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Abstract
This paper presents an art-inspired optimization algorithm, which is called Stochastic Paint Optimizer (SPO). The SPO is 
a population-based optimizer inspired by the art of painting and the beauty of colors plays the main role in this algorithm. 
The SPO, as an optimization algorithm, simulates the search space as a painting canvas and applies a different color combi-
nation for finding the best color. Four simple color combination rules without the need for any internal parameter provide a 
good exploration and exploitation for the SPO. The performance of the algorithm is evaluated by twenty-three mathematical 
well-known benchmark functions, and the results are verified by a comparative study with recent well-studied algorithms. 
In addition, a set of IEEE Congress of Evolutionary Computation benchmark test functions (CEC-C06 2019) are utilized. 
On the other hand, the Wilcoxon test, as a non-parametric statistical test, is used to determine the significance of the results. 
Finally, to prove the practicability of the SPO, this algorithm is applied to four different structural design problems, known 
as challenging problems in civil engineering. The results of all these problems indicate that the SPO algorithm is able to 
provide very competitive results compared to the other algorithms.

Keywords  Stochastic paint optimizer · Metaheuristic algorithm · Optimization

1  Introduction

For optimization problems, two major methods, containing 
mathematical and metaheuristic algorithms, are developed 
and applied; However, using mathematical algorithms is dif-
ficult and time-consuming for solving many optimization 
problems. Furthermore, they require a good starting point 
to successful converge to the optimum result, otherwise, 
they may be trapped in a local optimum. On the other hand, 
metaheuristic methods are often nature-inspired techniques 
that are able to explore the entire search space and exploit a 
final good result. Within an affordable computational time, 
they can find optimal or near-optimal solutions to the tough 
and even NP-hard problems. Unlike mathematical methods, 
they are very flexible and simple, making them popular 
among both researchers and practitioners [1]. Meta-heuris-
tics, which are among the most promising and successful 

techniques [2], represent a family of approximate optimiza-
tion techniques that have gained a lot of popularity in the 
past two decades. As aforementioned, these techniques rely 
on the rules observed in nature. The origins of inspiration 
can be divided into three classes:

	 i.	 Evolutionary Algorithms (EAs): The theories are 
based on biological evolution, such as interconnec-
tion, transition and selection (EAs) [3, 4]. Genetic 
algorithm (GA) [5, 6] is a popular EA describing 
chromosomal solutions composed of various genes. 
It seeks to obtain the strongest chromosome by repeti-
tive processes of replication, mutation and selection.

	 ii.	 Swarm Intelligence Algorithms: These methods are 
a branch of computational intelligence that discusses 
the collective behavior emerging within self-organ-
izing societies of agents. In the other words, Swarm 
intelligence was inspired by the collective behavior in 
societies in nature such as the movement of animals 
[7]. Animal behavior experiments have contributed 
to Ant Colony Optimization (ACO) [8] algorithm 
developed based on pheromone and biological ants in 
nature’s food coordination strategies; Particle Swarm 
Optimization (PSO) [9] focused on bird or fish school-
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ing’s social behaviors. As another example, Artificial 
Bee Colony (ABC) [10] methods mimics the forag-
ing behavior of honey bee colonies. Grey Wolf Opti-
mizer (GWO) [11] algorithm applies to the hierarchy 
of command and the hunting process of Grey Wolves 
in nature. The interaction of various homogeneous 
agents in the environment results in mutual intelli-
gence. The intelligence is decentralized, autonomous, 
and dispersed in an environment. These mechanisms 
are widely used in nature to tackle problems such as 
successful food forages, avoidance of predators, or 
relocation of the colony.

	 iii.	 Physical-based Algorithms: These algorithms take 
inspiration from physics. For instance, Charged Sys-
tem Search (CSS) [12] is developed according to the 
Coulomb law in electro-statics and the Newtonian 
mechanical laws, Big Bang – Big Crunch (BB-BC) 
[13] algorithm is based on the theory of Big Bang 
and Big Crunch. Colliding bodies optimization (CBO) 
[14] is a population-based stochastic optimization 
algorithm based on the governing laws of a one-
dimensional collision between two bodies. Gravita-
tional Search Algorithm (GSA) [15] is established 
based on the law of gravity and Simulated Annealing 
(SA) [16] is inspired by annealing in metallurgy.

A variety of new approaches have been developed in 
recent years and extended to many issues of multidisci-
plinary optimization. Some of these approaches are men-
tioned below:

Slime Mould Algorithm (SMA) [17], Water Strider 
Algorithm (WSA) [18], Fitness-Distance Balance (FDB) 
[19], Hybrid Invasive Weed Optimization-Shuffled Frog-
Leaping Algorithm (SFLA-IWO) [20], Algorithm of 
the Innovative Gunner (AIG) [21], Red Deer Algorithm 
(RDA) [22] and Dragonfly Algorithm (DA) [23]. In 
addition, Kaveh et al. [24, 25] have made a major con-
tribution to the development and application of modern 
metaheuristics.

On the other hand, art is utilized as the source of a 
few algorithms such as the Harmony search (HS) [26] 
and Color Harmony Algorithm (CHA) [27]. CHA is 
based on the Munsell, a color space that describes colors 
based on three perceptual attributes including hue, value 
and chroma. It uses eight different harmonic templates 
proposed by Matsuda [28, 29] based on an experimen-
tal investigation and it utilizes the modified definition of 
population diversity proposed by Cheng and Shi [30]. 
The memory in this algorithm plays a significant role. 
This algorithm has five different parameters that need to 
be adjusted. All these factors make the CHA difficult to 
implement a different type of optimization problems. On 

the other hand, the beauty of paints is utilized to propose 
a new optimization method in this paper. The new algo-
rithm is based on art as a source of inspiration similar 
to CHA; however, the new algorithm needs no parameter 
or memory. Contrary to CHR, this method utilizes four 
simple combination mechanisms. In addition, borrow of 
color theory, basic techniques of combining colors are 
mathematically modeled to design the new algorithm as an 
optimization algorithm. Other key reasons for the develop-
ment of the new algorithms are the advancement in com-
puter technology, simplicity, flexibility and the need for art 
optimizers (especially for solving engineering problems).

It is notable that comparing to the random search meth-
ods, they are those stochastic methods that rely solely on 
the random sampling of a sequence of points in the feasible 
region of the problem, but this algorithm try to follow an 
optimization process, therefore it classifies the solutions into 
three groups (worst, good, best) in a logical manner, then 
utilizing some heuristic combination mechanisms are uti-
lized for improving the existing solution. In other word, the 
algorithm is implemented in a way that it can find better and 
better solutions since the utilized mechanisms are simple.

The rest of the text is arranged as follows: Sect. 2 explains 
the origins of inspiration for the algorithm; Sect. 3 presents 
the formulations and overview of the new algorithm, so-
called Stochastic Paint Optimizer (SPO). Several numerical 
mathematical and structural engineering problems are solved 
in Sect. 4. The numerical results obtained by different algo-
rithms are discussed in Sect. 5. Finally, Sect. 6 concludes the 
findings and recommendations for future works.

2 � Definitions and concepts

2.1 � Background

Only a few numbers of algorithms are based on art. The 
art as the human activity for presenting his beautiful feels 
follows an optimization process. This means that an artist 
tries to present the best of he/she can generate by playing 
a music or painting a picture. Here, paints as one of the 
significant field of arts are utilized to proposing a new opti-
mization algorithm. The specific colors in a paint, i.e. blue, 
green, yellow and red, associated with water, air, earth, and 
fire elements respectively, first identified by Leonardo da 
Vinci were a long-standing problem of visual perception, 
neurophysiology and cross-cultural linguistics [32]. The sci-
ence and the art of using color are known as color theory. It 
describes how humans interpret color and the visual effects 
of color mixing, appropriate or contrasting. The color theory 
also includes the colors of the communicated message and 
its reproduction processes. Color theory is based on a color 
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wheel divided into three categories: primary, secondary and 
tertiary colors.

