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Abstract

This paper presents a novel nature-inspired optimization paradigm, named as squirrel search algorithm
(SSA). This optimizer imitates the dynamic foraging behaviour of southern flying squirrels and their effi-
cient way of locomotion known as gliding. Gliding is an effective mechanism used by small mammals for
travelling long distances. The present work mathematically models this behaviour to realize the process of
optimization. The efficiency of the proposed SSA is evaluated using statistical analysis, convergence rate
analysis, Wilcoxon’s test and ANOVA on classical as well as modern CEC 2014 benchmark functions. An
extensive comparative study is carried out to exhibit the effectiveness of SSA over other well-known opti-
mizers in terms of optimization accuracy and convergence rate. The proposed algorithm is implemented on
a real-time Heat Flow Experiment to check its applicability and robustness. The results demonstrate that
SSA provides more accurate solutions with high convergence rate as compared to other existing optimizers.

Keywords: Nature-inspired algorithm, Unconstrained optimization, Squirrel search algorithm

1. Introduction

Optimization is the process of searching the best possible solution for a particular problem, under given
circumstances. In recent years several real-world complex optimization problems have emerged in various
fields of engineering [1, 2], business and economics [3] which cannot be solved within adequate time or
accuracy by classical methods. There exist abundant mechanisms and principles in nature, which may be
used to design computational intelligence methods so as to address such optimization problems. In the past
few decades, researchers have developed several nature-inspired optimization algorithms, which imitate some
biological behaviour or physical phenomena. For instance, Holand et al. [4] proposed genetic algorithm (GA)
based on the concept of survival of fittest i.e. Darwinian theory of evolution. GA is one of the most renowned
population based optimization technique. Kirkpatrick et al. [5] designed a single solution based optimization
technique inspired from annealing phenomenon of metallurgy called as simulated annealing (SA). Particle
swarm optimization (PSO) [6], ant colony optimization (ACO) [7] and artificial bee colony (ABC) [8] are
other innovative distributed intelligent paradigms for solving the complex optimization problems inspired
from the social behaviour of birds, colonizing species such as ants and honey bees respectively. These
optimization methods are well appreciated by scientific community of computational intelligence, as they
outperformed the classical heuristic methods, especially in case of multimodal, discrete and non-differential
complex optimization problems. Moreover, these algorithms have been successfully employed in various
fields of science such as process control [9], biomedical signal processing [10], image processing [11], flexible
job shop scheduling [12] and many other engineering design problems [13, 14].
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Nature-inspired algorithms can be broadly classified into three main categories: evolutionary algorithms
(EA), swarm intelligence (SI) and physics-based (PB) algorithms. EAs imitate the evolutionary behaviour
of creatures found in nature. The search algorithms start with randomly generated solutions, generally
termed as population, which further evolves over successive generations. Best individuals are combined to
form new generation, which is the main strength of EAs as it promotes the improvement of population
over the course of iterations. GA as well as differential evolution (DE) [15] algorithms can be considered as
the most standard form of EAs. The second category is swarm intelligence based techniques, which mimic
the intelligent social behaviour of groups of animals. Generally, SI based algorithms gather and utilize full
information about search space with the progress of algorithm, while such information is abandoned by EAs
from generation to generation. PSO, ACO and ABC can be described as representative algorithms in SIs.
Some of the recent SIs are cuckoo search (CS) [16], grey wolf optimizer (GWO) [17], dragonfly algorithm
(DA) [18] and many more [19]. The physics-based algorithms are inspired from basic physical laws that
exist in universe. Some of the prevailing methods of this category are SA, gravitational search algorithm
(GSA) [20], multi-verse optimizer (MVO) [21] and charged system search (CSS) [22]. A brief literature
review on nature-inspired algorithms is presented in Table 1.

Table 1
Brief literature review on nature-inspired optimization algorithms

Algorithm Inspiration Year

Genetic Algorithm (GA) [4] Evolution 1975

Simulated Annealing (SA) [5] Annealing process in matallurgy 1983

Particle Swarm Optimization (PSO) [6] Intelligent social behaviour of bird flock 1995

Artificial Fish-Swarm Algorithm (AFSA) [23] Collective intelligence of fish swarm 2003

Termite Algorithm [24] Termite colony 2006

Ant colony optimization (ACO) [7] Ant colony 2006

Artificial bee colony (ABC) [8] Honey Bee 2006

Imperialist competitive algorithm (ICA) [25] Imperialistic competition 2007

Monkey search (MS) [26] Monkey climbing process on trees while looking for food 2007

Group Search Optimizer (GSO) [27] Animal searching (foraging) behaviour 2009

Firefly algorithm (FF) [28] Social behaviour of fireflies 2009

Gravitational Search Algorithm (GSA) [20] Law of gravity and mass interactions 2009

Bat algorithm (BA) [29] Echolocation behaviour of bats 2010

Flower pollination algorithm (FPA) [30] Pollination process of flowering species 2012

Fruit fly Optimization Algorithm (FFOA) [31] Fruit foraging behaviour of fruit fly 2012

Krill Herd (KH) [32] Herding behaviour of krill individuals in nature 2012

Mine blast algorithm (MBA) [33] Mine bomb explosion 2013

Dolphin Echolocation (DE) [34] Echolocation ability of dolphins 2013

Lightning search algorithm (LSA) [35] Natural phenomenon of lightning 2015

Dragonfly algorithm (DA) [18] Static and dynamic swarming behaviours of dragonflies 2015

Artificial algae algorithm (AAA) [36] Living behaviours of microalgae 2015

Ant Lion Optimizer (ALO) [37] Hunting mechanism of antlions in nature 2015

Shark Smell Optimization (SSO) [38] Ability of shark in finding its prey by smell sense 2016

Dolphin Swarm Optimization Algorithm (DSOA) [39] Mechanism of dolphins in detecting, chasing and preying on swarms of sardines 2016

Virus colony search [40] Virus infection and diffusion strategies 2016

Whale Optimization Algorithm (WOA) [41] Social behaviour of humpback whales 2016

Multi-Verse Optimizer (MVO) [21] Multi-verse theory 2016

Crow search algorithm (CSA) [42] Intelligent food hiding behaviour of crows 2016

Salp swarm algorithm [43] Swarming behaviour of salps during navigating and foraging in oceans 2017

Grasshopper optimisation algorithm [44] Swarming behaviour of grasshoppers 2017

Selfish herd optimizer (SHO) [45] Hamilton’s selfish herd theory 2017

Electro-Search algorithm [46] Orbital movement of the electrons around the atomic nucleus 2017

Thermal exchange optimization [47] Newton’s law of cooling 2017

Mouth Brooding Fish algorithm [48] Life cycle of mouth brooding fish 2017

Weighted Superposition Attraction (WSA) [49] Superposition principle 2017

Spotted hyena optimizer [50] Social behaviour of spotted hyenas 2017

Butterfly-inspired algorithm [51] Mate searching mechanism of butterfly 2017

Lightning Attachment Procedure Optimization [52] Lightning attachment process 2017

