutions and consequently failure in finding the true global opti-
mum. Since real problems have extremely large numbers of local
solutions, deterministic algorithms lose their reliability in finding
the global optimum.

Stochastic optimization (metaheuristic) algorithms [9] refer to
the family of algorithms with stochastic operators including evolu-
tionary algorithms [10]. Randomness is the main characteristic of
stochastic algorithms [11]. This means that they utilize random
Although the randomised nature of such techniques might make
them unreliable in obtaining a similar solution in each run, they
are able to avoid local solutions much easier than deterministic
algorithms. The stochastic behaviour also results in obtaining dif-
ferent solutions for a given problem in each run [12].

Evolutionary algorithms search for the global optimum in a
search space by creating one or more random solutions for a given
problem [13]. This set is called the set of candidate solutions. The
set of candidates is then improved iteratively until the satisfaction
of a terminating condition. The improvement can be considered as
finding a more accurate approximation of the global optimum than
the initial random guesses. This mechanism brings evolutionary
algorithms several intrinsic advantages: problem independency,
derivation independency, local optima avoidance, and simplicity.

Problem and derivation independencies originate from the con-
sideration of problems as a black box. Evolutionary algorithms only
utilize the problem formulation for evaluating the set of candidate
solutions. The main process of optimization is done completely inde-
pendent from the problem and based on the provided inputs and
received outputs. Therefore, the nature of the problem is not a con-
cern, yet the representation is the key step when utilizing evolution-
ary algorithms. This is the same reason why evolutionary algorithms
do not need to derivate the problem for obtaining its global optimum.
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1 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.

S. Mirjalili / Advances in Engineering Software 83 (2015) 80–98 81 
As another advantage, local optima avoidance is high due the
stochastic nature of evolutionary algorithms. If an evolutionary
algorithm is trapped in a local optimum, stochastic operator lead
to random changes in the solution and eventually escaping from
the local optimum. Although there is no guarantee for resolving this
issue completely, stochastic algorithms have much higher probabil-
ity to escape from local optima compared to deterministic methods.
A very accurate approximation of the global optimum is not guaran-
teed as well, but with running an evolutionary algorithm several
times the probability of obtaining a better solution is increased.

Last but not least, the simplicity is another characteristic of evo-
lutionary algorithms. Natural evolutionary concepts or collective
behaviours are the main inspirations for the majority of algorithms
in this field where they are so simple. In addition, evolutionary
algorithms follow a general and common framework, in which a
set of randomly created solutions is enhanced or evolved itera-
tively. What makes algorithms different in this field is the method
of improving this set.

Some of the most popular algorithms in this field are: Genetic
Algorithms (GA) [14,15], Particle Swarm Optimization (PSO) [16],
Ant Colony Optimization (ACO) [17], Differential Evolution (DE)
[18], Evolutionary Programming (EP) [19] [20]. Although these
algorithms are able to solve many real and challenging problems,
the so-called No Free Lunch theorem [21] allows researchers to
propose new algorithms. According to this theorem, all algorithms
perform equal when solving all optimization problems. Therefore,
one algorithm can be very effective in solving one set of problems
but in effective on a different set of problems. This is the founda-
tion of many works in this field. Some of the recent algorithms
are: Grey Wolf Optimizer (GWO) [22], Artificial Bee Colony (ABC)
algorithm [23], Firefly Algorithm (FA) [24,25], Cuckoo Search (CS)
algorithm [26,27], Cuckoo Optimization Algorithm (COA) [28],
Gravitational Search Algorithm (GSA) [29], Charged System Search
(CSS) [30–33], Magnetic Charged System Search [34,35], Ray Opti-
mization (RO) [36–38] algorithm, Colliding Bodies Optimization
(CBO) [39–44] algorithm, Hybrid Particle Swallow Swarm Optimi-
zation (HPSSO) [45], Democratic Particle Swarm Optimization
(DPSO) [46,47], Dolphin Echolocation (DE) [48,49], and Chaotic
Swarming of Particles (CSP) [50].

This paper also proposes a new algorithm called Ant Lion Opti-
mizer (ALO) as an alternative approach for solving optimization
problems. As its name implies, the ALO algorithm mimics the intel-
ligent behaviour of antlions in hunting ants in nature. The rest of
the paper is organized as follows:

Section 2 presents the main inspiration of this paper and pro-
poses the ALO algorithm. Experimental results of the test functions
are provided in Section 3. Sections 4 and 5 solve several real prob-
lems to demonstrate the applicability of the proposed algorithm.
Finally, Section 6 concludes the work and discusses possible future
research.

2. Ant Lion Optimizer

In this section the inspiration of the ALO algorithm is first pre-
sented. The mathematical model and the ALO algorithm are then
discussed in details.

2.1. Inspiration

Antlions (doodlebugs) belong to the Myrmeleontidae family
and Neuroptera order (net-winged insects). The lifecycle of ant-
lions includes two main phases: larvae and adult. A natural total
lifespan can take up to 3 years, which mostly occurs in larvae (only
3–5 weeks for adulthood). Antlions undergo metamorphosis in a
cocoon to become adult. They mostly hunt in larvae and the adult-
hood period is for reproduction.

 

 

Their names originate from their unique hunting behaviour and
their favourite prey. An antlion larvae digs a cone-shaped pit in
sand by moving along a circular path and throwing out sands with
its massive jaw [51,52]. Fig. 1(a) shows several cone-shaped pits
with different sizes. After digging the trap, the larvae hides under-
neath the bottom of the cone (as a sit-and-wait predator [53]) and
waits for insects (preferably ant) to be trapped in the pit [53] as
illustrated in Fig. 1(b). The edge of the cone is sharp enough for
insects to fall to the bottom of the trap easily. Once the antlion
realizes that a prey is in the trap, it tries to catch it. However,
insects usually are not caught immediately and try to escape from
the trap. In this case, antlions intelligently throw sands towards to
edge of the pit to slide the prey into the bottom of the pit. When a
prey is caught into the jaw, it is pulled under the soil and con-
sumed. After consuming the prey, antlions throw the leftovers out-
side the pit and amend the pit for the next hunt.

Another interesting behaviour that has been observed in life
style of antlions is the relevancy of the size of the trap and two
things: level of hunger and shape of the moon. Antlions tend to
dig out larger traps as they become more hungry [54] and/or when
the moon is full [55]. They have been evolved and adapted this way
to improve their chance of survival. It also has been discovered that
an antlion does not directly observe the shape of the moon to
decide about the size of the trap, but it has an internal lunar clock
to make such decisions [55].

The main inspiration of the ALO algorithm comes from the for-
aging behaviour of antlion’s larvae. In the next subsection the
behaviour of antlions and their prey in nature is first modelled
mathematically. An optimization algorithm is then proposed based
on the mathematical model.

2.2. Operators of the ALO algorithm

The ALO algorithm mimics interaction between antlions and
ants in the trap. To model such interactions, ants are required to
move over the search space, and antlions are allowed to hunt them
and become fitter using traps. Since ants move stochastically in
nature when searching for food, a random walk is chosen for mod-
elling ants’ movement as follows:
XðtÞ ¼ ½0; cumsumð2rðt1Þ�1Þ; cumsumð2rðt2Þ�1Þ; . . . ; cumsumð2rðtnÞ�1Þ�

ð2:1Þ
where cumsum calculates the cumulative sum, n is the maximum
number of iteration, t shows the step of random walk (iteration in
this study), and r(t) is a stochastic function defined as follows:

rðtÞ ¼
1 if rand > 0:5
0 if rand 6 0:5

�
ð2:2Þ

where t shows the step of random walk (iteration in this study) and
rand is a random number generated with uniform distribution in
the interval of [0,1].

To have an image of this random walk, Fig. 2 is provided that
illustrates three random walks over 500 iterations. This figure
shows that the random walk utilized may fluctuate dramatically
around the origin (red1 curve), have increasing trend (black curve),
or have descending behaviour (blue curve).

The position of ants are saved and utilized during optimization
in the following matrix:

MAnt ¼

A1;1 A1;2 . . . . . . A1;d

A2;1 A2;2 . . . . . . A2;d

: : : : :

: : : : :

An;1 An;2 . . . . . . An;d

2
666664

3
777775

ð2:3Þ



(a) (b)
Fig. 1. Cone-shaped traps and hunting behaviour of antlions.
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Fig. 2. Three random walks.
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where MAnt is the matrix for saving the position of each ant, Ai,j

shows the value of the j-th variable (dimension) of i-th ant, n is
the number of ants, and d is the number of variables.