2.2 � Color wheel

The color wheel has been used for many centuries not only 
to communicate various messages and religious but also to 
demonstrate basic laws of color association or mixture. To 
track their historical evolution, it may be helpful to differen-
tiate between several forms based on fundamentally different 
relationships, using examples of late 19th-and 20th-century. 
The first type of seven colors containing red, orange, yellow, 
green, blue, indigo and purple is now generally referred to 
as the "additive" and is generally referred to as Newton’s 
popular color circle published in 1704 [33]. Since that time, 
scientists and artists have studied and developed many vari-
ations in this definition. There is an ongoing debate on the 
differences of opinion about the superiority of one format 
over another. Harris [34] created the first printed circle of 

colors in 1766. He concluded that the colors of red, yellow 
and blue were the most distinct from each other and should 
be put as far apart as possible, separated by 120°, in a cir-
cle. LeBlon inspired Harris, who discovered the primary 
essence of red, yellow, and blue when combining pigments 
for printing. This revolving structure was taken over by Goe-
the [35]. While Goethe believed that there were two main 
colors (blue and yellow) and that all the colors originated 
from them, he was also highly influenced by LeBlon’s pre-
dominant red–yellow–blue concept. Artists and painters still 
use the color wheel to develop color harmonies, mixing and 
palettes, as shown in Fig. 1. Colors on the color wheel have 
also been classified into three groups. According to this, 
Colors are clustered into three groups used in this work as 
follows (Fig. 2):

	 i.	 Primary Colors: These are three colors (red, yellow, 
blue) in traditional color theory that is not mixed with 
or influenced by any mixture of other colors. They are 
as the best colors ( Cpbest ), because all other colors are 
derived from these three colors.

	 ii.	 Secondary Colors: These are the colors formed by 
mixing the primary colors. They can be as the second 
best or good colors ( Csgood).

	 iii.	 Tertiary Colors: These are the colors made from 
primary and secondary colors, and their place is the 
worst ones ( Ctworst ). These colors have a two-word 
name, such as blue-green, red-violet, and yellow-
orange.

Fig. 1   Color wheel

Fig. 2   Color categories
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2.3 � Techniques for combining colors

The techniques for combining colors affects the spectator 
and provides an inner sense of order and a visual experience 
balance and it is boring and chaotic when everything is not 
a pleasing balance. This important point plays an impor-
tant role in the proposed algorithm by balancing explora-
tion–exploitation. Below are defined as the basic techniques 
for combining colors based on the color wheel. All these 
techniques are utilized to create a new colors (Cnew).

2.3.1 � Analogous combination technique

Analogous color schemes combine colors that are near to 
each other (neighborhood) on the color wheel, including 
purple-green, purple and yellow-orange next to each other. 
For forming an analog color, one color is selected as domi-
nated, the other one as supports and the last one as accent. 
Typically, they suit well and plan calmly and conveniently as 
shown in Fig. 3. Mathematical point of view, the new colors 
can be defined using three other colors as Ci-1, Ci, and Ci+1 in 
which i is the index of existing colors that can be selected in 
a random manner and in this way a stochastic selection can 
be guaranteed. In should be noted that one of these colors 
should be the dominated one and the rest are supports and 
accent. Ci is considered as the dominated in this paper and 
this means that the coefficient of this color is set to unity and 
its sign is positive while the coefficient of the other ones is a 
random vector. The sign of two other colors is positive and 
negative, respectively. This combination technique can be 
formulated mathematically as

It should be noted that all these three colors are belong to 
the same category of colors. Considering this point for using 
the above equation, we first should select a color category 
(Primary, Secondary or Tertiary) in a random manner and 
then in this category the dominated and related colors are 
selected.

(1)Cnew,1 = Ci + rand.
(
Ci+1 − Ci−1

)

For explaining the effect of this technique in the optimi-
zation process, one can use the graph theory concepts. the 
reason is that the graph theory provides a tool for explaining 
difficult concepts using just simple concepts. If the existing 
colors in the new algorithm are considered as nodes of a 
graph, the analogous combination technique create a new 
color (solution) using these three solutions that are near each 
other. The edges of the graph are those connect these three 
colors to each other. The neighborhood can be defined in 
different approaches. Here, the solution with close values 
of objective function is neighborhood. This means that this 
combination technique searches the neighborhood of the 
selected color (Ci) to exploit a little better color. In the other 
words, this technique treats as a local search approach and 
without considering that the select solution (Ci) is the best, 
intermediate or worst solution, it tries to improve its quality 
and in this way in initial iterations, it performs as a local 
searching while this is exchange to exploitation ability with 
progressing the searching process.

Although this technique is formulated by a simple equa-
tion (Eq. 1), it covers some important matters. If the selected 
category to be used by this technique is the primary, this 
technique directly attacks toward the so-far best solution 
for finding a near better solution. This point is important 
because without of attention to the number of the current 
iteration, this technique tries to improve the so-far best result 
and the success probability of this technique for the primary 
category is high; the reason is clear because it uses three 
good solutions for finding the better one. On the other hand, 
if the selected color is worst one (Tertiary), the technique 
strives to improve the worst result and, in this way, it helps 
the algorithm when using the other combination techniques. 
Finally, if Secondary category is selected, this technique 
tries to pick a solution to this category and add it to the pri-
mary one and in this way, the structure of color categories 
can be improved. To sum up, this one equation covers three 
different formulations for three predefined color categories.

2.3.2 � Complementary combination technique

Colors opposite to each other on the wheel are known to be 
complementary colors (e.g. red and green) as presented in 
Fig. 4. The high contrast of complementary colors, espe-
cially when used with maximum saturation, produces a 
vivid look. It needs to be handled correctly so that the color 
scheme is not distracting. Mathematical point of view, this 
technique combines two opposite colors (say the best and the 
worst one) and add them to the existing color. Since there 
are three categories, the best one is Primary and the worst 
one is the Tertiary. As a result, this technique uses a random 
selected color from Primary category (Cpi), the other one 
a random selected color from Tertiary category (CTi) and 
finally the main one as an existing color (Ci). Similar to the Fig. 3   Analogous Combination Technique
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analogous combination technique, the coefficient of the main 
color is set to one and a random vector is used for the other 
parts. As a result, the new color can be obtained as

The related graph for this technique is similar to the pre-
vious one with a difference that the Ci+1 and Ci-1 is replaced 
by CPi and CTi; however, optimization point of view this 
technique plays a completely different role. This technique 
tries to go toward one of the best solutions and go out of the 
worst ones, contemporaneity. Clearly, this technique covers 
the whole the search space and it treats as a strong global 
search technique. In the initial iterations of the optimiza-
tion process that the best and worst solutions are far from 
each other, this technique tries to push the existing solutions 
toward to the best ones and goes away from the worst ones. 
In this way, the tendency of going toward the best solutions 
not only causes improving the existing solution but also 
explores the search space in an efficient approach. In the last 
iterations that the solutions become close to each other, this 
technique tries to approach the best and worst solutions to 
each other and in this way, it exploits some new better solu-
tion. as a result, this technique shows the exploration ability 
of the algorithm in the initial iterations while its exploitation 
ability becomes clear in the last iteration.

2.3.3 � Triadic combination technique

A triadic color scheme is any three colors that are equally 
apart on the color wheel. For example, red, yellow and blue 
can be combined according to this technique as shown in 
Fig. 5. Triadic color schemes are very vivid, even though 
the colors are used light or unsaturated. Since three catego-
ries are defined in this paper, using this technique becomes 
simple. According to this technique, one should select three 
colors belonging to different categories (one from Primary, 
Cpi, the other from Secondary, CSi, and the last one from 
Tertiary, CTi). Since these selected colors treats the same, 

(2)Cnew,2 = Ci + rand.
(
CPi − CTi

)

using the mean of them can be useful. similar to previous 
techniques, a part of the mean of three colors and the whole 
of the main color are utilized to create the new color, as

Optimization point of view, this technique wants to use 
the mean of solutions for creating a new one. This mean is 
the mean of three random solutions (one form the best, one 
the intermediate and the last from the worst groups). This 
technique summarizes different states in one formula simi-
lar to the previous one. If the best solution (Cpi) is a strong 
solution, using just this term without the other ones absorbs 
the main solution (Ci) toward to this strong one and the 
searching process can not be performed in a complete form. 
It means that an optimization algorithm desires to search 
around the best solution rather than very close space of it. 
Therefore, the other terms help the algorithm to perform 
this important searching process. Here, the strong solution 
implies a very good solution with a considerable distance 
of other solutions. On the other hand, if the worst solution 
(CTi) is very weak one; similar to the previous discussion, a 
good algorithm tries to avoid it but since it is a very weak, it 
becomes difficult unless one uses others terms as presented 
in this algorithm. The weak solution implies a very bad solu-
tion with a considerable distance of other solutions. In addi-
tion, if these solutions are not very strong or very weak (they 
are still strong or weak), the above-mentioned point is still 
valid; however, its effect is reduced. In the other words, if 
the selected solutions are very strong (or weak) and their dis-
tance from other solutions are not small, this technique tries 
to present an exploration ability by proving a large searching 
process and if the selected solutions are not very strong (or 
very weak), the searching process are limited with a small 
part (exploitation). It should be noted that very strong (or 
very weak) results are generated in the initial iterations 
that the distance of solutions is high and the other ones are 
founded in the last iterations. As far as our best knowledge, 
a good algorithm should provide a good exploration at first 

(3)Cnew,3 = Ci + rand.