Apart from this, recently various modifications are also proposed in the basic versions of existing nature-
inspired algorithms for solving complex optimization problems. As an illustration, slow convergence rate
of ABC algorithm is improved in the variant IABC (improved ABC) [53] and tested on several reliability
optimization problems. The same issue is resolved by incorporation of improved global best guiding mecha-
nism in ABC [54] and improved exploitation capability is also achieved through adaptive limit mechanism.
Higher accuracy with quick convergence characteristic is claimed by co-variance guided ABC [55] while
solving portfolio optimization problem. Likewise, the performance of basic DE is improved for large scale
optimization problems by embedding a simple switching mechanism for two control parameters of DE [56].
The issue of low convergence efficiency of basic cuckoo search algorithm is resolved by integrating chaos
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mechanism and the resulting improved cuckoo search (ICS) is successfully applied to optimization problem
of visible light communications (VLC) in smart homes [57]. Successful application of fuzzy logic in diversified
fields of science has gained significant attraction of metaheuristic developers and hence various optimization
algorithms are improved by utilizing the advantages of fuzzy logic principles. In this context, some of the
relevant developments are: fuzzy harmony search algorithm [58], fuzzy imperialist competitive algorithm
with dynamic parameter adaptation [59], fuzzy based water cycle algorithm [60], hierarchical GWO algo-
rithm [61], interval type-2 fuzzy logic based bat algorithm [62] and type-2 fuzzy logic based ant colony
optimization algorithm [63] etc. In a similar fashion, principles of quantum computing are incorporated
in metaheuristics design and improved performance is claimed through various studies. Quantum inspired
binary grey wolf optimizer [64], hybrid quantum-inspired genetic algorithm (HQIGA) [65] and quantum
inspired particle swarm optimization (QPSO) [66] are some examples of research in this area. All nature-
inspired algorithms possess some common characteristics like: (i) they imitate some natural phenomenon (ii)
they do not demand gradient information (iii) Employ random variables (iv) and contain various parameters
which must be defined adequately to solve a problem [40]. Each algorithm offers distinctive benefits, from
the perspective of robustness, performance in the presence of uncertainty and unknown search spaces [40].

The advancement in technology also leads to several complex optimization problems. As an illustration,
increased usage of social networking websites, huge data volumes are generated every second, which presents a
new optimization problem of effective handling of user generated big data [67]. Another crucial optimization
problem is time-dependent pollution-routing problem [68], which is generated due to implementation of new
environmental legislations for cities having problem of congestion. Pollution level increases with congestion
due to increased emission of greenhouse gases by commercial vehicles of freight companies. In spite of the
existence of many prominent optimization algorithms in literature, scientific community is still developing
new optimization techniques for solving new and more complex optimization problems under the ideology
of continuous improvement in order to achieve better design. Moreover, in accordance with “no free lunch”
(NFL) theorem, there is no single nature-inspired optimization technique, which can optimally solve all
optimization problems [69]. This means that an optimization algorithm is competent for solving a certain
set of problems but ineffective on other class of problems [70]. The NFL theorem, certainly, keeps this domain
of research open and allows the researchers to improve the existing algorithms or propose new algorithms for
better optimization. Hence, the present study proposes a new simple and powerful nature-inspired algorithm
called squirrel search algorithm (SSA) for unconstrained numerical optimization problems. This algorithm
simulates the dynamic foraging strategy of southern flying squirrels and their efficient way of locomotion
known as gliding. The main contributions of the proposed work are as follows:

1. A novel nature-inspired squirrel search optimization algorithm is proposed. The foraging behaviour of
flying squirrels is studied thoroughly and modeled mathematically including each and every feature of
their food search.

2. The proposed algorithm is validated on 33 classical as well as modern CEC 2014 benchmark functions.

3. Rigorous comparative study is performed with existing nature-inspired optimization algorithms using
statistical analysis, convergence rate analysis, Wilcoxon’s test and ANOVA.

4. Robustness and effectiveness of SSA as well as other optimizers are investigated for optimization of
two degree of freedom proportional and integral (2DOFPI) controller for precise temperature control
of heat flow experiment (HFE).

The rest of this paper is organized as follows: Section 2 discusses the motivation of proposed algorithm.
In Section 3 basic concepts of SSA and its assumptions are discussed. Section 4 presents the details about
implementation of SSA. Section 5 presents the comparison of SSA with existing optimizers. Section 6
provides the comparative statistical analysis of results on standard benchmark functions. Section 7 provides
the real-time application of the proposed algorithm. Finally the work is concluded in Section 8.

2. Inspiration

Flying squirrels are a diversified group of arboreal and nocturnal type of rodents that are exceptionally
adapted for gliding locomotion. Currently, 15 genera and 44 species of flying squirrels are identified and
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majority of them are found in deciduous forest area of Europe and Asia, particularly South-eastern Asia.
The only species found outside Eurasia and most studied is Glaucomys volans known as southern flying
squirrel [71]. The flying squirrels are considered to be the most aerodynamically sophisticated having a
parachute-like membrane (patagia), which helps the squirrel in gliding from one tree to the other and makes
them capable in modifying lift and drag [72]. The most interesting fact about flying squirrels is that they do
not fly, instead they use a special method of locomotion i.e. “Gliding” which is considered to be energetically
cheap, allowing small mammals to cover large distances quickly and efficiently [72]. Literature suggests that
predator avoidance, optimal foraging and cost of foraging are the primary cause of evolution of gliding [73].
Fig. 1a shows the real image of flying squirrel while gliding and Fig. 1b shows the slow motion sequences of
flying squirrel before landing on a tree. The squirrels can optimally use food resources by showing a dynamic

(a) Just after gliding (b) Landing on a tree
Fig. 1. Real flying squirrel [74, 75]

foraging behaviour [76, 77]. For instance, to meet nutritional requirements in autumn, they prefer to eat
acorns (a mast nut) as they are available in abundance while store other nuts such as hickories in nests,
other cavities, and sometimes the ground. During winters when nutritional demands are higher due to low
temperature, hickory nuts are eaten promptly at the site of discovery during foraging and are also taken
out from reserve food stores. Therefore, selectively eating some nuts and storing others depending upon the
nutritional demands, allows optimum utilization of both types of available mast nuts [77]. This intelligent
dynamic foraging behaviour of southern flying squirrel is the main source of motivation for proposed SSA. In
this work dynamic foraging strategy and gliding mechanism of flying squirrels are modelled mathematically
to design SSA for optimization.

3. Squirrel Search Algorithm (SSA)

The search process begins when flying squirrels start foraging. During warm weather (autumn) the
squirrels search for food resources by gliding from one tree to the other. While doing so, they change their
location and explore different areas of forest. As the climatic conditions are hot enough, they can meet
their daily energy needs more quickly on the diet of acorns available in abundance and hence they consume
acorns immediately upon finding them. After fulfilling their daily energy requirement, they start searching
for optimal food source for winter (hickory nuts). Storage of hickory nuts will help them in maintaining their
energy requirements in extremely harsh weather and reduce the costly foraging trips and therefore increase
the probability of survival. During winter, a loss of leaf cover in deciduous forests results an increased risk
of predation and hence they become less active but do not hibernate in winter. At the end of winter season,
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flying squirrels again become active. This is a repetitive process and continues till the lifespan of a flying
squirrel and forms the foundation of SSA. The following assumptions are considered for simplification of
mathematical model:

1. There is n number of flying squirrels in a deciduous forest and one squirrel is assumed to be on one
tree.

2. Every flying squirrel individually searches for food and optimally utilizes the available food resources
by exhibiting a dynamic foraging behaviour.

3. In forest, only three types of trees are available such as normal tree, oak tree (acorn nuts food source)
and hickory tree (hickory nuts food source).

4. The forest region under consideration is assumed to contain three oak trees and one hickory tree.

In the present study, number of squirrels, n is considered to be 50. 4 nutritious food resources (Nfs) are
considered with 1 hickory nut tree and 3 acorn nut trees, whereas 46 trees have no food source. That is
92% of the total population of squirrels is on normal trees, while the remaining is on food sources. However,
the number of food resources can be varied as per the constraint 1 < Nfs < n where Nfs ∈ Z>0 with one
optimal winter food source.

4. Implementation of SSA

SSA starts with random initial location of flying squirrels similar to other population based algorithms.
The location of a flying squirrel is represented by a vector, in d dimensional search space. Hence, the flying
squirrels can glide in 1-D, 2-D, 3-D or hyper dimensional search space and change their location vectors.

4.1. Random initialization

There is n number of flying squirrels (FS) in a forest and location of ith flying squirrel can be specified
by a vector. The location of all flying squirrels can be represented by the following matrix:

FS =



FS1,1 FS1,2 · · · · · · FS1,d

FS2,1 FS2,2 · · · · · · FS2,d

...
...