It should be noted that ants are similar to particles in PSO or
individuals in GA. The position of an ant refers the parameters
for a particular solution. Matrix MAnt has been considered to save
the position of all ants (variables of all solutions) during
optimization.

For evaluating each ant, a fitness (objective) function is utilized
during optimization and the following matrix stores the fitness
value of all ants:

MOA ¼

f ½A1;1;A1;2; . . . ;A1;d�
� �

f ½A2;1;A2;2; . . . ;A2;d�
� �

:

:

f ½An;1;An;2; . . . ;An;d�
� �

2
6666664

3
7777775

ð2:4Þ

where MOA is the matrix for saving the fitness of each ant, Ai,j shows
the value of j-th dimension of i-th ant, n is the number of ants, and f
is the objective function.

In addition to ants, we assume the antlions are also hiding
somewhere in the search space. In order save their positions and
fitness values, the following matrices are utilized:

MAntlion ¼

AL1;1 AL1;2 . . . . . . AL1;d

AL2;1 AL2;2 . . . . . . AL2;d

: : : : :

: : : : :

ALn;1 ALn;2 . . . . . . ALn;d

2
6666664

3
7777775

ð2:5Þ

where MAntlion is the matrix for saving the position of each antlion,
ALi,j shows the j-th dimension’s value of i-th antlion, n is the number
of antlions, and d is the number of variables (dimension).
MOAL ¼

f ð½AL1;1;AL1;2; . . . ;AL1;d�Þ
f ð½AL2;1;AL2;2; . . . ;AL2;d�Þ

:

:

f ð½ALn;1;ALn;2; . . . ;ALn;d�Þ

2
6666664

3
7777775

ð2:6Þ
where MOAL is the matrix for saving the fitness of each antlion, ALi,j

shows the j-th dimension’s value of i-th antlion, n is the number of
antlions, and f is the objective function.

During optimization, the following conditions are applied:

� Ants move around the search space using different random
walks.
� Random walks are applied to all the dimension of ants.
� Random walks are affected by the traps of antlions.
� Antlions can build pits proportional to their fitness (the higher

fitness, the larger pit).
� Antlions with larger pits have the higher probability to catch

ants.
� Each ant can be caught by an antlion in each iteration and the

elite (fittest antlion).
� The range of random walk is decreased adaptively to simulate

sliding ants towards antlions.
� If an ant becomes fitter than an antlion, this means that it is

caught and pulled under the sand by the antlion.
� An antlion repositions itself to the latest caught prey and builds

a pit to improve its change of catching another prey after each
hunt.

2.2.1. Random walks of ants
Random walks are all based on the Eq. (2.1). Ants update their

positions with random walk at every step of optimization. Since
every search space has a boundary (range of variable), however,
Eq. (2.1) cannot be directly used for updating position of ants.
In order to keep the random walks inside the search space, they
are normalized using the following equation (min–max
normalization):
Xt
i ¼

Xt
i � ai

� �
� di � ct

i

� �
dt

i � ai

� � þ ci ð2:7Þ
where ai is the minimum of random walk of i-th variable, bi is the
maximum of random walk in i-th variable, ct

i is the minimum of

i-th variable at t-th iteration, and dt
i indicates the maximum of

i-th variable at t-th iteration.
Eq. (2.7) should be applied in each iteration to guarantee the

occurrence of random walks inside the search space.
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2.2.2. Trapping in antlion’s pits
As discussed above, random walks of ants are affected by

antlions’ traps. In order to mathematically model this assumption,
the following equations are proposed:

ct
i ¼ Antliont

j þ ct ð2:8Þ

dt
i ¼ Antliont

j þ dt ð2:9Þ

where ct is the minimum of all variables at t-th iteration, dt indicates
the vector including the maximum of all variables at t-th iteration,
ct

j is the minimum of all variables for i-th ant, dt
j is the maximum of

all variables for i-th ant, and Antliont
j shows the position of the

selected j-th antlion at t-th iteration.
Eqs. (2.8) and (2.9) show that ants randomly walk in a hyper

sphere defined by the vectors c and d around a selected antlion.
A conceptual model of this behaviour is illustrated in Fig. 3.

Fig. 3 shows a two-dimensional search space. It may be
observed that ants are required to move within a hypersphere
around a selected antlion.

2.2.3. Building trap
In order to model the antlions’s hunting capability, a roulette

wheel is employed. As Fig. 3 show ants are assumed to be trapped
in only one selected antlion. The ALO algorithm is required to uti-
lize a roulette wheel operator for selecting antlions based of their
fitness during optimization. This mechanism gives high chances
to the fitter antlions for catching ants.

2.2.4. Sliding ants towards antlion
With the mechanisms proposed so far, antlions are able to build

traps proportional to their fitness and ants are required to move
randomly. However, antlions shoot sands outwards the center of
the pit once they realize that an ant is in the trap. This behaviour
slides down the trapped ant that is trying to escape. For mathemat-
ically modelling this behaviour, the radius of ants’s random walks
hyper-sphere is decreased adaptively. The following equations are
proposed in this regard:

ct ¼ ct

I
ð2:10Þ

dt ¼ dt

I
ð2:11Þ

 

 

Fig. 3. Random walk of an ant inside an antlion’s trap.
where I is a ratio, ct is the minimum of all variables at t-th iteration,
and dt indicates the vector including the maximum of all variables
at t-th iteration.

In Eqs. (2.10) and (2.11), I ¼ 10w t
T where t is the current itera-

tion, T is the maximum number of iterations, and w is a constant
defined based on the current iteration (w = 2 when t > 0.1T, w = 3
when t > 0.5T, w = 4 when t > 0.75T, w = 5 when t > 0.9T, and
w = 6 when t > 0.95T). Basically, the constant w can adjust the
accuracy level of exploitation.

Fig. 4 also shows the decreasing behaviour using Eqs. (2.10) and
(2.11). These equations shrink the radius of updating ant’s
positions and mimics sliding process of ant inside the pits. This
guarantees exploitation of search space.
2.2.5. Catching prey and re-building the pit
The final stage of hunt is when an ant reaches the bottom of the

pit and is caught in the antlion’s jaw. After this stage, the antlion
pulls the ant inside the sand and consumes its body. For mimicking
this process, it is assumed that catching prey occur when ants
becomes fitter (goes inside sand) than its corresponding antlion.
An antlion is then required to update its position to the latest posi-
tion of the hunted ant to enhance its chance of catching new prey.
The following equation is proposed in this regard:

Antliont
j ¼ Antt

i if f ðAntt
i Þ > f Antliont

j

� �
ð2:12Þ

where t shows the current iteration, Antliont
j shows the position of

selected j-th antlion at t-th iteration, and Antt
i indicates the position

of i-th ant at t-th iteration.
2.2.6. Elitism
Elitism is an important characteristic of evolutionary algo-

rithms that allows them to maintain the best solution(s) obtained
at any stage of optimization process. In this study the best antlion
obtained so far in each iteration is saved and considered as an elite.
Since the elite is the fittest antlion, it should be able to affect the
movements of all the ants during iterations. Therefore, it is
assumed that every ant randomly walks around a selected antlion
by the roulette wheel and the elite simultaneously as follows:

Antt
i ¼

Rt
A þ Rt

E

2
ð2:13Þ

where Rt
A is the random walk around the antlion selected by the

roulette wheel at t-th iteration, Rt
E is the random walk around the

elite at t-th iteration, and Antt
i indicates the position of i-th ant at

t-th iteration.
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2.3. ALO algorithm

With the proposed operators in the preceding subsections, the
ALO optimization algorithm can now be defined. The ALO algo-
rithm is defined as a three-tuple function that approximates the
global optimum for optimization problems as follows:

ALOðA;B;CÞ ð2:14Þ

where A is a function that generates the random initial solutions, B
manipulates the initial population provided by the function A, and C
returns true when the end criterion is satisfied. The functions A, B,
and C are defined as follows:

;!A fMAnt;MOA;MAntlion;MOALg ð2:15Þ

fMAnt;MAntliong!
B fMAnt;MAntliong ð2:16Þ

fMAnt;MAntliong!
C ftrue; falseg ð2:17Þ

where MAnt is the matrix of the position of ants, MAntlion includes the
position of antlions, MOA contains the corresponding fitness of ants,
and MOAL has the fitness of antlions.