(
CPi + CSi + CTi

3

)

Fig. 4   Complementary Combination Technique

Fig. 5   Triad Combination Technique
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and increase the exploitation ability at the final iterations. 
This technique can handle this matter using all strong, weak 
and intermediate solutions.

2.3.4 � Tetradic combination technique

Finally, the last combination technique used by painters is 
Tetradic. The four colors grouped in two complementary 
pairs of rectangular or tetradic colors are used, as depicted 
in Fig. 6. This rich color scheme provides a lot of variety. 
The color scheme works better if one color is dominant. This 
technique is mathematically modeled using the concepts of 
providing the previous techniques. The four color-categories 
are required for this technique; three of them can be selected 
form three pre-defined categories and the last one should be 
defined. The aim of this technique is to provide a strong sto-
chastic searching that can help the algorithm when trapped 
in a local solution. Therefore, two differences are considered 
in this technique compared to the other ones:

1- Instead of using just one random vector, each color has 
its own random vector;

2- The fourth color is generated randomly.
These two points increase the exploration affect of this 

technique in comparing to the other techniques. Mathemati-
cally, it can be formulated as

3 � Stochastic paint optimizer

Using the concepts of colors in a paint, a new meta-heuristic 
algorithm known as Stochastic Paint Optimizer (SPO) is for-
mulated and presented in this section.

3.1 � Inspiration

Every paint needs different colors at its heart. The painters 
can generate these colors in endless ways. Quite often, an 

(4)
Cnew,4 = Ci + (rand1.CPi + rand2.CTi + rand3.CSi + rand4.Crand)∕4

artist may be drawn toward a particular palette that tends to 
define the style of their entire body of work. Paint combina-
tion technique has been one of the keys to color practice, for 
painters in particular. Many people assume that the range of 
colors for a paint depends entirely on the taste and elegance 
of the painter. The method of color selection is, therefore, 
more complex than it appears and plays a pivotal role in the 
paints. One should understand how colors are created and 
how they relate to each other to produce a beautiful paint. 
That is why art schools, colleges and universities research 
color theory, which focuses on the essence of colors. In this 
paper definition of color theory, color wheel and color com-
bination techniques are mathematically modeled to reach 
the Stochastic Paint Optimizer (SPO) as an optimization 
algorithm.

3.2 � Mathematical model and algorithm

The main steps of this algorithm contain creating initial 
paints, paint clustering, paint combination, and stop con-
trolling. The search space is specified as a canvas and paints 
as solutions that contain some colors as design variables. 
Paints are evaluated and sorted in increasing order according 
to their corresponding their beauty index (objective function 
values). Any new color that is applied to canvas is an inte-
gral part of the piece’s perception. Due to this, each color 
has its grades (values) according to color wheel categories 
primary (the best), secondary (good), and tertiary (the worst) 
colors. Thanks to these equal categories, there is no need to 
add parameters in the algorithm. Using provided combina-
tion techniques to make new colors, this algorithm can cre-
ate optimum paints (or solutions).

3.3 � Main steps of the stochastic paint optimizer

Figure 7 displays the flowchart of the SPO and the main 
steps of the algorithm are as follows:

Phase 1: Initialization
In an nc-dimensional search object, the initial colors of 

all paints are determined, randomly.

where, Ci,0 is the initial color of the i th paint. Cmin and Cmax 
are the lower and upper limits of the design variable i, rand 
is a random number with its range [0, 1] and nc is the num-
ber of colors or variables. It should be noted that all colors 
with each other generate a paint that is a design or solution 
of optimization problems. Then, Evaluation of the objective 
function for each paint is gained. In this way the beauty of 
each paint becomes clear.

Phase 2: Evaluation, Sorting and Clustering

(5)Ci,0 = Cmin + rand.
(
Cmax − Cmin

)
, i = 1, 2, 3, ..., nc

Fig. 6   Tetradic Combination Technique



Engineering with Computers	

1 3

Paints as the result of the problem are sorted in increas-
ing order according to their corresponding objective func-
tion. Finally, they are clustered into three equal groups 
namely, primary (the best), secondary (good), and tertiary 
(the worst) as mentioned in Sect. 2. In this way, there is 
no need to add parameters in the algorithm for clustering.

Phase 3: Utilizing Combination Techniques
In this step, new paints are generated using four differ-

ent combination techniques provided in Sect. 2.3.
Phase 4: Evaluating and Updating.
The new paints are evaluated and if their new beauty 

index is better than the previous one, it is replaced instead 
of the old one.

Phase 5: Checking Termination
Following a set of iterations, the optimization cycle is 

terminated. If the criterion is not met, a new process is 
scheduled for phase 2; otherwise, the process ceases and 
the best solution will be reported.

3.4 � Similarities and differences of the SPO 
and other algorithms

Recently, many new algorithms are presented as metaheuris-
tics; similarities of them are:

–	 They try to follow an optimization process using a clever 
and random selection. In this regard, they use random 
numbers and generate a new solution in each step.

–	 Many of the metaheuristics are multi-agents. This means 
they generate several solutions at the same time rather 
than one.

–	 Comparing the generated solution with each other is the 
main key to clear the next step.

–	 Almost, all algorithms need to determine the maximum 
number of iterations in each iteration. Some algorithms 
need more other parameters that should be defined care-
fully, however, the present method does not need addi-
tional parameters.

	   The differences in this method with the new SPO are:
–	 In the new algorithm, solutions (paints) are clustered 

into three groups namely, primary (the best), secondary 
(good), and tertiary (the worst); while most of the other 
methods do not divide the solutions.

–	 New solutions are generated over the entire search space 
using four different techniques. Many methods use just 
one or two strategies for generating the new solutions.

–	 Creating Vicinity colors step is responsible for generating 
similar solutions to improve the previously obtained solu-
tion, and this approach contributes to good convergence.

–	 This method not only use a separate plan for using best 
(primary), good (secondary) and the worst (tertiary) solu-

Fig. 7   Flowchart of the SPO algorithm
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tion separately but also combining different categories of 
the solution is also considered. In this way controlling the 
exploitation and exploration of the algorithm becomes 
feasible. The main difficulty of many other meta-heuris-
tics is at this point.

–	 Providing a simple process, however useful one, is the 
main feature of this algorithm; many other methods uti-
lize some difficult idea and technique that become them 
hard to use in different fields.

4 � SPO validation

The validation of the new algorithm is presented in this 
section consisting of two parts; Sect. 4.1 includes a broad 
variety of complex mathematical problems to be evaluated, 
with results in contrast with other metaheuristic methods 
and Sects. 4.2 utilizes some well-known structural engi-
neering problems.

4.1 � Mathematical benchmark problems

In this section, the performance of the new algorithm is 
evaluated using some unimodal and multimodal functions. 
Then, the convergence rate, positions of colors, and one non-
parametric test for SPO are examined. The experiments are 
evaluated in two types as classical and CEC test examples.

4.1.1 � Classical benchmark test functions

A list of 23 popular, unimodal, multimodal, and fixed-
dimension multimodal benchmarks has been examined 
[36–39]. Tables 1, 2, 3 lists these functions. In these tables, 
dim is the dimension of functions; boundary denotes the 
upper and lower limits of search space and Fmin stands for 
the optimal values of the functions. The number of sepa-
rated runs is set to 30 for each function. Every value below 
1E − 30 is recorded as 0 . For a fair comparison, for all algo-
rithms, 5000 multipled by dimension is set as the maximum 
number of function evaluations. SPO has also been checked 
under the same conditions to ensure comparative accuracy 
with other algorithms. Table 4 lists control and specific 
parameter settings for the utilized algorithms.