...
...

...
...

...
...

...
...

FSn,1 FSn,2 · · · · · · FSn,d

 (1)

where FSi,j represents the jth dimension of ith flying squirrel. A uniform distribution (Eq. (2)) is used to
allocate the initial location of each flying squirrel in the forest.

FSi = FSL + U(0, 1)× (FSU − FSL) (2)

where FSL and FSU are lower and upper bounds respectively of ith flying squirrel in jth dimension and
U(0, 1) is a uniformly distributed random number in the range [0, 1].

4.2. Fitness evaluation

The fitness of location for each flying squirrel is calculated by putting the values of decision variable
(solution vector) into a user defined fitness function and the corresponding values are stored in the following
array:

f =



f1 ([FS1,1, FS1,2, . . . , FS1,d])

f2 ([FS2,1, FS2,2, . . . , FS2,d])
...
...

fn ([FSn,1, FSn,2, . . . , FSn,d])


(3)
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The fitness value of each flying squirrel’s location depicts the quality of food source searched by it i.e. optimal
food source (hickory tree), normal food source (acorn tree) and no food source (flying squirrel is on normal
tree) and hence their probability of survival also.

4.3. Sorting, declaration and random selection

After storing the fitness values of each flying squirrel’s location, the array is sorted in ascending order.
The flying squirrel with minimal fitness value is declared on the hickory nut tree. The next three best flying
squirrels are considered to be on the acorn nuts trees and they are assumed to move towards hickory nut
tree. The remaining flying squirrels are supposed to be on normal trees. Further through random selection,
some squirrels are considered to move towards hickory nut tree assuming that they have fulfilled their daily
energy requirements. The remaining squirrels will proceed to acorn nut trees (to meet their daily energy
need). This foraging behaviour of flying squirrel is always affected by the presence of predators. This natural
behaviour is modelled by employing the location updating mechanism with predator presence probability
(Pdp).

4.4. Generate new locations

As discussed previously, three situations may occur during the dynamic foraging of flying squirrels. In
each situation it is assumed that in the absence of predator, flying squirrel glides and searches efficiently
throughout the forest for its favourite food, while presence of predator makes it cautious and is forced
to use small random walk to search a nearby hiding location. The dynamic foraging behaviour can be
mathematically modelled as follows:

Case 1: Flying squirrels which are on acorn nut trees (FSat) may move towards hickory nut tree. In
this case, the new location of squirrels can be obtained as follows:

FSt+1
at =

{
FSt

at + dg ×Gc × (FSt
ht − FSt

at) R1 ≥ Pdp (4a)

Random location otherwise (4b)

where dg is random gliding distance, R1 is a random number in the range of [0, 1], FSht is the location of
flying squirrel that reached hickory nut tree and t denotes the current iteration. The balance between
exploration and exploitation is achieved with the help of gliding constant Gc in the mathematical
model. Its value significantly affects the performance of proposed algorithm. In the present work
value of Gc is considered as 1.9, which is obtained after rigorous analysis.

Case 2: Flying squirrels on normal trees (FSnt) may move towards acorn nut trees to fulfill their daily
energy needs. In this case, new location of squirrels can be obtained as follows:

FSt+1
nt =

{
FSt

nt + dg ×Gc × (FSt
at − FSt

nt) R2 ≥ Pdp (5a)

Random location otherwise (5b)

where R2 is a random number in the range [0, 1].

Case 3: Some squirrels which are on normal trees and already consumed acorn nuts may move towards
hickory nut tree in order to store hickory nuts which can be consumed at the time of food scarcity. In
this case, new location of squirrels can be obtained as follows:

FSt+1
nt =

{
FSt

nt + dg ×Gc × (FSt
ht − FSt

nt) R3 ≥ Pdp (6a)

Random location otherwise (6b)

where R3 is a random number in the range [0, 1]. Predator presence probability Pdp is considered to
be 0.1 in all cases for the present work.

Fig. 2 shows the conceptual model of gliding locomotion used by flying squirrels for their effective movement
while foraging in night. A flying squirrel glides by modifying the lift and drag forces [72].
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Fig. 2. Conceptual model of flying squirrel moving from one tree to another using gliding locomotion

4.5. Aerodynamics of gliding

Gliding mechanism of flying squirrels is described by equilibrium glide in which sum of lift (L) and drag
(D) force produces a resultant force (R) whose magnitude is equal and opposite to the direction of flying
squirrel’s weight (Mg). Thus, R provides a linear gliding path (Fig. 3a) to flying squirrel at constant velocity
(V ) [72, 78]. In this work an approximated model of gliding behaviour is (Fig. 3b) utilized in the design of
optimization algorithm. A flying squirrel gliding at steady speed always descends at an angle ϕ to horizontal
and lift-to-drag ratio or glide ratio, defined as follows [79]:

L/D = 1/ tanϕ (7)

The flying squirrels can increase their glide-path length by making smaller glide angle (ϕ) and thus lift-to
drag ratio is increased. Here, the lift results from downward deflection of air passing over the wings and is
defined as:

L = 1/2ρCLV
2S (8)

where ρ (=1.204 kgm−3) is density of air, CL is called as lift coefficient, V (=5.25 ms−1) is speed and S
(=154 cm2) is the surface area of body [79]. The frictional drag is defined as:

D = 1/2ρV 2SCD (9)

where CD is the frictional drag coefficient. At slow speed, this drag component is very high while at high
speed it becomes smaller. Hence from Eq. (7) glide angle at steady state is determined as:

ϕ = arctan

(
D

L

)
(10)

The approximated gliding distance (dg) is calculated (Fig. 3b) as follows:

dg =

(
hg

tanϕ

)
(11)

where hg (=8m) is the loss in height occurred after gliding. All the parametric values including CL and CD,
required to compute dg are considered from the real data [72, 78, 80]. Thus a flying squirrel may vary its
glide-path length or dg by simply changing the lift-to-drag ratio as per the desired landing location. The
simulations are performed by incorporating random variations in CL in the range 0.675 ≤ CL ≤ 1.5 and CD

is considered to be fixed at 0.60.
Flying squirrels generally travel a horizontal gliding distance ranging from 5 to 25m in a single glide [72].

Gliding distance in the proposed model is considered to be in the range of 9 to 20m which is validated
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(a) Flying squirrel gliding at equilibrium

Landing tree

d
g

h
g

φ

Launch tree

(b) Approximated model of gliding behaviour

Fig. 3

through Fig. 4a. The value of dg is quite large and may introduce large perturbations in Eq. (4a), Eq. (5a)
and Eq. (6a), which may cause unsatisfactory performance of the algorithm. The value of dg is scaled down
to achieve acceptable performance of the algorithm. dg is divided by a suitable non-zero value called as
scaling factor (sf) obtained through rigorous experimentation on benchmark functions. Table 2 presents
some recorded results of experimentation. It is observed during experimentation that value of scaling factor
sf may be varied from 16 to 37 in order to achieve the desired level of accuracy without affecting stability of
algorithm. However, in the present work, sf=18 provides sufficient perturbation range of dg in the interval
[0.5, 1.11] (Fig. 4b) and satisfactory performance is achieved for most of the benchmark functions. Thus
sf helps to achieve the desired balance between exploration and exploitation phases, which is a mandatory
requirement for designing an efficient metaheuristic.
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(a) Simulated gliding distance
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(b) Scaling down the gliding distance using sf=18
Fig. 4

4.6. Seasonal monitoring condition

Seasonal changes significantly affect the foraging activity of flying squirrels [81]. They suffer significant
heat loss at low temperatures, as they posses high body temperature and small size which makes foraging cost
high as well as risky due to the presence of active predators. Climatic conditions force them to be less active
in winters as compared to autumn [77]. Thus movement of flying squirrels is affected by weather changes
and inclusion of such behaviour may provide a more realistic approach towards optimization. Therefore
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Table 2
The effect of scaling factor (sf) on the performance of SSA on four benchmark functions*