The pseudo codes the ALO algorithm are defined as follows:

Initialize the first population of ants and antlions randomly
Calculate the fitness of ants and antlions
Find the best antlions and assume it as the elite (determined

optimum)
while the end criterion is not satisfied

for every ant
Select an antlion using Roulette wheel
Update c and d using equations Eqs. (2.10) and (2.11)
Create a random walk and normalize it using Eqs. (2.1) and

(2.7)
Update the position of ant using (2.13)

end for
Calculate the fitness of all ants
Replace an antlion with its corresponding ant it if becomes
fitter (Eq. (2.12))
Update elite if an antlion becomes fitter than the elite

end while
Return elite

The Matlab codes for the overall framework of the ALO algo-
rithm as well as the functions A and B are provided in Appendix
A.1–A.3.

In the ALO algorithm, the antlion and ant matrices are initial-
ized randomly using the function A. In every iteration, the function
B updates the position of each ant with respect to an antlion
selected by the roulette wheel operator and the elite. The boundary
of position updating is first defined proportional to the current
number of iteration. The updating position is then accomplished
by two random walks around the selected antlion and elite. When
all the ants randomly walk, they are evaluated by the fitness func-
tion. If any of the ants become fitter than any other antlions, their
positions are considered as the new positions for the antlions in
the next iteration. The best antlion is compared to the best antlion
found during optimization (elite) and substituted if it is necessary.
These steps iterative until the function C returns false.

2.4. ALO software (toolbox)

The ALO algorithm is developed in Matlab and offered as an
open-source optimization toolbox. The main user interface of this

 

 

toolbox is illustrated in Fig. 5. The software designed allows users
to define the number of search agents, maximum number of itera-
tions, number of variables, upper bounds of variables, lower
bounds of variables, and the name of the objective function easily.
As shown in Fig. 5, these variables can be defined in the ‘‘parame-
ters’’ section of the software. After defining the parameters, the
problem starts to be optimized as soon as the user clicks on the
‘‘start optimization’’ button. The software then interactively draws
the convergence curve (and history if chosen) and updates the
obtained best optimum so far in the convergence curve section.
Eventually, the information of the best obtained optimum is shown
in the ‘‘final results’’ section. Note that the source codes of the ALO
algorithm and the toolbox can be downloaded from http://www.
alimirjalili.com/ALO.html or http://www.mathworks.com/matlab-
central/profile/authors/2943818-seyedali-mirjalili.
2.5. Hypotheses about the ALO algorithm

Theoretically speaking, the proposed ALO algorithm is able to
approximate the global optimum of optimization problems due
to the following reasons:

� Exploration of the search space is guaranteed by the random
selection of antlions and random walks of ants around them.
� Exploitation of search space is guaranteed by the adaptive

shrinking boundaries of antlions’ traps.
� There is high probability of resolving local optima stagnation

due to the use of random walks and the roulette wheel.
� ALO is a population-based algorithm, so local optima avoidance

is intrinsically high.
� Intensity of ants’ movement is adaptively decreased over the

course of iterations, which guarantees convergence of the ALO
algorithm.
� Calculating random walks for every ant and every dimension

promotes diversity in the population.
� Antlions relocate to the position of best ants during optimiza-

tion, so promising areas of search spaces are saved.
� Antlions guide ants towards promising regions of the search

space.
� The best antlion in each iteration is saved and compared to the

best antlion obtained so far (elite).
� The ALO algorithm has very few parameters to adjust.
� The ALO algorithm is a gradient-free algorithm and considers

problem as a black box.

In the next sections several test beds and real problems are
employed to benchmark and confirm the performance of the ALO
algorithm in solving optimization problems.
3. Results and discussion

In this section a number of test problems are selected to bench-
mark the performance of the proposed ALO algorithm. Three
groups of test functions are employed with different characteristics
to test the performance of the ALO algorithm from different
perspectives. The test functions are divided the three groups: uni-
modal (Table 1), multi-modal (Table 2), and composite functions
(Table 3) [20,56–58]. As their names imply, unimodal test func-
tions have single optimum so they can benchmark the exploitation
and convergence of an algorithm. In contrast, multi-modal test
functions have more than one optimum, making them more chal-
lenging than unimodal functions. One of the optima is called global
optimum and the rest are called local optima. An algorithm should
avoid all the local optima to approach and determine the global
optimum. Therefore, exploration and local optima avoidance of

http://www.alimirjalili.com/ALO.html
http://www.alimirjalili.com/ALO.html
http://www.mathworks.com/matlabcentral/profile/authors/2943818-seyedali-mirjalili
http://www.mathworks.com/matlabcentral/profile/authors/2943818-seyedali-mirjalili


Fig. 5. User interface of the ALO toolbox (download it from http://www.alimirjalili.com/ALO.html).

Table 1
Unimodal benchmark functions.

Function Dim Range fmin

F1ðxÞ ¼
Pn

i¼1x2
i

30, 200 [�100,100] 0

F2ðxÞ ¼
Pn

i¼1jxij þ
Qn
i¼1
jxij

30, 200 [�10,10] 0

F3ðxÞ ¼
Pn

i¼1
Pi

j�1xj

� �2 30, 200 [�100,100] 0

F4ðxÞ ¼max
i
fjxij; 1 6 i 6 ng 30, 200 [�100,100] 0

F5ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2� 30, 200 [�30,30] 0

F6ðxÞ ¼
Pn

i¼1ð½xi þ 0:5�Þ2 30, 200 [�100,100] 0

F7ðxÞ ¼
Pn

i¼1ix4
i þ random½0;1Þ 30, 200 [�1.28,1.28] 0
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algorithms can be tested by the multi-modal test functions. Note
that the minima of all the unimodal and multi-modal test func-
tions are equal to 0 except the function F8 where the minimum
is changed based of the number of variables (Dim).

The last group of test functions, composite functions, are mostly
the combined, rotated, shifted, and biased version of other uni-
modal and multi-modal test functions [59,60]. As shown in
Fig. 6, they mimic the difficulties of real search spaces by providing
a massive number of local optima and different shapes for different
regions of the search space. An algorithm should properly balance
exploration and exploitation to approximate the global optima of
such test functions. Therefore, exploration and exploitation com-
bined can be benchmarked by this group of test functions.

For verification of the results of ALO, two well-known algorithms
are employed: PSO [61] as the best algorithm among swarm-based
technique and GA [62] as the best evolutionary algorithm. In addi-
tion the ALO algorithm is compared with several recent algorithms
such as the States of Matter Search (SMS) algorithm [63,64], Bat
Algorithm (BA) [65], Flower Pollination Algorithm [66] , Cuckoo
Search (CS) algorithm [26,27], and Firefly Algorithm (FA) [24,25].
In order to collect quantitative results, each algorithm is run on
the test functions 30 times and the average and standard deviation
of the best approximated solution in the last iteration is reported.
These two metrics show us which algorithm behaves more stable
when solving the test functions. Due to the stochastic nature of
the algorithms, however, statistical test should also be conducted
[67]. The averages and standard deviation only compare the overall
performance of the algorithms, while a statistical test consider each
run’s results and prove that the results are statistically significant.
The Wilcoxon rank-sum test [67,68] is conducted in this work.

The Wilcoxon rank-sum test is a non-parametric test in statics
that can be used to determine/verify if two sets of solutions (pop-
ulation) are different statistically significant or not. In this method,
each set of pairs in both populations are compared to calculate and
analyse their differences. It also tests the null hypothesis as to
whether both populations are of the same distribution. Technically
speaking, this statistical test returns a parameter called p-vales. A
p-value determines the significance level of two algorithms. In this
work an algorithm is statistically significant if and only if it results
in a p-value less than 0.05.

After all, each of the test functions is solved using 30 candidate
solutions (antlions) over 1000 iterations and the results in Tables
4–9. Note that the average value of the minimums (ave) and their
standard deviations (std) in 30 runs are provided in the table of
results.
3.1. Results of the algorithms on unimodal test functions

According to the results of the algorithms on the unimodal test
functions in Table 4, it is evident that the ALO algorithm
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Table 2
Multimodal benchmark functions.

Function Dim Range fmin

F8ðxÞ ¼
Pn

i¼1 � xisin
ffiffiffiffiffiffiffi
jxij

p� �
30, 200 [�500,500] �418.9829 � Dima

F9ðxÞ ¼
Pn

i¼1 x2
i � 10 cosð2pxiÞ þ 10

� 	
30, 200 [�5.12,5.12] 0

F10ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �
þ 20þ e 30, 200 [�32,32] 0

F11ðxÞ ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� �

þ 1 30, 200 [�600,600] 0

F12ðxÞ ¼ p
n f10 sinðpy1Þ þ

Pn�1
i¼1 ðyi � 1Þ2 1þ 10 sin2ðpyiþ1Þ

h i
þ ðyn � 1Þ2g þ

Pn
i¼1uðxi;10;100;4Þ 30, 200 [�50,50] 0

yi ¼ 1þ xiþ1
4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi > a
0 �a < xi < a
kð�xi � aÞm xi < �a

8<
:

F13ðxÞ ¼ 0:1 sin2ð3px1Þ þ
Pn

i¼1ðxi � 1Þ2 1þ sin2ð3pxi þ 1Þ
h i

þ ðxn � 1Þ2 1þ sin2ð2pxnÞ
h in o

þ
Pn

i¼1uðxi;5;100;4Þ 30, 200 [�50,50] 0

a Dim in F8 indicates the number of variables.