Tables 5, 6, 7 show the statistical results for the unimodal, 
multimodal and multimodal with the fixed dimension, 
respectively. The results of the SPO algorithm is compared 
to DA [23] as a swarm-based and GSA [40] as a physics-
based algorithm. In addition, it is compared with some newly 
developed algorithms containing Grey Wolf Optimizer 
(GWO) [11], Sine Cosine Algorithm (SCA) [41], Water 
Strider Algorithm (WSA) [18], Moth-Flame Optimization 

Table 1   The unimodal benchmark functions

Function Dim Range fmin

F1(x) =
∑n

i=1
xi
2 30 [− 100,100] 0

F2(x) =
∑n

i=1
��xi�� +

∏n

i=1
��xi�� 30 [− 10,10] 0

F3(x) =
∑n

i=1
(
∑i

j−1
xi
2)

2 30 [− 100,100] 0

F4(x) = maxi
{||xi||, 1 ≤ i ≤ n

}
30 [− 100,100] 0

F5(x) =
∑n

i=1
[100(xi+1 − xi

2)
2
+ (xi − 1)2] 30 [− 30,30] 0

F6(x) =
∑n

i=1
([xi+0.5])

2 30 [− 100,100] 0

F7(x) =
∑n

i=1
ixi

4 + random[0,1) 30 [− 1.28,1.28] 0

Table 2   The multimodal benchmark functions

Function Dim Range fmin

F8(x) =
∑n

i=1
− xisin

����xi��
�

30 [− 500,500] − 418.9829 × 5

F9(x) = −
∑n

i=1
[xi

2 − 10cos(2�xi) + 10] 30 [− 5.12,5.12] 0

F10(x) = −20exp(−0.2

�
1

n

∑n

i=1
xi
2) − exp

�
1

n

∑n

i=1
cos

�
2�xi

��
+ 20 + e

30 [− 32,32] 0

F11(x) =
1

4000

∑n

i=1
xi
2 −

∏n

i=1
cos

�
xi√
i

�
+ 1 30 [− 600,600] 0

F
12(x) =

�

n
{10sin

�
�y

1

�
+
∑n

i=1

�
xi − 1

�2�
1 + sin2

�
3�xi + 1

��
+
�
xn − 1

�2�
1 + sin

2(2�xn
�
]}

+
∑n

i=1
u
�
xi, 5,100,4

�
, yi = 1 +

xi+1

4

u
�
xi, a, k,m

�
=

⎧⎪⎨⎪⎩

k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

30 [− 50,50] 0

F13(x) = 0.1
�
sin2

�
3�x1

�
+
∑n

i=1
(xi − 1)

2�
1 + sin2

�
2�xn

���
+
∑n

i=1
u(xi, 5,100,4)

30 [− 50,50] 0
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(MFO) [42] and Multi-Verse Optimizer (MVO) [43]. The 
results reveal that the total score of SPO was 26, which is 
the best among the other utilized algorithms as shown in 
Table 8. The mean ranks of algorithms are summarized in 
Fig. 8 for statistical measures like mean and standard devia-
tion (SD). Clearly in terms of statistical ranks, the SPO is 
the best one compared to the other considered algorithms.    

Figure 9 present the rank of the algorithms for the uni-
modal functions (F1–F7 functions) and the multimodal ones 
(F8-23 functions). The results of the unimodal functions 
indicate that SPO is capable of exploiting the space effi-
ciently as shown in Fig. 9a,b. SPO is ranked the first in four 
of seven unimodal functions. The algorithm outperforms all 
others as well. It is worth noting that unimodal functions 

Table 3   Multimodal benchmark functions with fixed-dimension

Function Dim Range fmin

F14(x) =
�

1

500
+
∑25

j=1

1

j+
∑2

i=1(xi−aij)
6

�−1 2 [65.536, − 65.536] 1

F15(x) =
∑11

i

�
ai −

xi(bi
2+bix2)

bi
2+bix3+x4

�2 4 [− 5,5] 0.00030

F16(x) = 4x1
2 − 2.1x1

4 +
1

3
x1

6 + x1x2 − 4x2
2 + 4x2

4 2 [− 5,5] − 1.0316

F17(x) = (x2 −
5.1

4�2
x1

2 +
5

�
x1 − 6)

2
+ 10

(
1 −

1

8�

)
cosx1 + 10 2 [− 5,5] 0.398

F18(x) =
[
1 +

(
x1 + x2 + 1

)2
(19 − 14x1 + 3x1

2 − 14x2 + 6x1x2 + 3x2
2)
]

×
[
30 +

(
2x1 − 3x2

)2
×
(
18 − 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2
)]

2 [− 2,2] 3

F19(x) = −
∑4

i=1
ciexp(−

∑3

j=1
aij(xj − pij)

2)

a =

⎡⎢⎢⎢⎣

3 10 30

0.1 10 35

3 10 30

0.1 10 35

⎤⎥⎥⎥⎦
and

 , 

c =

⎡⎢⎢⎢⎣

1

1.2

3

3.2

⎤⎥⎥⎥⎦ 
p =

⎡⎢⎢⎢⎣

0.3689 0.117 0.2673

0.4699 0.4387 0.747

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

⎤⎥⎥⎥⎦

3 [0,1] − 3.86

F20(x) = −
∑4

i=1
ciexp(−

∑6

j=1
aij(xj − pij)

2)

a =
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10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 17 10 17 8

17 8 0.05 10 0.1 14

⎤⎥⎥⎥⎦ , 
c =

⎡⎢⎢⎢⎣

1

1.2

3

3.2

⎤⎥⎥⎥⎦
and

 

p =

⎡⎢⎢⎢⎣

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎤⎥⎥⎥⎦

6 [0,1] − 3.32

F21(x) = −
∑5

i=1
[(X − ai)

�
X − ai

�T
+ ci]

−1 4 [0,10] − 10.1532

F22(x) = −
∑7

i=1
[(X − ai)

�
X − ai

�T
+ ci]

−1 4 [0,10] − 10.4028

F23(x) = −
∑10

i=1
[(X − ai)

�
X − ai

�T
+ ci]

−1 4 [0,10] − 10.5363

Table 4   Parameter settings of the utilized algorithms

Algorithm Parameters

GSA Population number (Np) = 50 Gravitional initial value (G0) = 100 coefficient (a) = 20

GWO Population number (Np) = 50 coefficient vector C = [0,1] A = [−1, 1] a = [0,2]

SCA Population number (Np) = 50 coefficient (a) = 2

MFO Population number (Np) = 50 logarithmic spiral shaped (b) = 1

Random number (t) = [−1.1] Convergence constant (r) = [−1,2]

DA Population number (Np) = 50. Interia weight (w) = [0.9, 0.2]

Separation weight (s) = 0.1. Alignment weight (a) = 0.1,

Cohesion weight (c) = 0.7 Food factor (f) = 1 Enemy factor (e) = 1

MVO Population number (Np) = 50 wormhole existence probability (WEP) ∶ WEPmax = 1, WEPmin = 0.2 coefficient (P) = 6

WSA Population number (Np) = 50 territory size (Pt) = 25 Attraction probability (Pro) = 0.5

SPO Population number (Np) = 20
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are suitable for evaluating exploitation capacity of the algo-
rithm. As a result, these findings demonstrate SPO’s supe-
rior efficiency in terms of exploiting the optimum. Explora-
tion, on the other hand, is the search part that focuses on 
the unexploited search areas. The SPO explores the search 
space efficiency as well. To have a detailed view, investiga-
tion of the results of the multimodal functions with a lot of 
local optima that its number is exponentially increased with 
dimension, are suitable for checking the exploration ability 
of an algorithm. According to this, statistical results of the 
multimodal functions (F8–F23) indicate the high explora-
tion capability of SPO, where the first rank is gained by this 
method as depicted in Fig. 9c,d. This method outperforms 
GWO, SCA, MFO, DA and MVO on the majority of these 

functions. Moreover, SPO indicates very competitive results 
compared to WSA and GSA; and outperforms them as well.