Function Parameter sf=10 sf=15 sf=18 sf=30 sf=40 sf=50 sf=100

TF1 Mean 2.2000E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.3333E-02

SD 6.6664E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.8257E-01

TF5 Mean 1.0522E-02 2.1527E-11 3.9454E-22 1.8899E-25 2.9617E-07 2.3469E-06 1.4112E-05

SD 8.5168E-03 7.1976E-11 2.0493E-21 8.4211E-25 1.0297E-06 5.5454E-06 2.7179E-05

TF13 Mean 2.0433E+00 2.4120E-10 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.9231E-07

SD 2.0746E+00 5.3536E-10 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3018E-07

TF23 Mean -182.1364 -186.73 -186.73 -186.73 -186.73 -186.73 -186.73

SD 4.3904E+00 1.1788E-07 1.9029E-14 2.2392E-14 2.4831E-11 1.2022E-05 2.5781E-04

*See Tables 4, 6, 8 and 10 for benchmark functions

a seasonal monitoring condition is introduced in SSA which prevents the proposed algorithm from being
trapped in local optimal solutions. Following steps are involved in modelling the behaviour:

a. First calculate the seasonal constant (Sc) using Eq. (12)

St
c =

√√√√ d∑
k=1

(FSt
at,k − FSht,k)

2 (12)

where t = 1, 2, 3.

b. Check the seasonal monitoring condition i.e. St
c < Smin where Smin is the minimum value of seasonal

constant computed as:

Smin =
10E−6

(365)t/(tm/2.5)
(13)

where t and tm are the current and maximum iteration values respectively. The value Smin affects
the exploration and exploitation capabilities of the proposed method. Larger value of Smin promotes
exploration while smaller values of Smin enhance the exploitation capability of algorithm. For any
effective metaheuristic, there must be a proper balance between these two phases [82]. Although, this
balance is maintained by gliding constant Gc (Eq. (4a), Eq. (5a) and Eq. (6a)), but it may be improved
by adaptively changing the value of Smin during the course of iterations.

c. If seasonal monitoring condition is found true (i.e. winter season is over), randomly relocate those
flying squirrels which could not explore the forest for optimal winter food source.

4.7. Random relocation at the end of winter season

As discussed previously, the end of winter season makes flying squirrels active due to low foraging cost.
The flying squirrels which could not explore the forest for optimal food source in winter and still survived
may forage in new directions. The incorporation of this behaviour in modelling may enhance the exploration
capability of proposed algorithm. It is assumed that, only those squirrels which could not search the hickory
nuts food source and still survived will move to different directions in order to find better food source. The
relocation of such flying squirrels is modelled through the following equation:

FSnew
nt = FSL + Lévy(n)× (FSU − FSL) (14)

where Lévy distribution encourages better and efficient search space exploration. Lévy flight is a powerful
mathematical tool used by the researchers for improving global exploration capability of various metaheuris-
tic algorithms [16, 83–87]. Lévy flights help to find new candidate solutions far away from the current best
solution. It is a kind of random walk in which step length is drawn from a Lévy distribution. This dis-
tribution is often expressed by a power-law formula L(s) ∼ |s|−1−β where 0 < β ≤ 2 is an index. Lévy
distribution is stated mathematically as follows:

L(s, γ, µ) =

{√
γ
2π

exp
[
− γ

2(s−µ)

]
1

(s−µ)3/2
0 < µ < s < ∞

0 otherwise
(15)
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where µ, γ > 0. γ is scale parameter and µ is shift parameter. The Lévy flight is calculated as follows:

Lévy(x) = 0.01× ra × σ

|rb|
1
β

(16)

where ra and rb are two normally distributed random numbers in [0, 1], β is a constant considered to be 1.5
in the present work, and σ is calculated as:

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2 )

1/β

(17)

where Γ(x) = (x− 1)!.

4.8. Stopping criterion

Function tolerance is a commonly used convergence criterion in which a permissible but small threshold
value is defined between the last two consecutive results. Sometimes maximum execution time is also used as
stopping criterion. In the present study maximum number of iterations is considered as stopping criterion.
The pseudocode of SSA is provided in Algorithm 1.

4.9. Internal dynamics of SSA

The internal dynamics of SSA is illustrated in Fig. 5. In case 1, when R1 > Pdp the location of a flying
squirrel which is on acorn tree (FSt

at) may be represented by a vector with an assumed direction shown
in Fig. 5a and randomly scaled difference vector (dg × Gc × (FSt

ht − FSt
at)) may be directed towards the

location of flying squirrel which is on hickory nut tree (FSt
ht). The resultant vector may attain a new search

direction towards and near to global optimum point. If R1 < Pdp, i.e. predator presence is felt by a flying
squirrel, then it may glide in a random direction or may move to a nearby safe location. Few random
locations are shown through vectors in Fig. 5b. In the terminology of optimization algorithms, this random
orientation of location vectors, may enhance the exploration phase of proposed algorithm. Likewise, the
other cases of proposed technique illustrated in Fig. 5c-Fig. 5f may be analyzed. It is thus inferred that
proposed technique may explore the complete search space quite efficiently.

It is observed in many studies that “new” algorithms lack rigorous theoretical background and most
of these algorithms are basically previous algorithms under new clothes and interpretation [88]. Hence,
criterion for releasing a new algorithm becomes much higher. There must be significant differences in the
new algorithm from the others in order to release a new algorithm [89]. Therefore in the present study SSA
is compared on conceptual grounds with other similar metaheuristics.

5. Conceptual comparative analysis of SSA with other metaheuristic algorithms

Broadly, all nature-inspired metaheuristics imitate two distinct features of nature i.e. adaptability and
choice of the fittest, which gives them a similar appearance superficially. Most of the algorithms utilize
the concept of pattern matrix, which is constructed through randomly generated solutions of optimization
problem under consideration [90]. The pattern matrix is recursively updated at each iteration through a
suitable updating mechanism. This mechanism injects new attributes or patterns in the pattern matrix
while maintaining diversity in solutions. Metaheuristic algorithms are generally differentiated on the basis
of their solution updating strategy. In this work, SSA is compared with particle swarm optimization (PSO),
artificial bee colony (ABC), bat algorithm (BA) and firefly algorithm (FF).
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Algorithm 1 Pseudocode for SSA

Begin:
Define input parameters
Generate random locations for n number of flying squirrels using Eq. (2)
Evaluate fitness of each flying squirrel’s location
Sort the locations of flying squirrels in ascending order depending upon their fitness value
Declare the flying squirrels on hickory nut tree, acorn nuts trees and normal trees
Randomly select some flying squirrels which are on normal trees to move towards hickory nut tree and the
remaining will move towards acorn nuts trees

while(the stopping criterion is not satisfied)

Fort=1 to n1 (n1=total flying squirrels which are on acorn trees and moving towards hickory nut tree)

ifR1 ≥ Pdp

FSt+1
at =FSt

at + dg ×Gc × (FSt
ht − FSt

at)
else

FSt+1
at =a random position of search space

end

end

Fort=1 to n2 (n2=total flying squirrels which are on normal trees and moving towards acorn trees)

ifR2 ≥ Pdp

FSt+1
nt =FSt

nt + dg ×Gc × (FSt
at − FSt

nt)
else

FSt+1
nt =a random position of search space

end

end

Fort=1 to n3 (n3=total flying squirrels which are on normal trees and moving towards hickory nut tree)

ifR3 ≥ Pdp

FSt+1
nt =FSt

nt + dg ×Gc × (FSt
ht − FSt

nt)
else

FSt+1
nt =a random position of search space

end

end

Calculate seasonal constant (Sc)

if (Seasonal monitoring condition is satisfied)
Randomly relocate flying squirrels using Eq. (14)

end

Update the minimum value of seasonal constant (Smin) using Eq. (13)

end

The location of squirrel on hickory nut tree is the final optimal solution

End
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Fig. 5. Internal dynamics of SSA
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5.1. Particle swarm optimization algorithm

PSO imitates the social behaviour of flock of birds. It starts optimization using randomly generated
solutions commonly known as artificial particles. Each particle in swarm has an associated randomly gen-
erated velocity. If Xi is the initial position of ith particle in swarm with velocity Vi then position updating
mechanism of PSO can be defined as follows [91]:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (18)

Vi(t+ 1) = wVi(t) + C1ri1(Pbesti −Xi(t)) + C2ri2(Gbest−Xi(t)) (19)

where w is the inertial weight, C1 and C2 are cognitive and social constants respectively [91, 92]. The ri1
and ri2 are uniformly distributed random numbers in the interval [0, 1] [93], Pbesti is the best previous
position (local best solution) of ith particle and Gbest is the best position among all the particles (global
best solution).