Table 3
Composite benchmark functions (mathematical formulation of Sphere, Ackley, Rastrigin, Weierstrass, and Griewank can be found in Appendix A.4).

Function Dim Range fmin

F14 (CF1):
f 1; f 2; f 3; . . . ; f 10 ¼ Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1� 10 [�5,5] 0
½k1; k2; k3; . . . ; k10 � ¼ ½5=100;5=100;5=100; . . . ;5=100�

F15 (CF2):
f 1; f 2; f 3; . . . ; f 10 ¼ Griewank’s Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1� 10 [�5,5] 0
½k1; k2; k3; . . . ; k10 � ¼ ½5=100;5=100;5=100; . . . ;5=100�

F16 (CF3):
f 1; f 2; f 3; . . . ; f 10 ¼ Griewank’s Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1� 10 [�5,5] 0
½k1; k2; k3; . . . ; k10 � ¼ ½1;1;1; . . . ;1�

f17 (CF4):
f 1; f 2 ¼ Ackley’s Function
f 3; f 4 ¼ Rastrigin’s Function
f 5; f 6 ¼Weierstrass Function
f 7; f 8 ¼ Griewank’s Function 10 [�5,5] 0
f 9; f 10 ¼ Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
½k1; k2; k3; . . . ; k10 � ¼ ½5=32;5=32;1;1;5=0:5;5=0:5;5=100;5=100;5=100;5=100�

f18 (CF5):
f 1; f 2 ¼ Rastrigin’s Function
f 3; f 4 ¼Weierstrass Function
f 5; f 6 ¼ Griewank’s Function
f 7; f 8 ¼ Ackley’s Function 10 [�5,5] 0
f 9; f 10 ¼ Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
½k1; k2; k3; . . . ; k10 � ¼ ½1=5;1=5;5=0:5;5=0:5;5=100;5=100;5=32;5=32;5=100;5=100�

f19 (CF6):
f 1; f 2 ¼ Rastrigin’s Function
f 3; f 4 ¼Weierstrass Function
f 5; f 6 ¼ Griewank’s Function
f 7; f 8 ¼ Ackley’s Function
f 9; f 10 ¼ Sphere Function 10 [�5,5] 0
½,1; ,2; ,3; . . . ; ,10� ¼ ½0:1;0:2;0:3;0:4;0:5;0:6;0:7;0:8;0:9;1�
½k1; k2; k3; . . . ; k10 � ¼ ½0:1 � 1=5;0:2 � 1=5;0:3 � 5=0:5;0:4 � 5=0:5;0:5 � 5=100;
0:6 � 5=100; 0:7 � 5=32; 0:8 � 5=32;0:9 � 5=100;1 � 5=100�
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outperforms other algorithms on the majority of the test cases. The
p-values in Table 5 also show that this superiority is statistically
significant since the p-values are much less than 0.05. Considering
the characteristic of unimodal test functions, it can be stated that
the ALO algorithm benefits from high exploitation. High exploita-
tion assists the ALO algorithm to rapidly converge towards the
optimum and exploit it accurately as can also be inferred from
the convergence curves in Fig. 7.
3.2. Results of the algorithms on multi-modal test functions

The results of the algorithms on multi-modal test functions are
presented in Tables 6 and 7. Table 6 shows that again the ALO
algorithm provides the best results on four of the test functions.
The second best results belong the PSO and CS algorithms. The p-
values reported in Table 7 also show that the ALO algorithm shows
significantly better results. Considering the characteristics of



Fig. 6. Search space of composite benchmark functions.

Table 4
Results of unimodal benchmark functions (30-dimensional).

F ALO PSO SMS BA

ave std ave std ave std ave std

F1 2.59E�10 1.65E�10 2.70E�09 1.00E�09 0.056987 0.014689 0.773622 0.528134
F2 1.84241E�06 6.58E�07 7.15E�05 2.26E�05 0.006848 0.001577 0.334583 3.816022
F3 6.06847E�10 6.34E�10 4.71E�06 1.49E�06 0.959865 0.82345 0.115303 0.766036
F4 1.36061E�08 1.81E�09 3.25E�07 1.02E�08 0.276594 0.005738 0.192185 0.890266
F5 0.346772393 0.109584 0.123401 0.216251 0.085348 0.140149 0.334077 0.300037
F6 2.56183E�10 1.09E�10 5.23E�07 2.74E�06 0.125323 0.084998 0.778849 0.67392
F7 0.004292492 0.005089 0.001398 0.001269 0.000304 0.000258 0.137483 0.112671

FPA CS FA GA

ave std ave std ave std ave std

F1 1.06346E�07 1.27E�07 6.50E�03 2.05E�04 0.039615 0.01449 0.118842 0.125606
F2 0.000624246 0.000176 2.12E�01 3.98E�02 0.050346 0.012348 0.145224 0.053227
F3 5.6682E�08 3.9E�08 2.47E�01 2.14E�02 0.049273 0.019409 0.13902 0.121161
F4 0.003837885 0.002186 1.12E�05 8.25E�06 0.145513 0.031171 0.157951 0.862029
F5 0.781200043 0.366891 0.007197 0.007222 2.175892 1.447251 0.714157 0.972711
F6 1.08459E�07 1.25E�07 5.95E�05 1.08E�06 0.05873 0.014477 0.167918 0.868638
F7 0.003105276 0.001367 0.001321 0.000728 0.000853 0.000504 0.010073 0.003263

Table 5
p-Values of the Wilcoxon ranksum test over unimodal benchmark functions.

F ALO PSO SMS BA FPA CS FA GA

F1 N/A 0.025748 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F2 N/A 0.011330 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F3 N/A 0.000183 6.39e�05 0.000183 0.000183 0.000183 0.007285 0.000183
F4 N/A 0.005795 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F5 0.000183 0.000183 0.028571 0.000183 0.000183 N/A 0.003611 0.000183
F6 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F7 0.028571 0.000183 N/A 0.000183 0.000183 0.03738 0.73373 0.000183
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multi-modal test functions and these results, it may be stated that
the ALO algorithm has a high level of exploration which assists it to
explore the promising regions of the search space. In addition, the
local optima avoidance of this algorithm in satisfactory since it is
able to avoid all of the local optima and approach the global optima
on the majority of the multi-modal test functions. The convergence
curves of the algorithms on some of the multi-modal test functions
are illustrated in Fig. 8. This figure shows that the ALO shows the
fastest convergence on multi-modal test functions as well.
3.3. Results of the algorithms on composite test functions

Tables 8 and 9 include the results of composite test functions.
As per the results presented in Table 8, the ALO algorithm outper-
forms others in all of the composite test functions. The p-values
reported in Table 9 show that this superiority is statistically signif-
icant on five of them (F15 to F19). The discrepancy of the results is
high, which is due to the difficulty of the composite test functions
that make them challenging for algorithms employed in this work.



Table 6
Results of multimodal benchmark functions (30-dimensional).

F ALO PSO SMS BA

ave std ave std ave std ave std

F8 �1606.27643 314.4302 �1367.01 146.4089 �4.20735 9.36E�16 �1065.88 858.498
F9 7.71411E�06 8.45E�06 0.278588 0.218991 1.32512 0.326239 1.233748 0.686447
F10 3.73035E�15 1.5E�15 1.11E�09 2.39E�11 8.88E�06 8.56E�09 0.129359 0.043251
F11 0.018604494 0.009545 0.273674 0.204348 0.70609 0.907954 1.451575 0.570309
F12 9.74645E�12 9.33E�12 9.42E�09 2.31E�10 0.12334 0.040898 0.395977 0.993325
F13 2.00222E�11 1.13E�11 1.35E�07 2.88E�08 1.35E�02 2.88E�04 0.386631 0.121986

FPA CS FA GA

ave std ave std ave std ave std

F8 �1842.42621 50.42824 �2094.91 0.007616 �1245.59 353.2667 �2091.64 2.47235
F9 0.273294621 0.068583 0.127328 0.002655 0.263458 0.182824 0.659271 0.815751
F10 0.007398721 0.007096 8.16E�09 1.63E�08 0.168306 0.050796 0.956111 0.807701
F11 0.085021659 0.040046 0.122678 0.049673 0.099815 0.024466 0.487809 0.217782
F12 0.000265711 0.000553 5.60E�09 1.58E�10 0.126076 0.263201 0.110769 0.002152
F13 3.67E�06 3.51E�06 4.88E�06 6.09E�07 0.00213 0.001238 1.29E�01 0.068851

Table 7
p-Values of the Wilcoxon ranksum test over multimodal benchmark functions.