4.1.2 � CEC‑C06 2019 benchmark test functions

As an additional evaluation of the SPO, a group of 10 mod-
ern CEC-C06 2019 benchmark test functions are used. These 
functions are enhanced for a single objective optimization 
problem [44] and are referred to as ‘The Task of 100 Digits’ 
which are intended for annual optimization competitions. 
Functions CEC04 to CEC10 are shifted and rotated, while 
functions CEC01 to CEC03 are not. Table 9 shows the 
details of these functions. In addition, all test functions are 
scaled. Five modern and well-cited algorithms, DA [45], 

Table 5   The statistical results of 
benchmark functions F1-F7

Bold values are related to the best results obtained by the selected algorithms
*  Algorithm found Global Optimum

No GSA GWO SCA MFO DA MVO WSA SPO

F1 AVE 2.53E−16 6.59E−28 1.94E−16 2000 101.3336 0.022462 0∗ 0∗

SD 9.67E−17 6.34E−05 9.45E−16 4068.381 96.58759 0.006160 0 0
F2 AVE 0.055655 7.18E−17 1.28E−18 28.66667 7.530338 8.877180 4.89E−28 0∗

SD 0.194074 0.029014 4.59E−18 15.69831 6.143436 33.74294 1.94E-27 0
F3 AVE 896.534 3.29E−06 650.4789 16,833.44 6410.172 1.916605 0.014089 6.105E-11

SD 318.9559 79.14958 1248.101 12,520.75 5456.428 0.706664 0.011180 8.055E-07
F4 AVE 7.35487 5.61E−07 1.335270 45.80769 5.930244 0.218609 0.000490 0.0020

SD 1.741452 1.315088 1.828663 13.34950 7.065519 0.093077 0.000354 0.0028
F5 AVE 67.54309 26.81258 27.51712 18,268.11 2890.214 176.5168 32.42146 6.9216

SD 62.22534 69.90499 0.556120 36,497.23 3939.582 253.5243 29.52849 17.9523
F6 AVE 2.5E−16 0.816579 3.720126 1340.033 127.2942 0.018740 0∗ 0∗

SD 1.74E−16 0.000126 0.334225 3474.982 101.2584 0.005324 0 0
F7 AVE 0.089441 0.002213 0.00598 1.375182 0.067759 0.005043 0.006433 0.00526

SD 0.04339 0.100286 0.00590 3.577760 0.050227 0.001798 0.001839 0.00416

Table 6   The statistical results of 
benchmark functions F8-13

Bold values are related to the best results obtained by the selected algorithms
*  Algorithm found Global Optimum

No GSA GWO SCA MFO DA MVO WSA SPO

F8 AVE − 2821.07 − 6123.1 − 4314.06 − 8732.63 − 6793.96 − 7918.0 − 9354.74 − 2634.73
SD 493.0375 4087.44 255.6938 1072.626 989.3598 782.706 653.1757 375.3053

F9 AVE 25.96841 0.310521 1.83186 148.5348 60.4525 112.474 40.56002 35.7204
SD 7.470068 47.35612 6.96691 40.87507 27.58083 35.2363 10.78416 10.8194

F10 AVE 0.062087 1.06E-13 12.38263 9.7306 5.09027 0.15472 1.88E-14 0.2067
SD 0.23628 0.077835 9.10541 9.74539 2.14984 0.40645 4.52E-15 0.4319

F11 AVE 27.70154 0.004485 0.00786 21.14255 1.9369 0.10271 0.016042 0.0042
SD 5.040343 0.006659 0.02831 45.56648 1.57439 0.03706 0.020111 0.0064

F12 AVE 1.799617 0.053438 0.3975 0.25016 2.68162 0.20096 0∗ 0∗

SD 0.95114 0.020734 0.13269 0.48244 5.13881 0.37664 0 0
F13 AVE 8.899084 0.654464 2.06867 1.37E + 7 10.19126 0.01012 0∗ 0∗

SD 7.126241 0.004474 0.13673 7.49E + 7 11.45285 0.01326 0 0
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WOA [46], BOA [47], CSO [48] and SSA [49], are selected 
to compare their results to the SPO. Table 10 presents the 
outcomes of all algorithms in the form of mean and standard 
deviations. The results show that the SPO algorithm can 
produce highly satisfactory results and it is ranked first in 
four of ten CEC-C06 benchmark functions.

4.1.3 � Convergence behavior of SPO

A significant feature of metaheuristics is convergence speed 
or convergence rate. According to Berg et al. [50], abrupt 
changes in search agent movement should occur during the 
initial optimization steps. This allows a metaheuristic to 
thoroughly explore the search space. Then, these changes 
should be reduced to emphasize exploitation at the end of 
optimization [11]. The convergence cure of all 23 bench-
mark functions is shown in Fig. 10. Obviously, in many 
problems, the new algorithm has the highest rate of conver-
gence. Besides, in the first, second, and fourth column of 

Fig. 10, perspective views, contour views, search color his-
tory on all 23 benchmark functions are shown, respectively. 
The initial steps of iterations change suddenly, which are 
slowly decreased during this time. This conduct will ensure 
that the algorithms ultimately converge to a point in search 
space according to Berg et al. [50].

Position of new solutions in different iterations can 
provide an insight into convergence behavior of the algo-
rithm. To fulfill this aim, the function nine (F9) as the 
test function with many local optimums is selected to be 
investigated with more details. The paints (solutions) are 
distributed randomly in the search space (canvas) at the 
beginning of the optimization. Figure 11 indicates the cur-
rent positions of paints during the iteration phases. The 
solutions are collected almost after 20 iterations on the 
core sections that have almost optimum objectives. Some 
solutions display some local optimal in iteration 40, and 
some others explore the search space yet. Most of the 

Table 7   The statistical results of benchmark functions F14-23

Bold values are related to the best results obtained by the selected algorithms
*  Algorithm found Global Optimum

No GSA GWO SCA MFO DA MVO WSA SPO

F14 AVE 5.859838 4.042493 1.794415 1.525135 1.757204 1.560495 0.998004 0.9985
SD 3.831299 4.252799 1.892839 1.34095 1.289434 0.810885 1.13E−16 5.521E-04

F15 AVE 0.003673 0.000337 0.001134 0.00092 0.001832 0.003426 0.000549 0.0003074∗

SD 0.001647 0.000625 0.00035 0.000284 0.001337 0.006762 0.00032 1.581E−08
F16 AVE −1.03163∗ −1.03163∗ − 1.03156 −1.03163∗ −1.03163∗ −1.03163∗ −1.03163∗ −1.03163∗

SD 4.88E−16 1.03163 7.79E−05 6.78E−16 2.70E−14 1.47E-06 5.68E−16 7.87E−06
F17 AVE 0.397887∗ 0.397889 0.403152 0.397887∗ 0.397887∗ 0.39789 0.397887∗ 0.397887∗

SD 0 0.397887 0.007668 0 6.48E-15 3.98E-06 0 0
F18 AVE 3∗ 3.000028 3.000109 3∗ 3∗ 3.000014 3∗ 3∗

SD 4.17E−15 3 0.000124 2.04E−15 4.13E−09 1.23E−05 2.91E−15 1.676E−14
F19 AVE −3.86278∗ −3.86263 − 3.85388 −3.86278∗ −3.86071 −3.86278∗ −3.86278∗ −3.86278∗

SD 2.29E−15 3.86278 0.002132 2.71E−15 0.003279 2.83E−06 2.46E−15 2.25E−08
F20 AVE − 3.31778 − 3.28654 − 2.94575 − 3.22824 − 3.23633 − 3.25038 − 3.25066 −3.3204∗

SD 0.023081 3.25056 0.320805 0.053929 0.081325 0.059472 0.059241 3.164E−04
F21 AVE − 5.95512 − 10.1514 − 3.37565 − 7.30772 − 6.01288 − 7.80433 − 6.72819 − 9.4450

SD 3.737079 9.14015 2.046341 3.400748 2.150163 3.018852 3.378711 1.6558
F22 AVE − 9.68447 − 10.4015 − 4.06593 − 8.17415 − 6.47641 − 8.32628 − 7.35819 −10.4028∗

SD 2.014088 8.58441 1.942808 3.250245 2.735904 3.062084 3.609873 3.5E−05
F23 AVE − 10.5346 − 10.5343 − 4.667 − 8.66814 − 6.24959 − 9.02186 − 8.30703 − 10.5190

SD 2.6E−15 8.55899 1.758723 3.183513 2.475969 2.584132 3.499898 1.3832

Table 8   Algorithm performance 
comparison on benchmark 
functions 1–23

Bold values are related to the best results obtained by the selected algorithms

Algorithm GSA GWO SCA MFO DA MVO WSA SPO

No. found global optimum 4 1 0 4 3 2 8 12
No solution better than others 5 4 0 4 4 2 9 14
Total score 9 5 0 8 7 4 17 26
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solutions are located on the local optima at iteration 60. 
Iteration 80 shows that they all are located near the global 
optimum result. Finally, the optimal point in iteration 100 
is exploited by the paints.