5.1.1. SSA versus PSO

SSA also initiates optimization process similar to PSO by movement of search agents in the search space,
however the movement mechanism is entirely different. Some of the major differences are described as
follows:

1. In PSO, new direction for movement of ith particle is obtained by Pbesti and Gbest i.e. cumulative
effect of both is considered. However, SSA uses sorted information and divides the pattern matrix
initially into three regions like global optimum solution (FSt

ht), near optimal solutions (FSt
at) and

random solutions (FSt
nt). The random solutions (FSt

nt) are further randomly bifurcated to redirect
the search towards globally optimum solution (FSt

ht) and near optimal solutions (FSt
at). Thus new

patterns are injected in three phases. In the first phase, new directions for movement of search agents
(FSt

at) close to optimal solutions are obtained using the globally best solution (FSt
ht) (Eq. (4a)). In

the second phase, one part of randomly selected search agents (FSt
nt) is promoted to move towards

near optimal solutions (FSt
at) (Eq. (5a)). In the last phase remaining search agents (FSt

nt) are moved
towards global optimum solution (FSt

ht) (Eq. (6a)). In other words, PSO updates all solutions in the
pattern matrix by single strategy, however SSA employs three strategies in different regions of pattern
matrix. Thus position updating mechanism of SSA differs from PSO and its variants i.e. Cognitive
only PSO and Social only PSO [91].

2. In PSO, the random numbers (ri1 and ri2) are obtained from uniform distribution in the interval
[0, 1], while SSA uses behaviourally inspired random variations in gliding distance (dg) in the interval
[0.5, 1.11].

3. Flying squirrel movement is affected by predator presence, which is modelled using a probabilistic
behaviour. The inclusion of predator presence probability, suddenly redirects the location of any
flying squirrel and hence improves the exploration capability of algorithm (Eq. (4b), Eq. (5b) and
Eq. (6b)), whereas PSO does not utilize probabilistic phenomenon.

4. The simulation of flying squirrel behaviour provides an opportunity to introduce a seasonal condition
in SSA. This invokes the algorithm several times to initiate search in different directions and thus the
algorithm does not stuck in local optimal solutions. This feature is not present in PSO due to the
natural behaviour of swarm.

5.2. Artificial Bee Colony algorithm

ABC algorithm mimics the foraging process of honey bees. A honey bee colony is composed of three
kinds of bees:

• Employed bee: Each employed bee is connected to a nectar rich food source and strives to search new
enriched food sources of nectar in the neighbourhood of its present food source. It memorizes the
location of new food source, only if it finds that amount of nectar is more than its associated present
food source. An employed bee, also shares this information with onlooker bees near the dancing region
of hive, through a special dance.
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• Onlooker bee: Onlooker bees judge the information received by employed bees and move towards new
food sources, due to which the probability of finding a better food source also increases.

• Scout bee: An employed bee is converted into scout bee, if its associated food source is fully exploited
and it searches new enrich food source randomly.

In the basic ABC algorithm, food sources are considered as solutions for an optimization problem. The
amount of nectar present in a food source directly indicates the quality of food source and hence the quality
of solution. It is also considered that 50% of the total population consists of employed bees (or food sources)
and remaining 50% are onlooker bees. The location of ith food source (or employed bee) is represented by
a vector Xi = (Xi1, Xi2, . . . , Xid) and all food sources (SN) can be randomly located initially by Eq. (20)
[94]:

Xij = Xmin
j + randj(0, 1)(X

max
j −Xmin

j ) (20)

where i = 1, ..., SN , j = 1, ..., d where d is the problem dimension, Xmin
j and Xmax

j are the minimum and

maximum values of jth dimension of problem respectively. The movement of employed bees towards new
food sources is modelled through Eq. (21):

Vij = Xij + ϕij(Xij −Xkj) (21)

where k ∈ (1, 2, . . . , SN) and j are randomly selected indices provided k ̸= i. The ϕij is a uniformly
distributed random number within [−1, 1]. The movement of onlooker bees is also decided as per Eq. (21)
but utilizes probabilistic information calculated from roulette wheel method [94]. In the employed and
onlooker bee phases, every bee tries to discover a more qualified food source until a predefined number of
runs named as “Limit” is exceeded [95]. If the quality of solution (fitness value) is not elevated, till the
predefined Limit, the corresponding bee is declared as scout bee and its location is randomly reinitialized
using Eq. (20). This process continues until the stopping criterion is satisfied.

5.2.1. SSA versus ABC

ABC and SSA apparently looks quite similar, however technically both present several differences in
their formulation and updating mechanism.

1. Both ABC and SSA work on the effective division of labour i.e. pattern matrix is divided into various
regions. In ABC, half of the population belongs to employed bees and the remaining half is treated as
onlooker bees. In contrary, SSA initially sorts the pattern matrix in ascending order of fitness and then
divides it, which is controlled by the user. In the present work, first 8% of population belongs to flying
squirrels on food sources and remaining population of squirrels is considered on normal trees. However,
this percentage may vary and depends upon the available food sources and hence it is modelled as a
user defined variable.

2. In ABC, a new solution is generated by probabilistic neighbourhood selection. The updating mecha-
nism of ABC (Eq. (21)) basically replaces one randomly selected component of ith solution vector by
an arithmetic recombination of the component and corresponding component from another solution
vector. This mechanism shows a conceptual resemblance with binomial crossover of DE algorithm [95].
On the other hand, the updating strategy of SSA is a kind of directed search approach i.e. the new
solutions are forced to move towards best solutions and therefore predefined neighbourhood selection
is considered. The best solution(FSt

ht) and sorted series of locally best solutions (FSt
at) are considered

(Eq. (4a), Eq. (5a) and Eq. (6a)) while altering the solution vector. Apart from this, SSA also uses
a probabilistic random location updating strategy which randomly alters the current solution vector
(Eq. (4b), Eq. (5b) and Eq. (6b)) to improve exploration phase of algorithm.

3. Scout bee phase of ABC algorithm randomly reinitializes the completely exploited food source (Eq. (20))
on the basis of uniform distribution. Similarly, SSA also incorporates the concept of random relocation
of the flying squirrels, which could not explore the forest for optimal winter food source, but it is based
on Lévy distribution.
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4. In ABC, the scout bee phase is initiated if a predefined number of runs is exceeded. Apparently, this
seems similar to seasonal monitoring condition in SSA, but this concept is behaviourally inspired and
hence adaptively updated during run-time.

5.3. Bat Algorithm

BA simulates the echolocation behaviour of bats [29]. In BA, n virtual bats (solutions) are represented
by position vector Xi, velocity vector Vi and frequency vector Fi in a d-dimensional search space. Initially
the bats are randomly distributed. The position of ith bat in population is updated as follows:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (22)

Vi(t+ 1) = Vi(t) + (Xi(t)−Gbest)Fi (23)

Fi = Fmin + (Fmax − Fmin)β (24)

where β is a uniformly distributed random number in the range [0, 1]. The exploration capability of the
algorithm is enhanced by employing a local search strategy. If the solution satisfies a certain condition
(rand > pulse rate(r)) then a new solution is generated through random walk [29].