F ALO PSO SMS BA FPA CS FA GA

F8 6.39e�05 6.39e�05 1.59e�05 6.39e�05 6.39e�05 N/A 6.39e�05 6.39e�05
F9 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F10 N/A 0.000246 0.000183 0.000183 0.000183 0.000246 0.000330 0.000183
F11 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F12 N/A 0.001421 0.000183 0.000183 0.000183 0.001421 0.000183 0.000183
F13 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183

Table 8
Results of composite benchmark functions.

F ALO PSO SMS BA

ave std ave std ave std ave std

F14 0.000151 0.000382 120 131.6561 776.4849 5.21e�12 182.476 117.0248
F15 14.56498 32.22876 162.9144 119.2351 873.7522 9.716179 487.2021 161.4107
F16 175.1532 46.50001 363.2361 151.3109 961.2754 67.21621 588.1938 137.7861
F17 316.0686 13.02047 450.0688 157.8496 899.8578 1.99e�05 756.9757 160.097
F18 4.399206 1.66107 175.3359 175.5385 740.9656 0.7858 542.2006 220.2014
F19 500.3161 0.206522 901.591 0.838585 900.4848 0.8442 818.5043 152.501

FPA CS FA GA

ave std ave std ave std ave std

F14 0.337416 0.23641 110 110.0505 150.1696 97.15906 114.6139 26.96248
F15 18.23309 3.074685 140.6065 92.80327 314.4654 92.93417 95.46331 7.163383
F16 223.5667 50.25191 289.839 86.11561 734.5372 203.9693 325.4427 51.66827
F17 362.0262 54.01816 401.5247 98.16459 818.5732 109.9663 466.3074 29.56841
F18 10.1592 1.393908 212.7639 205.9728 133.5203 215.6027 90.36913 13.72977
F19 503.959 1.159453 812.2943 191.5134 862.2151 125.9599 521.1935 27.98507

Table 9
p-Values of the Wilcoxon ranksum test over composite benchmark functions.

F ALO PSO SMS BA FPA CS FA GA

F14 N/A 0.469654 0.000181 0.000183 0.000183 0.472676 0.000183 0.000183
F15 N/A 0.005795 0.000183 0.000183 0.002827 0.00044 0.000183 0.002202
F16 N/A 0.002202 0.000163 0.000183 0.037635 0.001315 0.000183 0.000246
F17 N/A 0.045155 6.39e�05 0.000183 0.002827 0.017257 0.000183 0.000183
F18 N/A 0.005795 6.39e�05 0.000183 0.000183 0.002827 0.000583 0.000183
F19 N/A 0.000183 6.39e�05 0.000183 0.000183 0.002827 0.000183 0.002827
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The convergence curves of the algorithms on some of the compos-
ite test functions are illustrated in Fig. 9. This figure shows that the
ALO shows the fastest convergence on the composite test functions
as well.
Composite test functions benchmark the exploration and
exploitation combined. Therefore, these results prove that the
operators of the ALO algorithm appropriately balance exploration
and exploitation to handle diverse difficulties in a challenging
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Fig. 7. Convergence of algorithms on two of the unimodal test functions.
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Fig. 8. Convergence of algorithms on three of the multi-modal test functions.

S. Mirjalili / Advances in Engineering Software 83 (2015) 80–98 89 
 

 

search space. Since the composite search spaces are highly similar
to the real search spaces, these results make the ALO algorithm
potentially able to solve challenging optimization problems.

3.4. Analysis of the ALO algorithm

For further observing the performance of the proposed ALO
algorithm, five new metrics are employed in this subsection. In
fact, this subsection aims for identifying and confirming the
convergence and potential behaviour of the ALO algorithm when
solving real problems. The employed quantitative metrics are as
follows:

� The position of antlions from the first to the last iteration
(search history).
� The interval of random walks.
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� The position of antlions from the first to the last iteration
(trajectory).
� The average fitness of antlions from the first to the last

iterations.
� The fitness of the elite from the first to the last iteration

(convergence).

Tracking the position of antlions during optimization allows
observing how the ALO algorithm explores and exploits the search
space. The interval of random walks shows how the ALO algorithm
adaptively adjusts the boundary of random walks towards the
optimum during optimization. The position of the antlions during
optimization assists observing the movement of candidate
solutions. There should be abrupt changes in the movements of
candidate solutions in the exploration phase and gradual changes
in the exploitation phase. The average fitness of antlions during
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optimization also shows the improvement in the fitness of the
whole population during optimization. Finally, the fitness of the
elite shows the improvement of the obtained global optimum dur-
ing optimization.

Some of the functions are selected and solved by four search
agents over 200 iterations. The results are illustrated in Fig. 10.
The second column in Fig. 10 shows the history of antlion’s posi-
tion during optimization. It may be observed that the ALO algo-
rithm tends to search the promising regions of the search space

 

 

Fig. 10. Search history, trajectory in first dimension, av
extensively on all of the test functions. The behaviour of ALO when
solving composite test functions is interesting, in which the cover-
age of search space seems to be high. In F17, for instance, two of
the most promising areas close to the boundaries of the search
space were explored, yet one of them was exploited eventually.
This shows that the ALO’s search agents are able to search the
search space effectively.

The intervals of random walks in the third column in Fig. 10
show that the boundaries of random walks are adjusted towards
erage fitness of all antlions, and convergence rate.
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the optimum over the course of iterations. It also may be observed
that the boundaries are wide in the initial steps of iterations, while
they are very narrow in the final steps of iterations. Another behav-
iour is the adaptive shrinking trend of boundaries which allows
more accurate exploitation of the optimum as iteration increases.

The fourth column in Fig. 10 illustrates the trajectory of the first
variable of the first antlion over 200 iterations. It can be observed
that there are abrupt changes in the initial iterations. These
changes are decreased gradually over the course of iterations.
According to Berg et al. [69], this behaviour can guarantee that
an algorithm eventually convergences to a point and searches
locally in a search space.

The last two columns of Fig. 10 show the average fitness of all
antlions and the elite, respectively. The average fitness of antlions
shows a descending behaviour on all of the test functions. This
proves that the ALO algorithm improves the overall fitness of the
initial random population. A similar behaviour can be observed
in the convergence curves. This also evidences that the approxima-
tion of the global optimum becomes more accurate as iteration
increases. Another fact that can be seen is the accelerated trend
in the convergence curves. This is due to the emphasis on local
search and exploitation as iteration increases, which highly accel-
erate the convergence towards the optimum in the final steps of
iterations.

3.5. Optimization of large-scale problems using ALO

To further prove the merits of the proposed ALO algorithm, this
subsection solves the 200-dimensional versions of the unimodal
and multimodal test functions investigated in the preceding sub-
sections. Hundred search agents (candidate solutions) are
employed to solve these test problems over 5000 iterations to gen-
erate the results for this subsection. After all, the results are pre-
sented in Tables 10 and 11.

As per the results shown in Table 10, the ALO algorithm outper-
forms all the other algorithms on four of the unimodal test func-
tions (F1, F3, F5, and F6). In addition, Table 11 shows that this
algorithm provides the best results on half of the multi-modal test
functions (F10, F12, and F13). For the rest of the unimodal and
multi-modal test functions, the ALO is ranked as the second best
after CS, FA, or PSO. Poor performances of the majority of algo-
rithms in Tables 10 and 11 show that such large-scale test func-
tions can be very challenging. These results highly evidence that
the ALO algorithm can be very effective for solving large-scale
problems as well.

As summary, the results of this section proves that the proposed
ALO algorithm shows high exploration and exploitation. For one,
the proposed random walk mechanism and random selection of
antlions promote exploration, assist the ALO algorithm to avoid
local optima, and resolve local optima stagnation when solving
challenging problems. For another, adaptive shrinking boundaries
of antlions’ traps and elitism emphasize exploitation as iteration
increases, which leads to a very accurate approximation of the glo-
bal optimum.