4.1.4 � Non‑parametric Wilcoxon test

The comparison of algorithms based on mean and standard 
deviation (statistical criteria), does not usually compare 
all runs since the superiority is still possible. Therefore, a 
non-parametric regression test was conducted to compare 
the outcomes of each run and decide on the importance 
of the outcomes. In this work, the Wilcoxon test was used 

to determine the significance of the results as a non-para-
metric statistical test. The p − values at 0.05 obtained from 
this test are illustrated in Table 11, which demonstrates 
the noticeable superiority of the SPO to other algorithms 
based on p − values , which are of less than 0.05.

4.2 � Structural problems for SPO

Optimization of the structures involves achieving optimal 
cross-section (Ai) values that minimize structural weight 
( W ). This minimum design also has to follow the numerous 
requirements that limit parameter design sizes and structural 
responses:

Fig. 8   Comparison of statistical ranks for 23 benchmark functions: (a) Total standard deviation and (b) Total Average
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where {X} the vector of design variables, ng is the number of 
design variables, the structure weight is described as W({x}) , 

Find {X} = [x1,x2,… , xng]

MinimizeW({x}) =
∑nm

i=1
�i,Ai, Li(x)

(6)Subjected to

⎧
⎪⎨⎪⎩

gj({X}) ≤ 0j = 1, 2, 3,… , ns

Amin ≤ Ai ≤ Amax

the number of structural members is presented by nm and 
the number of the constraints is described as ns . Here, the 
member’s material density is presented by �i , the member’s 
length is Li , Ai is the member’s cross-sectional area and 
gj({X}) denotes design constraints, respectively. The well-
known penalty function due to the simple principle and ease 
of implementation is utilized for handling the constraints as:

(7)

fpenalty(X) = (1 + �1.�)
�2

� =

n∑
i=1

max[0, �i]

Fig. 9   Comparison of mean ranks: (a) average of F1-F7 functions, (b) standard deviation of F1-F7 functions, (c) average of F8-23 functions and 
(d) standard deviation of F8-F23 functions

Table 9   CEC-C06 2019 
benchmark functions

Bold values are related to the best results obtained by the selected algorithms

No Function Dim Range fmin

CEC1 Storn’s chebyshev polynomial fitting problem 9 [− 8192, 8192] 1
CEC2 Inverse hilbert matrix problem 16 [− 16384, 16384] 1
CEC3 Lennard–Jones minimum energy cluster 18 [− 4,4] 1
CEC4 Rastrigin’s function 10 [− 100, 100] 1
CEC5 Griewangk’s function 10 [− 100, 100] 1
CEC6 Weierstrass function 10 [− 100, 100] 1
CEC7 Modified Schwefel’s function 10 [− 100, 100] 1
CEC8 Expanded Schaffer’s f6 function 10 [− 100, 100] 1
CEC9 Happy cat function 10 [− 100, 100] 1
CEC10 Ackley function 10 [− 100, 100] 1
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where, the sum of the constraints broken is � and constants 
�1 and �2 are selected considering the exploration and the 
exploitation rate of the search space. Here,�1 is set to 1, �2 is 
selected in a manner to decrease the penalties and reduce the 
cross-sectional areas. Then, �2 is set to 1.5 at the start of the 
search process and is eventually elevated to 3 . This simple 
penalty function for handling the constraints is selected. The 
reasons are that it is simple principle and ease to implement. 
In addition, it has a small influence on the performance of 
the algorithm and in this way the evaluating the algorithm 
can be fair.

This section presents four structural optimization prob-
lems and their optimum designs obtained by the SPO algo-
rithm and compares those obtained by some other methods 
from literature. The results are based on 30 independent 
runs and 20 initial population size the same as the previ-
ous section. SPO is parameter-free, and only a change in 
population size is required.

4.2.1 � A 52‑bar planar truss structure

The details of 52-bar planar truss structures with twenty 
nodes are shown in Fig. 12. The members of this truss are 
classified into twelve groups. The density of the material is 
7860 kg∕m3 with the elasticity module of 2.07 × 105MPa . 
The maximum allowable stress in terms of both tension and 
compression for all members is 180MPa . Loads Px = 100kN 

and Py = 200kN are both applied in four top nodes. Dis-
crete variables are chosen from Table 12. Table 13 displays 
the results of the SPO algorithm, as well as other forms of 
optimization. It can be seen the MBA [54], SOS [55] and 
SPO algorithms can find better results than the GA [51], HS 
[52], and IACO [53]. The statistical results in terms of the 
mean, best solution and standard deviation are 1903.65 kg , 
1902.605 kg and 2.975 for the new algorithm, respectively 
which are the best among the other methods. Figure 13 
depicts the best and average convergence history for the SPO 
algorithm and some other methods. As it can be seen the 
best curve belongs to the SPO, and even the average history 
of the new algorithm performs better than the best history of 
some other utilized algorithms. The existence stress of the 
best solution of the SPO algorithm is shown in Fig. 14 that 
proves the feasibility of the final result.

4.2.2 � A 120‑bar dome truss structure

Soh and Yang [56] first studied the 120-bar dome truss 
to achieve the optimum size and then many research-
ers utilized it to evaluate their methods. In this paper, we 
select this well-known example as the second structure. 
The density of the material and its elasticity module are 
0.288 lb∕in3(7971.810 kg∕m3) and 30450 ksi(2.1 × 105MPa) , 
respectively and the yield stress is taken as 58 ksi(400 MPa) . 
Figure  15. displays all information about the 

Table 10   CEC-C06 2019 
benchmark test results

Bold values are related to the best results obtained by the selected algorithms

No CSO DA BOA WOA SSA SPO

CEC1 AVE 1.58E + 09 3.8E + 10 58,930.69 411E + 08 605E + 07 6.3E + 08
SD 1.71E + 09 4.03E + 10 11,445.72 542E + 08 475E + 07 2.79E + 08

CEC2 AVE 19.70367 83.73248 18.91597 17.3495 18.3434 17.34285
SD 0.58672 100.1326 0.291311 0.0045 0.0005 0

CEC3 AVE 13.70241 13.70263 13.70321 13.7024 13.7025 12.70240
SD 2.3E-06 0.000673 0.000617 0 0.0003 1.12E-09

CEC4 AVE 179.1984 371.2471 20,941.5 394.6754 41.6936 50,026.96
SD 55.37332 420.2062 7707.688 248.5627 22.2191 11.89894

CEC5 AVE 2.671378 2.571134 6.176949 2.7342 2.2084 6.375451
SD 0.171923 0.304055 0.708134 0.2917 0.1064 0.011634

CEC6 AVE 11.21251 10.34469 11.83069 1.0325 6.0798 9.133086
SD 0.708359 1.335367 0.771166 1.0325 1.4873 0.610547

CEC7 AVE 365.2358 534.3862 1043.895 490.6843 410.3964 251.9751
SD 164.997 240.0417 215.3575 194.8318 290.5562 43.37608

CEC8 AVE 5.499615 5.86374 6.337199 6.909 6.3723 5.842824
SD 0.484645 0.51577 0.359203 0.4269 0.5862 0.164953

CEC9 AVE 6.325862 8.501541 2270.616 5.9371 3.6704 4294.314
SD 1.295848 16.90603 811.4442 1.6566 0.2362 2.77E-12

CEC10 AVE 21.36829 21.29284 21.4936 21.2761 21.04 20.25560
SD 0.06897 0.176811 0.079492 0.1111 0.078 0.056284
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Fig. 10   Perspective views, counter view, convergence curves, convergence color positions of 23 benchmark functions
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Fig. 10   (continued)
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Fig. 10   (continued)
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120-bar dome. The dome is subjected to the vertical load-
ing at all free nodes as following: −13.49 kips(−60 kN)at 
node 1, −6.744 kips(−30 kN)at  nodes 2–14, and 
−2.248 kips(−10 kN) at the remaining nodes. Maximum dis-
placements for all nodes in x, y, and z coordinate directions 
are ±0.1969in(±5mm) . The cross-sectional areas are between 
0.775in2

(
5cm2

)
and20 in2(129.032cm2 ). This truss is classi-

fied as seven symmetric groups. The stress constraints accord-
ing to the AISC [57] is considered as:

where the modulus of elasticity is described by E , the slen-
derness ratio is defined by �i ; Cc is 

√
2�2E∕Fy and the yield 

stress of steel is Fy.
Table 14 compares the results of the SPO algorithm 

with the CSS [58], RO [59], CBO [60], CA [61]. The best 
weight of the present algorithm is 33250.06lb that is the best 
among the results of other methods. The convergence curve 
which is obtained for the 120-bar truss problem is shown 
in Fig. 16. The statistical results in terms of the mean and 
standard deviation are 33,263.38 lb , and 27.65, respectively. 