5.3.1. SSA versus BA
1. BA generates new direction of movement of ith bat by considering the best position (Gbest) obtained

by any bat so far. BA is basically a balanced combination of PSO and local search [96]. In SSA,
movements of flying squirrels are directed by globally best flying squirrel (FSt

ht) as well as few locally
found best flying squirrels (FSt

at).
2. In BA the exploration is enhanced by randomly updating bat location depending upon the condition

i.e. rand > pulse rate(r). However the exploration phase of SSA is enhanced by relocating those
flying squirrels which could not explore the forest for optimal winter food source. In BA, random walk
is generally implemented on the basis of normal distribution, however better exploration is achieved
in SSA using Lévy distribution.

3. In position updating mechanism of BA (Eq. (23)), the difference (Xi(t) − Gbest) is multiplied by a
random number Fi, however in SSA proper balance between exploration and exploitation is achieved
in Eq. (4a), Eq. (5a) and Eq. (6a) by incorporating gliding constant (Gc) additionally.

5.4. Firefly algorithm

FF algorithm proposed by Yang [82] is based on the concept of flashing light production by fireflies.
Fireflies produce light using the phenomenon of bioluminescence for attracting the partners for mating.
These flashes are also used to attract the prey or to warn the predator. FF algorithm considers that
interaction of fireflies is governed by following assumptions [97]:

1. One firefly will be attracted by all other fireflies regardless of their sex.
2. Attraction is directly proportional to their light intensity (or brightness). Thus less bright firefly will

tend to move towards the brighter one. The brightness as well as its attractiveness, both are inversely
proportional to the distance between them and hence both decrease as their distance increases. If
there is no brighter one, then the respective firefly will move in random direction.

3. The brightness of any firefly is determined from the value of fitness function.

The movement of ith firefly towards more attractive jth firefly is determined by Eq. (25) [82]:

Xi = Xi + β0e
−γr2ij (Xj −Xi) + αϵi (25)

where α is randomization parameter, ϵi is a random number considered from Gaussian distribution, γ is
fixed light absorption coefficient, β0 is attractiveness at r=0, rij is the Euclidean distance between two
fireflies i and j and calculated as follows:

rij = ∥Xi −Xj∥ =

√√√√ l=d∑
l=1

(Xil −Xjl)2 (26)
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The equation Eq. (25) is basically composed of three terms: first term represents the present location of ith

firefly, second term denotes the attraction of ith firefly towards more attractive jth firefly and last one is
random walk.

5.4.1. SSA versus FF

Both FF and SSA are population based techniques, however differences in the techniques are as follows:

1. In FF algorithm, fireflies are ranked on the basis of their brightness at the end of each iteration and
ith firefly moves towards the more attractive jth firefly using Eq. (25). While updating the location
of ith firefly, it uses difference information of current solution and global best solution as well as all
locally best solutions. On the other hand, SSA uses difference information of current solution either
with globally best solution or from few user defined locally best solutions.

2. As discussed previously, SSA uses the concept of effective division of labour due to which the proposed
technique injects patterns in three regions using different strategies, however FF algorithm updates
the pattern matrix using single strategy.

3. In order to improve the exploration capability of SSA, the concept of random relocation of some
flying squirrels is used which is controlled by seasonal monitoring condition. Whereas FF algorithm
continuously updates the location of fireflies.

As discussed previously, an efficient metaheuristic must possess a proper balance between exploration and
exploitation. However, there is no thumb rule [98] to achieve this. The minor differences in solution updating
strategy and random distributions may create huge impact on performance of the designed algorithm [90].
Consequently, SSA becomes a good competitor for existing metaheuristics.

6. Experimental study

The performance of proposed SSA is analyzed by carrying out rigorous experimentation on classic and
modern numerical optimization problems. Initially experimentation is conducted on 26 well-known classic
benchmark test functions [99, 100]. These functions are described as continuous, discontinuous, linear, non-
linear, unimodal, multimodal, convex, non-convex, separable and non-separable. However for testing and
validation of a new algorithm, functional features like dimensionality, modality and separability are relatively
more significant. It is considered that difficulty of problem increases with the increase in function dimensions
as the search space increases exponentially [101]. The modality of a function is considered as the number
of ambiguous peaks in the function surface. A function having two or more ambiguous peaks is called as
multimodal function. An algorithm that encounters these peaks during their search process may get trapped
in these local optimum solutions. This can affect the search process adversely and may get diverted in a
different direction far away from the optimal region. On the other hand, separability refers to the difficulty
level offered by different benchmark test functions. In general, separable functions are easier to solve in
comparison to their non-separable counterpart as each variable of the function is independent from other
variable. In the present study, 26 classic benchmark functions are classified on the basis of their modality
and separability (Table 4, 6, 8, 10) and four experimental tests are performed to evaluate the performance
of SSA. The first and second experimental study confirm the exploitation capability of proposed algorithm,
while the third and fourth experimental study check the exploration capabilities. The fifth experimental
study is designed on the basis of 7 modern numerical optimization problems considered from IEEE CEC
2014 special session and competition on single objective real-parameter numerical optimization. These
benchmark functions have several novel features such as novel basic problems and functions are shifted,
rotated, expanded, and combined variants of the most complicated mathematical optimization problems
presented in literature [102].

In the last decade a large number of metaheuristics is proposed by various authors. Some of them are
modified or improved versions of the basic algorithms while others are based on an entirely new concept. It is
observed from the literature that newly developed or modified metaheuristics are not explained in detail [103].
Further, the techniques are documented with partial parametric settings due to which exact replication of
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experiments and results, become almost impossible. Moreover, there is no uniformity in the selection of
benchmark test suit and experimental conditions are not identical as original ones [103, 104]. Therefore
in the present work, basic versions of commonly used optimization algorithms are implemented and used
for the purpose of comparative analysis. In each experimental study, the performance of proposed SSA is
compared with six nature-inspired optimization algorithms, namely, GA, PSO, BA, FF, MVO and KH. The
population size and maximum iterations are set to be 50 and 500 respectively in first four experimental tests
for fair comparison. While for fifth experimental study, maximum iterations are 6000 to get 300000 number
of function evaluation (NFEs) as per the CEC 2014 recommendation [102]. The commonly used parametric
settings of all algorithms are listed in Table 3. 30 independent runs of each algorithm are considered for
every benchmark function in each experimentation and best results are boldfaced throughout the paper.

Table 3
Parametric settings of algorithms

Name of Parameter GA PSO BA FF MVO KH SSA

Crossover fraction 0.8 - - - - - -

Selection Tournament - - - - - -

Crossover Arithmetic - - - - - -

Mutation Adaptive feasible - - - - - -

C1 and C2 - 2 - - - - -

Inertia weight (w) - 0.9 - - - - -

Loudness - - 0.5 - - - -

Pulse rate - - 0.5 - - - -

fmin, fmax - - 0, 2 - - - -

α - - - 0.25 - - -

β - - - 0.20 - - -

γ - - - 1 - - -

WEPmax, WEPmin - - - - 1, 0.2 - -

Vf - - - - - 0.02 -

Dmax - - - - - 0.005 -

Nmax - - - - - 0.01 -

Nfs - - - - - - 4

Gc - - - - - - 1.9

Pdp - - - - - - 0.1

6.1. Experimental Test 1

This experimentation evaluates the effectiveness and accuracy of SSA while solving benchmark functions
with unimodal and separable inherent characteristics (Table 4). The best, worst, mean and standard devia-
tion (SD) of the results obtained from each algorithm after 30 independent trials are recorded in Table 5. It
is clear from results that SSA achieves success in finding global optimum on TF1, TF2 and TF3. None of the
algorithm could find global optimum solution for TF4 but results of FF are better than all other methods.
For TF1, the performance of SSA is found identical to FF and KH but far better than other methods. Only
SSA could reach the global optimum region while solving TF2 and TF3 and other methods fail. To analyze
the performance of proposed algorithm for unimodal functions, ANOVA test (Fig. 6) and convergence rate
analysis (Fig. 7) is also performed. The data obtained for 30 independent runs is plotted (Fig. 6) and it
is observed that performance of SSA is satisfactory for all functions. This is due to the reason that 25th

and 75th percentiles of samples collected for SSA decline towards the minimum solution within a narrow
interquartile range. The comparison of convergence rate shown in Fig. 7, reveals that SSA converges faster
than other algorithms and hence possesses superior convergence capability for such optimization problems.