All these characteristics require the ALO algorithm to solve real
optimization problems potentially. However, all of the problems
solved so far have known search spaces. To prove whether the
ALO algorithm is able to solve real problems with unknown search
spaces as well, four real engineering problems are solved in the fol-
lowing sections. The first three problems are classical engineering
design problems called: cantilever beam design, two-bar truss
design, and gear design problems. These three problems are chosen
deliberately because of their diverse characteristics. The cantilever
beam design problem is chosen due to its medium number of
parameter. The three-bar truss problem is selected due to its high
number of constraints. Finally, the gear train design problem is

 

 

chosen because of its discrete variables. These three problems
can benchmark the ALO algorithm in solving real problems with
diverse characteristics.

The last case study is a problem in the field of ship propeller
design. This problem is a real Computational Fluid Dynamics
(CFD) problem that has 20 variables and a large number of con-
straints. Therefore, the performance of the ALO algorithm can be
benchmarked effectively in solving a super challenging problem.

4. Constrained optimization using the ALO algorithm

Real systems (problems) are mostly constrained. There are two
types of constraints involved in defining the feasibly of solutions
during the design process: inequality and equality constraints.
For optimizing constrained problems, a constraint handling
method should be integrated to the optimizer. There are several
methods of constraints handling in the literature: penalty func-
tions, special operators, repair algorithms, separation of objectives
and constraints, and hybrid methods [70]. Since finding a good
constraints handling method for the proposed ALO algorithm is
out of the scope of this work, the simplest method called death
penalty is employed. In this method, search agents that violate
any of the constraints with any level are treated as the same and
penalized by assigning a large fitness value (small objective value
in case of maximization). This method is very cheap and readily
applicable for the ALO algorithm without algorithm modifications.

In the following subsections this method is used to solve the
constrained engineering problems. It should be noted that the sta-
tistical results are not provided anymore since it was already
proved that the ALO algorithm is able to outperform other algo-
rithm in a statistically significant manner. In addition, the main
objective of solving a real problem is to achieve the global opti-
mum with the least possible computational cost. Therefore, this
section only presents the best obtained design and the required
maximum number of function evaluations to determine it during
10 runs as the results of the ALO and other algorithms.

4.1. Cantilever beam design problem

A cantilever beam includes five hollow elements with square-
shaped cross-section. Fig. 11 shows that each element is defined
by one variable while the thickness is constant, so there is a total
of 5 structural parameters. It may be see in Fig. 11 that there is also
a vertical load applied to the free end of the beam (node 6) and the
right side of the beam (node 1) is rigidly supported [71]. The objec-
tive is to minimize the weight of the beam. There is also one ver-
tical displacement constraint that should not be violated by the
final optimal design. The problem formulation is as follows:
Consider
 ~x ¼ ½x1x2x3x4x5�;

Minimize
 f ð~xÞ ¼ 0:6224ðx1 þ x2 þ x3 þ x4 þ x5Þ;

Subject to
 gð~xÞ ¼ 61

x3
1
þ 37

x3
2
þ 19

x3
3
þ 7

x3
4
þ 1

x3
5
6 1;
Variable range
 0:01 6 x1; x2; x3; x4; x5 6 100;
This problem has been solved by ALO and compared with the
literature in Table 12. It may be seen that the comparison is made
between Method of Moving Asymptotes (MMA) [71], Generalized
Convex Approximation (GCA_I) [71], GCA_II [71], CS [72], and Sym-
biotic Organisms Search (SOS) [72].

Table 12 shows that the ALO algorithm outperforms other algo-
rithms. This shows the high performance of the ALO algorithm in
approximating the global optimum for this problem. The maxi-
mum number of function evaluations in Table 12 also shows that
the ALO algorithm determines the global optimum for this problem
with less number of function evaluations than the SOS algorithm.



Table 10
Results of unimodal benchmark functions (200-dimensional).

F ALO PSO SMS BA

ave std ave std ave std ave std

F1 7.89e�07 1.10e�07 23.799 11.721 1039.213 0.4243 1117.34 20731
F2 530.82 222.67 237.87 22.432 1832.44 0.0122 3842.82 468.28
F3 2331.4 507.18 4693.34 503.57 2034.88 0.3780 1090.75 475.06
F4 30.58 1.1446 40.111 0.5879 300.265 0.0023 65.6670 2.8293
F5 167.04 49.746 911.2342 95.245 3863.53 0.5329 1410.80 591.07
F6 7.60e�07 7.39e�08 43.421 14.206 2494.43 0.0003 51.2056 12.005
F7 0.050546 0.014407 17.321 4.0133 28.359 1.99e�05 2.4344 0.12756

FPA CS FA GA

ave std ave std ave std ave std

F1 55. 989 32. 678 3.80e�05 1.85e�05 76.128 1.5744 227.75 186.56
F2 280.6 6.9384 400.10 0.8656 611.19 71.219 6322.6 1092.7
F3 24,219 8540 12,957 633.75 14,852 6418.4 11,206 3986.1
F4 37.689 2.4572 30.936 1.6877 2.736 0.54729 101.54 2.5321
F5 3150.7 1490.6 332.67 159.88 1321.7 114.76 964.49 748.76
F6 166.99 41.109 8.17e�05 4.55e�05 78.42 2.3405 482.56 278.61
F7 4.8391 1.5354 0.40131 0.008707 0.0273 0.00411 116.56 60.161

Table 11
Results of multimodal benchmark functions (200-dimensional).

F ALO PSO SMS BA

ave std ave std ave std ave std

F8 �44,426 1442.5 �18,136 4962.4 �35,969 0.8765 �25,632 869.47
F9 613.89 66.795 748.58 24.301 480.01 0.2365 723.38 100.96
F10 2.3058 0.25542 15.183 0.57627 17.293 0.0974 18.159 0.067775
F11 0.007424 0.00651 3241.2 137.49 4801.5 0.8532 4937 268.42
F12 5.3982 0.59591 4.07e+05 4.77e+05 1.00e+08 1.99e�05 1.69e+09 4.28e+08
F13 0.13915 0.22199 1.24e+06 5.82e+05 1.00e+08 1.99e�05 2.25e+09 8.85e+08

FPA CS FA GA

ave std ave std ave std ave std

F8 �45,771 3097.8 �52,600 156.04 �39,753 649.69 �28,660 1011
F9 702.95 69.653 541.58 41.889 475.45 28.058 1645.8 37.155
F10 17.544 0.16684 17.654 2.982 2.4297 0.038545 20.361 0.14256
F11 180.74 36.084 0.001191 0.001148 1.7048 0.014301 3306.8 113.3
F12 4.37e+07 3.22e+07 1.00e+10 0.0045 23.426 0.55985 8.14e+09 9.54e+08
F13 9.87e+07 3.80e+07 1.00e+10 0.0568 2.8614 0.0568 1.38e+10 1.45e++09

92 S. Mirjalili / Advances in Engineering Software 83 (2015) 80–98 
 

 

In addition, it is observed the ALO algorithm is able to find a design
with the optimal weight identical to that of CS with a lower num-
ber of function evaluation. However, this algorithm needs 14,000
function evaluations to outperform both SOS and CS algorithms.

4.2. Three-bar truss design problem

The second problem is to design a three-bar truss to minimize
its weight [72,74]. The objective function is very simple, yet the
problem is highly constrained. The structural design problems usu-
ally have a large number of constraints. The constraints here are
stress, deflection, and buckling constraints. The mathematical for-
mulation of this problem is as follows:
Consider
 ~x ¼ ½x1 x2� ¼ ½A1A2�;ffiffiffip

Minimize
 f ð~xÞ ¼ ð2 2x1 þ x2Þ � l;ffiffip

Subject to
 g1ð~xÞ ¼ 2x1þx2ffiffi

2
p

x2
1þ2x1x2

P � r 6 0;
g2ð~xÞ ¼ x2ffiffi
2
p

x2
1þ2x1x2

P � r 6 0;
g3ð~xÞ ¼ 1ffiffi
2
p

x2þx1
P � r 6 0;
Variable range
 0 6 x1; x2 6 1;

where
 l ¼ 100 cm; P ¼ 2 kN=cm2; r ¼ 2 kN=cm2
The overall structure of the truss is illustrated in Fig. 12.
The algorithms that are chosen for comparison are: Differential

Evolution with Dynamic Stochastic selection (DEDS) [75], Hybrid
Particle Swarm Optimization with Differential Evolution (PSO-
DE) [76], Mine Blast Algorithm (MBA) [74], Tsa [77], and CS [72].
The comparison results are provided in Table 13.