(8)
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Figure 17 also depicts the existence stress of the best out-
comes obtained through SPO.

4.2.3 � A 3‑bay 15‑story frame

This example is a steel frame with 105 members divided 
into 11 groups as shown in Fig. 18. The modulus of elas-
ticity, the yield stress and unit weight of its construc-
tional steel are 29Msi (200GPa) , 36ksi (248.2MPa) and 
0.283lb∕in3(7.85ton∕m3) , respectively. The effective length 
factors of the members are calculated as Kx ≥ 0 for a sway-
permitted frame and the out-of-plane effective length fac-
tor is specified as Ky = 1 . For columns, the members are 
considered non-braced along their length, and for beams, 
the unbraced length is defined as one-fifth of the span 
length.

Table 15 presents the best solution for the SPO and 
some other meta-heuristic algorithms. The SPO has found 
the lightest design compared to other considered algo-
rithms. The convergence histories of SPO is depicted 
in Fig. 19. It can be seen that the SPO obtains the best 
design results which is the lightest among those obtained 
by the ICA [62], CSS [63], DE [64], WEO [65] and CBO 
[60]. Results of the standard deviation and average of the 
SPO, reported in Table 15, are less than those of the other 
methods. Figures 20 and 21 depict the existing stress 
ratios and ratio of inter-story drifts to allowable inter-
story drifts for the best designs of the present algorithm, 
respectively.

Fig. 10   (continued)
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Fig. 11   The position of solutions of the SPO algorithm in different iterations



	 Engineering with Computers

1 3

4.2.4 � A 3‑bay 24‑story frame

This example is a frame structure that consists of 100 joints 
and 168 members, Fig. 22. The gravity loads and lateral 
loads are applied to this structure. The material properties 
of steel are: modulus of elasticity (E) = 29Msi(200GPa) , 
yield stress (Fy) = 36ksi(248.2MPa) , and unit weight of the 
steel (q) = 0.283lb∕in3(7.85ton∕m3) . Similar to the previ-
ous example, the effective length factors of the members 
are calculated as Kx ≥ 0 for a sway-permitted frame and the 

out-of-plane effective length factor is specified as Ky = 1 . 
The columns are considered as non-braced along their 
length, and the unbraced length for beam members are con-
sidered as one-fifth of the span length. To impose fabrication 
conditions, the beams of the first and third bay except the 
roof are categorized in one group, which results in four beam 
groups. The exterior columns are categorized into one group 
and the interior columns are considered together in another 
group that changes in every three stories. This grouping 
results in 16 column groups chosen from 267 W-shape sec-
tions and 4 beam groups selected from 37 W14 sections.

Table 11   Obtained results from the Wilcoxon test

Compared algorithm Unimodal 
functions

Multimodal 
functions

Fixed-dimen-
sion functions

SPO vs. GSA 0.0156 0.3125 0.1562
SPO vs. GWO 0.4688 0.6875 0.9575
SPO vs. SCA 0.0156 0.3125 0.0020
SPO vs. MFO 0.0156 0.0312 0.0312
SPO vs. DA 0.0156 0.0312 0.0469
SPO vs. MVO 0.0312 0.0938 0.0156
SPO vs. WSA 0.3125 0.3750 0.0312

Fig. 12   The 52-bar planar truss structure

Table 12   The available cross-section areas of the AISC code

No in
2 mm

2 No in
2 mm

2

1 0.111 71.613 33 3.84 2477.414
2 0.141 90.968 34 3.87 2496.796
3 0.196 126.451 35 3.88 2503.221
4 0.25 161.29 36 4.18 2696.769
5 0.307 198.064 37 4.22 2722.575
6 0.391 252.258 38 4.49 2896.768
7 0.442 285.161 39 4.59 2961.284
8 0.563 363.225 40 4.8 3096.768
9 0.602 388.386 41 4.97 3206.445
10 0.766 494.193 42 5.12 3303.219
11 0.785 506.451 43 5.74 3703.218
12 0.994 641.289 44 7.22 4658.055
13 1 645.1 45 7.97 5141.925
14 1.228 792.256 46 8.53 5503.215
15 1.266 816.773 47 9.3 5999.988
16 1.457 939.998 48 10.85 6999.986
17 1.563 1008.385 49 11.5 7419.43
18 1.62 1045.159 50 13.5 8709.66
19 1.8 1161.288 51 13.9 8967.724
20 1.99 1283.868 52 14.2 9161.272
21 2.13 1374.191 53 15.5 9999.98
22 2.38 1535.481 54 16 10,322.56
23 2.62 1690.319 55 16.9 10,903.204
24 2.63 1696.771 56 18.8 12,129.008
25 2.88 1858.061 57 19.9 12,838.684
26 2.93 1890.319 58 22 14,193.52
27 3.09 1993.544 59 22.9 14,774.164
28 3.13 2019.351 60 24.5 15,806.42
29 3.38 2180.641 61 26.5 17,096.74
30 3.47 2238.705 62 28 18,064.48
31 3.55 2290.318 63 30 19,354.8
32 3.63 2341.931 64 33.5 21,612.86
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As can be seen from Table 16, the SPO has the best per-
formance for this frame structure. Figure 23 shows the con-
vergence histories of SPO. The values of stress correspond-
ing to the optimum design of the SPO is shown in Fig. 24. 
The best optimal design obtained by the SPO is compared 
with the results of the ACO [66], HS [67], CBO [14], MFO 

[68], and DE [64] in Table 16. The results indicate that 
the optimum design found by the SPO is lighter than the 
designs obtained by mentioned algorithms. It is observed 
from Table 16 that the average result of the SPO is less than 
those of other algorithms. The ratio of inter-story drifts to 

Table 13   Comparison of the 
best design of a 52-bar planar 
truss

Bold values are related to the best results obtained by the selected algorithms

Variables ( mm2) GA HS IACO MBA SOS SPO

1 A1–A4 4658.055 4658.055 4658.055 4658.055 4658.055 4362.809
2 A5–A10 1161.288 1161.288 1161.288 1161.288 1161.288 1183.522
3 A11–A13 645.16 506.451 494.193 494.193 494.193 472.3992
4 A14–A17 3303.219 3303.219 3303.219 3303.219 3303.219 3376.682
5 A18–A23 1045.159 940 939.998 940 940 960.7271
6 A24–A26 494.193 494.193 494.193 494.193 494.193 460.2587
7 A27–A30 2477.414 2290.318 2238.705 2238.705 2238.705 2242.198
8 A31–A36 1045.159 1008.385 1008.385 1008.385 1008.385 985.7185
9 A37–A39 285.161 2290.318 506.451 494.193 494.193 478.5356
10 A40–A43 1696.771 1535.481 1283.868 1283.868 1283.868 1273.351
11 A44-A49 1045.159 1045.159 1161.288 1161.288 1161.288 1151.923
12 A50–A52 641.289 506.451 494.193 494.193 494.193 455.6053
Best Weight (kg) 1970.142 1906.76 1903.183 1902.605 1902.605 1902.605
Average weight (kg) N/A N/A N/A 1906.076 N/A 1903.65
Standard Deviation N/A N/A N/A 4.09 N/A 2.975

Fig. 13   Convergence history of the SPO and the other utilized algorithms for the 52-bar planar truss structure
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allowable inter-story drifts for this frame which is obtained 
by the SPO is illustrated in Fig. 25.