6.2. Experimental test 2

This experimental test is conducted to observe the performance and consistency of SSA in solving the
unimodal but non-separable functions (Table 6). The difficulty level of this test is bit higher in comparison
to Test 1, as functions under consideration have non-separable characteristics. The statistical results of 30
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Table 4
The description of classical unimodal and separable benchmark functions

Function Name Expression d Range Fmin

TF1 Step TF1(x) =
d∑

j=1

(xj + 0.5)2 30 [-5.12, 5.12] 0

TF2 Sphere TF2(x) =
d∑

j=1

x2
j 30 [-100, 100] 0

TF3 Sum Squares TF3(x) =
d∑

j=1

jx2
j 30 [-10, 10] 0

TF4 Quartic TF4(x) =
d∑

j=1
jx4

j + rand 30 [-1.28, 1.28] 0

Table 5
Statistical results obtained by GA, PSO, BA, FF, MVO, KH and SSA through 30 independent runs on classical unimodal and
separable benchmark functions

Function GA PSO BA FF MVO KH SSA

TF1 Best 0 0 2.3690E+03 0 0 0 0

Worst 1 8.000E+01 1.7712E+04 0 2 0 0

Mean 1.3333E-01 8.0333E+00 8.9976E+03 0 4.6667E-01 0 0

SD 3.4575E-01 1.4571E+01 3.5579E+03 0 5.7135E-01 0 0

TF2 Best 2.6545E+00 2.4402E+02 1.9341E+04 4.7333E-03 4.0172E-01 1.0942E-02 7.9225E-20

Worst 5.4141E+00 2.7319E+03 6.6267E+04 2.4806E-02 1.5333E+00 2.1477E-01 5.7411E-07

Mean 4.4609E+00 1.3576E+03 3.9384E+04 1.1597E-02 7.8582E-01 5.7558E-02 4.1689E-08

SD 6.6760E-01 6.4254E+02 1.0736E+04 4.3201E-03 2.4795E-01 5.0330E-02 1.4356E-07

TF3 Best 4.1877E+01 6.7587E+01 1.2296E+03 7.2047E-02 9.5186E-02 4.7764E-03 2.0052E-28

Worst 8.6577E+01 3.9871E+02 5.5158E+03 2.3183E+00 3.6143E+00 1.9685E-01 2.3194E-06

Mean 6.4872E+01 1.9168E+02 2.9497E+03 6.5045E-01 6.1321E-01 5.7491E-02 1.5201E-07

SD 1.1399E+01 8.8044E+01 1.1535E+03 5.7685E-01 6.6063E-01 4.7055E-02 4.6741E-07

TF4 Best 9.2183E-01 1.5797E-01 8.8356E+00 9.4275E-03 1.0669E-01 1.1266E-02 3.0998E-02

Worst 7.8383E+00 3.0081E+00 3.3492E+01 7.4867E-02 5.7664E-01 1.4265E-01 9.9258E-01

Mean 2.9543E+00 1.0084E+00 1.8324E+01 3.2152E-02 2.6035E-01 5.2810E-02 5.0192E-01

SD 1.5476E+00 7.9586E-01 6.1881E+00 2.0089E-02 1.0031E-01 3.0737E-02 2.9565E-01
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Fig. 6. Variation in global optimization results for benchmark functions (a) TF1, (b) TF2, (c) TF3 and (d) TF4
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Fig. 7. Convergence rate comparison for benchmark functions (a) TF1, (b) TF2, (c) TF3 and (d) TF4

independent runs, obtained by SSA and other optimization methods are presented in Table 7. It is clear
from the results obtained that SSA outperforms the other techniques as it could find global minimum or
near global minimum for all eight benchmark functions. To analyze consistency and overall performance
of SSA, the data obtained from 30 runs is used for ANOVA test and its results are plotted in Fig. 8. The
performance of SSA is found satisfactory and consistent for all functions because 25th and 75th percentiles
of samples collected for SSA decline towards the minimum solution within a narrow interquartile range.
Further the convergence rate (Fig. 9) of SSA is found better than other optimization algorithms for each
benchmark functions. It is observed from the two experimental studies that performance of SSA is quite
accurate as well as consistent for unimodal functions. This is due to the realistic modeling of selection
ability of flying squirrels for optimal food sources. The flying squirrels search around the neighbourhood of
previously visited solutions which provides adequate exploitation capability to SSA.

6.3. Experimental Test 3

The purpose of this experimental test is to check the exploration capability of proposed SSA as func-
tions under consideration have multimodal and separable characteristics. The details of these functions are
provided in Table 8. The recorded results of statistical analysis over 30 independent runs of each algorithm
while solving these multimodal functions are presented in Table 9. It is evident from the results that SSA is
superior on TF13, TF14, TF15 and TF18 whereas its performance is comparable to other methods on TF16.
GA defeats SSA and other methods for TF17 as it succeeds in finding the best solution. Variance analysis
(Fig. 10) of all algorithms also depict that SSA has less median value (marked by red “-”) in comparison
to other optimization methods for TF13, TF14, TF15 and TF18. However the results of SSA are found
slightly deviated in comparison to other methods for TF16 and TF17 (Fig. 10d-10e).

Fig. 11 shows the recorded convergence characteristics of all algorithms while solving multimodal and
separable functions. It is revealed from the results that SSA offers better convergence rate in comparison
to other six optimization algorithms for TF13, TF14, TF15 and TF18. KH algorithm defeats SSA in case
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Table 6
The description of classical unimodal and non-separable benchmark functions

Function Name Expression d Range Fmin

TF5 Beale TF5(x) = (1.5−x1 +x1x2)
2 +(2.25−x1 +x1x

2
2)

2 +(2.625−x1 +x1x
3
2)

2 2 [-4.5, 4.5] 0

TF6 Easom TF6(x) = −cos(x1)cos(x2)exp(−(x1 − π)2 − (x2 − π)2) 2 [-100, 100] -1

TF7 Matyas TF7(x) = 0.26(x2
1 + x2

2) − 0.48x1x2 2 [-10, 10] 0

TF8 Colville TF8(x) = 100(x2
1 −x2)

2 +(x1 −1)2 +(x3 −1)2 +90(x2
3 −x4)

2 +10.1(x2 −
1)2 + (x4 − 1)2 + 19.8(x2 − 1)(x4 − 1)

4 [-10, 10] 0

TF9 Zakharov TF9(x) =
d∑

j=1
x2
j + (

d∑
j=1

0.5jxj)
2 + (

d∑
j=1

0.5jxj)
4 10 [-5, 10] 0

TF10 Schwefel
2.22

TF10(x) =
d∑

j=1
|xj | +

∏d
j=1 |xj | 30 [-10, 10] 0

TF11 Schwefel
1.2

TF11(x) =
d∑

j=1

(
j∑

k=1

xk)
2 30 [-100, 100] 0

TF12 Dixon-
Price

TF12(x) = (x1 − 1)2 +
d∑

j=2

j(2x2
j − xj − 1)2 30 [-10, 10] 0

Table 7
Statistical results obtained by GA, PSO, BA, FF, MVO, KH and SSA through 30 independent runs on classical unimodal and
non-separable benchmark functions