Table 13 shows that the ALO algorithm provides very competi-
tive results and its best solution obtained is ranked as the second
best solution after that of PSO-DE. It also provides very close
results compared to PSO-DE (discrepancy is equal to 0.0000001).
This again shows that the ALO algorithm is able to solve real con-
strained problems effectively. It should be noted that the optimal
weight of the design obtained by Tsa violates one of the constraints
[72]. As per the maximum number of function evaluations
reported in Table 13, the ALO algorithm needs only 14,000 function
evaluation to find a design with the optimal weight of
263.8958434, which is less than other algorithms.
4.3. Gear train design problem

As shown in Fig. 13, this problem is a discrete case study with four
parameters. The objective is to find the optimal number of tooth for
four gears of a train for minimizing the gear ratio [79,80]. To handle



Fig. 11. Cantilever beam design problem.

Table 12
Comparison results for cantilever design problem.

Algorithm Optimal values for variables Optimum weight Max. eval.

x1 x2 x3 x4 x5

ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 14,000
SOS [73] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 15,000
CS [72] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 2500
MMA [71] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 N/A
GCA_I [71] 6.0100 5.30400 4.4900 3.4980 2.1500 1.3400 N/A
GCA_II [71] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 N/A

Fig. 12. Three-bar truss design problem.

S. Mirjalili / Advances in Engineering Software 83 (2015) 80–98 93 
 

 

discrete parameters, each search agent was rounded to the nearest
integer number before the fitness evaluation.

The mathematical formulation of this problem is as follows:
Ta
Co
Consider
ble 13
mparison results of the three-bar truss desi

Algorithm Optim

x1

ALO 0.788
DEDS [75] 0.788
PSO-DE [76] 0.788
MBA [74] 0.788
CS [72] 0.788
Ray and Sain [78] 0.795
Tsa [77] 0.788
~x ¼ ½x1x2x3x4� ¼ ½nAnBnCnD�;

Minimize
f ð~xÞ ¼ 1
6:931�

x3x2
x1x4

� �2
;

Subject to
 12 6 x1; x2; x3; x4 6 60;
The best optimal design obtained by the ALO and other algo-
rithms in the literature are presented in Table 14.

This table shows that the proposed ALO algorithm finds a design
with the optimal value identical to those of Artificial Bee Colony
gn problem.

al values for variables

x2

662816000317 0.40828
67513 0.40824
6751 0.40824
5650 0.40855
67 0.40902

0.395
0.408
(ABC) algorithm [74], MBA [74], CS [72], and Interior Search Algo-
rithm (ISA) [79]. However, the optimal values for variables
obtained are different. Therefore, this design can be considered
as a new design with a similar optimal gear ratio. However, the
maximum numbers of function evaluations presented in Table 14
show that the ALO requires much less computational cost to deter-
mine the global optimum. Once more, these results prove that the
proposed ALO algorithm can solve discrete real problems effi-
ciently with low computational cost.

The results of these three engineering problems strongly evi-
dence the merits of the ALO algorithm in solving problems with
unknown search spaces. The results also show that the proposed
algorithm is suitable for constrained and discrete problems. This
is due to the employed mechanism of saving the best feasible solu-
tions obtained as the elite and antlions, in which the ants are
guided towards promising feasible regions of the search space. This
leads to boosting the exploration of the feasible areas of a search
space.

To further confirm and demonstrate these statements, two ship
propellers are optimized by the proposed ALO algorithm in the
next section.
5. Ship propeller design using ALO

Propellers provide thrust for moving marine and aero vehicles.
Due to the high density of water, efficiency of a propeller becomes
very important. The propellers that are going to be optimized by
Optimal weight Max. eval.

3133832901 263.8958434 14,000
828 263.8958434 15,000
82 263.8958433 17,600
97 263.8958522 20,000

263.9716 15,000
264.3 N/A
263.68 (infeasible) N/A



A 

B
C 

D 

Fig. 13. Gear train design problem.

Table 14
Comparison results of the gear train design problem.

Algorithm Optimal values for variables f min Max. eval.

nA nB nC nD

ALO 49 19 16 43 2.7009e�012 120
CS [72] 43 16 19 49 2.7009e�012 5000
MBA [74] 43 16 19 49 2.7009e�012 10,000
ISA [79] N/A N/A N/A N/A 2.7009e�012 200
GA [81] N/A N/A N/A N/A 2.33e�07 10,000
ABC [82] 19 16 44 49 2.78e�11 40,000
GA [83] 33 14 17 50 1.362e�09 N/A
ALM [84] 33 15 13 41 2.1469e�08 N/A

Table 15
Initial parameters, constant structural parameters, and operating conditions of the
propeller.

Parameter Value

Number of blades 4, 5
Diameter 2 m
Rotation speed 170 RPM
Ship speed 5 m/s (9.7192 knots)
Thrust 40,000 N
Torque 16183.1936 N m
Power 288099.0115 W
Density of water 999.97 kg/m3
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the ALO algorithm as case studies have 2 m diameter and 4 or 5
blades. The 3D model of the five-blade propeller is illustrated in
Fig. 14.

Achieving the highest efficiency is the main goal of propeller
design which is defined as follows [85]:

g ¼ Va

2pnD
� KTðxÞ

KQ ðxÞ
ð5:1Þ

where V is axial velocity, D is the diameter of the propeller, n is the
rotation speed of the propeller, KT indicates the thrust coefficient,
and KQ shows that torque coefficient.

KT is calculated as follows:
Fig. 14. Fixed pitch ship pr

Fig. 15. Airfoils along the blade define the shape of the propeller
KTðxÞ ¼
T

qn2D2 ð5:2Þ
where q shows the fluid density, T is the thrust, n indicates the rota-
tion speed of the propeller, and D is the diameter length.

The structural parameters of a propeller are defined based on
the representation method of the shape of the blades. A popular
method for representing and modelling the shape of a propeller’s
blade is called Bézier curves. This method utilizes a set of
controlling parameter to define the curvature of the airfoils along
the blade. Another simple method is to define standard airfoils as
the cross sections of a propeller’s blade and adjust their special
parameters. In this study, the second method is chosen due to its
simplicity. Fig. 15 shows the structural parameters when using
standard airfois.

We consider 10 airfoils along the blade, so the total number of
parameters to be optimized by the ALO algorithm is 20. The param-
eters are as follows:

� x1 � x2: the chord length and maximum thickness of the first
airfoil
� x3 � x4: the chord length and maximum thickness of the second

airfoil
� . . .

� x19 � x20: the chord length and maximum thickness of the tenth
(last) airfoil
opeller with 5 blades.

Chord length

Maximum thickness

(NACA a = 0.8 meanline and NACA 65A010 thickness) [86].



Table 16
Best design parameters obtained using ALO for the four-blade propeller.

Chord1 Thickness1 Chord2 Thickness2 Chord3 Thickness3 Chord4 Thickness4 Chord5 Thickness5

0.1321 0.1421 0.1680 0.1852 0.2177 0.2252 0.2058 0.1699 0.1164 0.0012

Chord6 Thickness6 Chord7 Thickness7 Chord8 Thickness8 Chord9 Thickness9 Chord10 Thickness10

0.0300 0.0290 0.0211 0.0171 0.0150 0.0132 0.0096 0.0041 0.0034 0.000011

Table 17
Best design parameters obtained using ALO for the five-blade propeller.

Chord1 Thickness1 Chord2 Thickness2 Chord3 Thickness3 Chord4 Thickness4 Chord5 Thickness5

0.1330 0.1457 0.1691 0.1897 0.2200 0.2252 0.1955 0.1529 0.1130 0.0008

Chord6 Thickness6 Chord7 Thickness7 Chord8 Thickness8 Chord9 Thickness9 Chord10 Thickness10

0.0350 0.0316 0.0249 0.0152 0.0147 0.0143 0.0088 0.0041 0.0033 0.0000097

Table 18
Performance of the optimal design obtained.

Name Four-blade Five-blade
Value Value

J 0.88235 0.88235
KT 0.30382 0.30382
KQ 0.06224 0.062153
Effy 0.68551 0.68647
AdEffy 0.82919 0.82919

0 500

0.676

0.6755

0.675

0.6745

0.674

0.6735

0.673

4-blade propeller

Iteration

E
ff

ic
ie

nc
y

Fig. 16. Convergence of the ALO algorithm when finding the

Initial infeasible random design 

     ALO 

Fig. 17. Improved design from initial infeas
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The objective is also the maximization of efficiency. Therefore,
this problem can be formulated as a maximization problem as
follows:

Suppose : Xi

!
¼ ðx1; x2; . . . ; xnÞ; ð5:3Þ

Maximize : gðxÞ ð5:4Þ

Subject to : wake friction and thrust deduction ð5:5Þ
0 500

0.6865

0.686

0.6855

0.685

0.6845

5-blade propeller

Iteration

E
ff

ic
ie

nc
y

optimal shapes for the four- and five-blade propellers.