5 � Conclusion and future work

This study proposed the SPO algorithm as a new optimi-
zation meta-heuristic. the new algorithm is based on the 
idea of painting a beautiful picture than needs to select the 
correct color carefully. Three main categories are known 
for colors and four techniques (analogous, complemen-
tary, triadic, and tetradic) were utilized by painters for 
creating required colors. These categories and techniques 
are utilized in this paper to generate new colors of paints 
as solution. for providing a good balancing of explora-
tion and exploitation of the algorithm, these techniques 
are modified using some stochastic manners. In this way, 
without increasing the difficulty of the algorithm, a good 
performance of the algorithm is guaranteed. The resultant 
algorithm, the SPO, has no parameter to be adjusted and 
it works with a low initial population size. To sum up, this 
method is developed based on some important concepts 
from the field of optimization:

–	 Its basic fundamental idea has an optimization process 
in its heart. The painters try to find the best color to 
paint a beautiful picture and therefore combining dif-
ferent colors should be performed in a heuristic man-
ner. As a result, the formulation of this process will 
result in an optimization algorithm.

–	 Two major futures of the optimization algorithms, i.e. 
exploitation and exploration, are considered and man-
aged in this algorithm. Using the best, average and 
worst results in the combination process plays the main 
role in this regard.

–	 Dividing the colors into three different categories is 
also useful. When one needs to enhance the explora-
tion, using all these categories together will help and 
if one wants to improve the exploitation, the best cat-
egory will be incorporated.

–	 This algorithm is a population-based method; there-
fore, it can avoid being trapped in local optima and 
high exploration is achievable for it compared to the 
individual-based algorithm.

–	 Abrupt changes also assist in resolving local optimal 
stagnations. The position of colors in each iteration is 
compared to the best colors obtained so far, to provide 

Fig. 14   The limits and existing values of the element stresses for the 52-bar planar truss obtained by the SPO
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Fig. 15   The 120-bar dome truss structure
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Table 14   Comparison of the 
best design of a 120-bar dome 
truss

Bold values are related to the best results obtained by the selected algorithms

No. Group CSS RO CBO WEO CA SPO

1 3.027 3.030 3.027 3.024 3.025 3.024
2 14.606 14.806 15.172 14.794 14.7652 14.763
3 5.044 5.440 5.234 5.061 5.084 5.100
4 3.139 3.124 3.119 3.135 3.135 3.135
5 8.543 9.021 8.103 8.487 8.438 8.466
6 3.367 3.614 3.416 3.288 3.356 3.292
7 2.497 2.487 2.491 2.496 2.496 2.496
Best Weight (lb) 33,251.9 33,317.8 33,256.15 33,250.24 33,250.95 33,250.061
Average weight (lb) N/A N/A 33,284.19 33,255.55 N/A 33,263.38
Standard Deviation N/A 354.33 31.40 N/A N/A 27.65

Fig. 16   Convergence history of the SPO and the other utilized algorithms for the 120-bar dome truss structure

Fig. 17   The limits and existing values of the element stresses for the 120-bar dome truss obtained by the SPO
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Fig. 18   The 3 bay-15 story 
frame
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a tendency toward the better regions of the search space 
during optimization.

–	 The SPO algorithm has no parameter to adjust.

Different mathematical and structural examples are con-
sidered for evaluating the performance of the new algorithm. 
The good results of SPO in benchmark functions (F1–F7) 

show the performance of the SPO algorithm in terms of 
exploitation and local optima avoidance. Moreover, SPO 
has a competitive ability to explore the multimodal topo-
graphical spaces with many local optimums and finds the 
near-global optimum. In addition, the convergence curve 
of 23 benchmark functions shows SPO’s high rate of con-
vergence. The results of the CEC-C06 2019 benchmark 

Table 15   Comparison of the 
best design of 3 bay-15 story 
frame

Bold values are related to the best results obtained by the selected algorithms

Group No. ICA CSS DE WEO CBO SPO

1 W24 × 117 W21 × 147 W12 × 87 W14 × 90 W24 × 104 W24 × 104
2 W21 × 147 W18 × 143 W36 × 182 W36 × 170 W40 × 167 W36 × 150
3 W27 × 84 W12 × 87 W21 × 93 W30 × 90 W27 × 84 W12 × 87
4 W27 × 114 W30 × 108 W18 × 106 W24 × 104 W27 × 114 W24 × 104
5 W14 × 74 W18 × 76 W18 × 65 W24 × 68 W21 × 68 W27 × 84
6 W18 × 86 W24 × 103 W14 × 90 W12 × 87 W30 × 90 W14 × 82
7 W12 × 96 W21 × 68 W10 × 45 W18 × 48 W8 × 48 W18 × 60
8 W24 × 68 W14 × 61 W12 × 65 W14 × 68 W21 × 68 W14 × 61
9 W10 × 39 W18 × 35 W6 × 25 W10 × 33 W14 × 34 W10 × 33
10 W12 × 40 W10 × 33 W10 × 45 W16 × 45 W8 × 35 W16 × 36
11 W21 × 44 W21 × 44 W21 × 44 W21 × 44 W21 × 50 W21 × 44
Best Weight (lb) 93,846 92,723 88,878 88,710 93,795 88,549.7
Average weight (lb) N/A N/A N/A 90,649 98,738 90,356
Standard Deviation N/A N/A N/A N/A N/A 865.36

Fig. 19   Convergence history of the SPO and the other utilized algorithms for the 3–15 story frame
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Fig. 20   The limits and existing values of the element stress ratios for the 3 bay-15 story frame obtained by the SPO

Fig. 21   The inter-story drift to allowable inter-story drift of the 3 bay-15 story frame obtained by the SPO
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Fig. 22   The 3 bay-24 story 
frame



Engineering with Computers	

1 3

Table 16   Comparison of the 
best design of a 3 bay- 24 story 
frame

Bold values are related to the best results obtained by the selected algorithms

Group No. ACO HS CBO MFO DE SPO

1 W30 × 90 W30 × 90 W27 × 102 W30 × 90 W30 × 90 W30 × 90
2 W8 × 18 W10 × 22 W8 × 18 W14 × 22 W6 × 20 W21 × 48
3 W24 × 55 W18 × 40 W24 × 55 W24 × 55 W21 × 44 W21 × 48
4 W8 × 21 W12 × 16 W6 × 8.5 W6 × 9 W6 × 9 W14 × 74
5 W14 × 145 W14 × 176 W14 × 132 W14 × 159 W14 × 159 W14 × 145
6 W14 × 132 W14 × 176 W14 × 120 W14 × 109 W14 × 145 W14 × 120
7 W14 × 132 W14 × 132 W14 × 145 W14 × 120 W14 × 132 W14 × 109
8 W14 × 132 W14 × 109 W14 × 82 W14 × 74 W14 × 99 W14 × 74
9 W14 × 68 W14 × 82 W14 × 61 W14 × 68 W14 × 68 W14 × 53
10 W14 × 53 W14 × 74 W14 × 43 W14 × 61 W14 × 61 W14 × 48
11 W14 × 43 W14 × 34 W14 × 38 W14 × 38 W14 × 43 W14 × 30
12 W14 × 43 W14 × 22 W14 × 22 W14 × 26 W14 × 22 W14 × 30
13 W14 × 145 W14 × 145 W14 × 99 W14 × 109 W14 × 109 W14 × 120
14 W14 × 145 W14 × 132 W14 × 109 W14 × 109 W14 × 109 W14 × 109
15 W14 × 120 W14 × 109 W14 × 82 W14 × 109 W14 × 90 W14 × 99
16 W14 × 90 W14 × 82 W14 × 90 W14 × 99 W14 × 82 W14 × 99
17 W14 × 90 W14 × 61 W14 × 74 W14 × 82 W14 × 74 W14 × 90
18 W14 × 61 W14 × 48 W14 × 61 W14 × 53 W14 × 43 W14 × 61
19 W14 × 30 W14 × 30 W14 × 30 W14 × 43 W14 × 30 W14 × 38
20 W14 × 26 W14 × 22 W14 × 22 W14 × 26 W14 × 26 W14 × 22
Best Weight (lb) 220,465 214,860 215,874 207,793 205,084 205,055
Average weight (lb) 229,555 222,620 225,071 N/A N/A 215,678
Standard Deviation N/A N/A N/A N/A N/A 4380.65

Fig. 23   Convergence history of the SPO and the other utilized algorithms for the 3bay-24 story frame
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functions showed the ability of the SPO algorithm in solving 
the large-scale optimization problems. Finally, the algorithm 
is applied to four structural designs in engineering and can 
find the optimal costs for these difficult problems. Future 
studies will focus on creating different versions of the SPO 
such as binary, multi-objective versions of this algorithm 
and using in real large-scale structures problems such as 
truss and frame with frequency constraints. Besides, various 
chaotic graphs, hybrid variants can be used to improve the 
existing algorithm.
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