Final feasible optimal design 

ible design to feasible optimal design.



Table 19
Mathematical formulation of the primitive functions in Table 3.

Name Formulation

Sphere f ðxÞ ¼
PD

i¼1x2
i

Ackley f ðxÞ ¼ �20 exp �0:2
ffiffiffi
1
D

q PD
i¼1x2

i

� �
� exp 1

D

PD
i¼1 cosð2pxiÞ

� �
þ 20þ e

Griewank
1

4000

PD
i¼1x2

i �
QD
i¼1

cos xiffi
i
p
� �

þ 1

Weierstrass PD
i¼1

Pkmax
k¼0 ak cosð2pbkðxi þ 0:5ÞÞ

h i� �
� D

Pkmax
k¼0 ½ak cosð2pbk0:5Þ�; a ¼ 0:5; b ¼ 3; kmax ¼ 20

Rastrigin PD
i¼1 x2

i � 10 cosð2pxiÞ þ 10
� �
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Parameter range : 0 < x1 � x10 6 1 ð5:6Þ

It should be noted that the full list of all constrains is not
reported due the large number and complexity of their mathemat-
ical formulations. The large number of constraints makes this
problem very challenging and expensive, in which each function
evaluation can take up to 5 min for each design. As the simulator,
an open source software called Openprop [87] is utilized. The
initial parameters, constant structural parameters, and operating
conditions of the propeller are listed in Table 15.

To approximate the global optimum of this problem using the
ALO algorithm, 40 search agents and 500 iterations are employed.
Due to the expensive computational cost of the objective function,
the algorithm was run only twice, which took around a week. The
best optimal design parameters obtained are provided in Tables
16–18. Note that two different propellers with four and five blades
are considered.

The optimal efficiencies obtained for both propellers are
0.68551 and 0.68647. Other performance indicators of the optimal
design obtained are presented in Table 18.

The fitness history of the elite when optimizing the shape of
propeller is illustrated in Fig. 16, which show the improvements
of the initial random shape during optimization.

For further observation of the impacts of ALO in improving the
initial random shapes for the propellers, Fig. 17 is provided. This
figure shows how the ALO algorithm finds a very smooth shape
for the blades in order to maximize efficiency for both propellers.

Once more, all these results prove the merits of the proposed
algorithm in solving challenging problems with unknown search
spaces. Therefore, this powerful optimization technique is offered
as a tool for finding the optimal designs of optimization problems
in different fields of study.
6. Conclusion

This work proposed a novel nature-inspired algorithm called
ALO. The hunting behaviour of antlions and entrapment of ants
in antlions’ traps were the main inspirations for this algorithm.
Several operators were proposed and mathematically modelled
for equipping the ALO algorithm with high exploration and
exploitation. The performance of the proposed algorithm was
benchmarked on 19 test functions in terms of exploration, exploi-
tation, local optima avoidance, fitness improvement of the popula-
tion, search history, trajectory of antlions, and convergence rate. As
per the superior results of the ALO on the majority of the unimodal
test functions and convergence curves, it can be concluded that the
proposed algorithm benefits from high exploitation and conver-
gence rate. The main reason for the high exploitation and conver-
gence speed is due to the proposed adaptive boundary shrinking
mechanism and elitism. High exploration of ALO can be concluded
from the results of multimodal and composite test functions,
which is due the employed random walk and roulette wheel
selection mechanisms.
From the average fitness of all antlions during optimization, it is
evidently concluded that the ALO algorithm successfully improves
the overall fitness of random initial solutions on optimization
problems. In addition, the convergence curves and search histories
proved that the ALO algorithm effectively searches and converges
towards the most promising regions of the search space. Therefore,
the proposed algorithm has the potential to discover different
regions of a given problem. Finally, the trajectories evidenced that
the ALO algorithm requires antlions to move abruptly in the initial
steps of optimizing and locally in the final steps of optimization,
which leads to a smooth balance and transition between explora-
tion and exploitation.

The ALO algorithm was compared to seven well-known and
recent algorithms in the literature: PSO and GA, SMS, BA, FPA,
CS, and FA. Wilcoxon statistical tests were also conducted when
comparing the algorithms. The results showed that the proposed
algorithm provides very competitive results and outperforms
other algorithms in the majority of test functions. The statistical
test also proved that the results were statistically significant for
the ALO algorithm. Therefore, it may be concluded from the
comparative results that the proposed ALO algorithm is able to
be employed as an alternative optimizers for optimizing different
problems.

The paper also considered solving three classical engineering
problems and one challenging CFD problem using the ALO
algorithm. The results of the ALO algorithm on these real
problems were compared to a wide range of other algorithms in
the literature. The comparative results demonstrated that the
ALO algorithm is able to solve real problems with unknown search
spaces as well. With these findings, another conclusion is that the
proposed ALO algorithm is able to solve real problems with
unknown search spaces as well. Other conclusion remarks that
can be made from the results of this study are as follows:

� Random selection of antlions using a roulette wheel guarantees
exploration of the search space.
� Random walks of ants around the antlions also emphasize

exploration of the search space around the antlions.
� The use of random walk and roulette wheel assist the ALO algo-

rithm to resolve local optima stagnations.
� Local optima avoidance is very high since the ALO algorithm

employs a population of search agents to approximate the glo-
bal optimum.
� Calculating random walks for every ant and every dimension

causes diverse movement behaviours for ants inside the ant-
lions’ traps and maintains the diversity of position explored
around antlions.
� Adaptive shrinking mechanism for defining the boundaries of

random walks promotes exploitation as the iteration counter
increases.
� Intensity of ants’ movement is adaptively decreased over the

course of iterations, which guarantee convergence of the ALO
algorithm.
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� Promising areas of search spaces are saved since antlions relo-
cate to the position of the best ants during optimization.
� The best antlion in each iteration is saved and considered as the

elite, so all ants tend towards the best solution obtained so far
as well.
� The ALO algorithm has very few parameters to adjust of which

some of them are adaptive, so it is a flexible algorithm for solv-
ing diverse problems.
� The ALO algorithm is a gradient-free algorithm and considers

problems as a black box, so it is readily applicable for solving
real problems.

Several research directions can be recommended for future
studies with the proposed algorithm. Solving different optimiza-
tion problems in different fields can be done. In addition, extending
this algorithm to solve multi- and many-objective problems can be
considered as a good contribution. Another research direction is to
investigate the effectiveness of other random walks such as lévy
flight in improving the performance of the ALO algorithm.

Appendix A

A.1. Matlab codes for the overall framework of the ALO

fMAnt;MAntliong ¼ AðÞ;
while CðMAnt;MAntlionÞ– true
fMAnt ;MAntliong ¼ BðMAnt;MAntlionÞ

end while

 

 

A.2. Matlab codes for the function A

for i = 1: n
for j = 1: d

MAnt (i,j) = (d(i) � c(i)) ⁄ rand() + c(i);
MAntlion (i,j) = (d(i) � c(i)) ⁄ rand()+c(i);

end
end
MOA = FitnessFunction(MAnt);
MOAL = FitnessFunction(MAntlion);
MAntlion = sort(MAntlion);
MOAL = sort(MOAL);
Optimum = MAntlion(1, :);

where c(i) and d(i) are the lower and upper bounds of the i-th
parameter, respectively.

A.3. Matlab codes for the function B

Update~c and ~d using Eqs. (2.10) and (2.11)
for i = 1: n

Antlion = RouletteWheelSelection (MAntlion, 1/MOAL)
Update c and d using Eqs. (2.10) and (2.11)
c = Antlion + c
d = Antlion + d
celite = Elite + c
delite = Elite + d
for j = 1 : d

RA = X(t) in Eq. (2.1)
RA = normalize(RA, c, d) in Eq. (2.7)
RE = X(t) in Eq. (2.1)
RE = normalize(RE, celite ,delite) in Eq. (2.7)
MAnt (i,j) = (RA + RE)/2

end
end
MOA = FitnessFunction(MAnt)
Mcombined ¼ concanenation of MAnt and MAntlion

Mcombined = sort(Mcombined)
MAntlion ¼ the first n rows of Mcombined

If fintessfunction(MAntlion(1,:)) < f(Elite)
Elite = MAntlion(1, :)

End
A.4. Appendix

See Table 19.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.advengsoft.2015.
01.010. Note that in the videos, the red triangles represent antlions
and the blue circles show ants.
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