Function GA PSO BA FF MVO KH SSA

TF5 Best 2.1186E-15 1.3624E-14 2.8649E-11 1.2360E-11 9.2179E-09 4.4607E-13 2.1832E-29

Worst 1.0484E-06 4.9376 E-01 7.6207E-01 3.9985E-09 7.6207E-01 1.5103E-09 2.7633E-20

Mean 1.5004E-07 6.2888E-02 1.5241E-01 8.4259E-10 5.0805E-02 1.7322E-10 9.5584E-22

SD 2.9899E-07 1.6315E-01 3.1004E-01 7.7095E-10 1.9334E-01 3.0481E-10 5.0400E-21

TF6 Best -1 -1 -1 -1 -1 -1 -1

Worst -1 -1 0 0 0 0 -1

Mean -1 -1 -3.3347E-02 -7.3333E-01 -9.6664E-01 -9.6666E-01 -1

SD 7.9114E-12 2.8316E-11 1.8257E-01 4.4978E-01 1.8257E-01 1.8257E-01 0

TF7 Best 1.6769E-16 8.6209E-17 1.4036E-12 2.9676E-12 2.0125E-10 2.1689E-14 1.5111E-29

Worst 4.1772E-06 7.1849E-12 2.2319E-10 1.2805E-09 4.0157E-08 6.8392E-11 2.0707E-24

Mean 1.2012E-06 8.4738E-13 2.9659E-11 3.1396E-10 1.3148E-08 8.8694E-12 1.542E-25

SD 1.3009E-06 1.5676E-12 4.8089E-11 2.9301E-10 1.1549E-08 1.2854E-11 4.7571E-25

TF8 Best 6.9053E-05 3.1763E-11 1.1772E-04 1.0409E-05 1.6967E-04 3.1829E-04 8.5561E-21

Worst 2.2752E-01 7.8739E+00 2.5914E+03 6.7122E-01 5.9549E-02 6.6447E+00 2.4871E-08

Mean 2.9713E-02 1.3576E+00 1.1779E+02 6.9498E-02 1.3897E-02 1.4707E+00 1.4309E-09

SD 4.5589E-02 2.2625E+00 4.7216E+02 1.5653E-01 1.5613E-02 2.0549E+00 4.6907E-09

TF9 Best 4.2966E-04 2.4899E-01 4.7992E+00 1.0992E-06 5.4262E-05 1.0937E-02 1.9954E-23

Worst 3.3902E-02 1.2411E+01 2.8843E+02 4.2243E-04 8.5280E-04 5.9581E+00 1.5225E-07

Mean 9.3216E-03 2.8145E+00 5.7976E+01 1.9991E-05 3.3653E-04 5.7794E-01 5.2215E-09

SD 8.2697E-03 3.2838E+00 5.6840E+01 7.6121E-05 1.6264E-04 1.0822E+00 2.7772E-08

TF10 Best 8.3300E+00 1.0967E+01 6.9978E+01 1.9719E-01 3.1692E-01 2.2580E+01 2.2266E-08

Worst 1.2512E+01 2.4748E+01 1.6143E+07 7.1570E-01 6.0719E+01 9.0126E+01 7.1423E-03

Mean 1.0964E+01 1.8341E+01 6.3387E+05 3.7229E-01 4.2299E+00 4.5339E+01 5.1849E-04

SD 9.7131E-01 3.2867E+00 2.9400E+06 1.1885E-01 1.3708E+01 1.5991E+01 1.4144E-03

TF11 Best 2.2068E+01 3.3599E+03 2.5313E+05 7.3076E-01 1.2525E+01 7.7505E-01 6.6803E-18

Worst 8.5932E+01 3.5414E+04 7.9973E+05 8.9206E+01 2.2745E+02 3.3330E+01 3.4907E-04

Mean 6.2471E+01 1.3279E+04 5.4751E+05 2.3487E+01 5.6701E+01 7.6901E+00 1.6925E-05

SD 1.4303E+01 6.6157E+03 1.3978E+05 2.6648E+01 4.6516E+01 7.5797E+00 6.6811E-05

TF12 Best 4.4798E-01 9.2401E+01 3.2393E+04 7.2558E-01 7.5851E-01 6.7985E-01 1.8308E-01

Worst 2.8388E+00 7.3619E+03 4.5924E+05 2.2535E+01 3.3602E+01 7.3470E+00 6.6951E-01

Mean 1.3711E+00 1.1892E+03 1.8201E+05 3.0817E+00 5.1183E+00 1.7567E+00 2.2412E-01

SD 5.7415E-01 1.5741E+03 9.4021E+04 4.4236E+00 8.8946E+00 1.6304E+00 1.2107E-01
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Fig. 8. Variation in global optimization results for benchmark functions (a) TF5, (b) TF6, (c) TF7 (d) TF8 (e) TF9, (f)
TF10, (g) TF11 and (h) TF12
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Fig. 9. Convergence rate comparison for benchmark functions (a) TF5, (b) TF6, (c) TF7 (d) TF8 (e) TF9, (f) TF10, (g)
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of TF16 by providing very fast convergence response. KH and SSA have good convergence response for
TF17 but could search only near optimal solution whereas GA found best optimal solution with average
convergence response. Further search history of SSA is also recorded (Fig. 12b-12e) while solving very
complicated Rastrigin function (Fig. 12a). It is observed from Fig. 12 that flying squirrels explored the
search space in the beginning but within 15 iterations most of the flying squirrels moved towards the optimal
winter food source. Hence SSA offers a promising performance even for complex multimodal function.

Table 8
The description of classical multimodal and separable benchmark functions

Function Name Expression d Range Fmin

TF13 Bohachevsky1 TF13(x) = x2
1 + 2x2

2 − 0.3cos(3πx1) − 0.4cos(4πx2) + 0.7 2 [-100, 100] 0

TF14 Booth TF14(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2 [-10, 10] 0

TF15 Michalewicz2 TF15(x) = −
d∑

j=1
sin(xj)(sin(jx

2
j/π))

20 2 [0, π] -1.8013

TF16 Michalewicz5 TF16(x) = −
d∑

j=1
sin(xj)(sin(jx

2
j/π))

20 5 [0, π] -4.6877

TF17 Michalewicz10 TF17(x) = −
d∑

j=1

sin(xj)(sin(jx
2
j/π))

20 10 [0, π] -9.6602

TF18 Rastrigin TF18(x) =
d∑

j=1

(x2
j − 10cos(2πxj) + 10) 30 [-5.12, 5.12] 0

Table 9
Statistical results obtained by GA, PSO, BA, FF, MVO, KH and SSA through 30 independent runs on classical multimodal
and separable benchmark functions

Function GA PSO BA FF MVO KH SSA

TF13 Best 0 4.4298E-14 1.6438E+00 4.9443E-08 1.0021E-05 2.8890E-08 0

Worst 2.0161E-09 1.3643E-09 4.3439E+02 9.1103E-06 1.5693E-03 1.4369E-06 0

Mean 1.8113E-10 1.4898E-10 6.9719E+01 3.4682E-06 3.5952E-04 2.2989E-07 0

SD 4.4508E-10 2.7559E-10 1.1194E+02 2.6636E-06 3.7081E-04 2.9457E-07 0

TF14 Best 1.1175E-19 1.3482E-14 3.0619E-11 2.7382E-10 4.2336E-09 5.9289E-12 1.2622E-29

Worst 8.4047E-10 1.2419E-09 2.0412E-09 1.9998E-08 2.9865E-06 1.5568E-09 8.1255E-24

Mean 9.8814E-11 8.7865E-11 6.7996E-10 5.4966E-09 5.8026E-07 1.9913E-10 9.5859E-25

SD 2.0126E-10 2.3629E-10 5.4689E-10 4.8029E-09 6.5125E-07 3.1189E-10 1.7996E-24

TF15 Best -1.8013 -1.8013 -1.8013 -1.8013 -1.8013 -1.8013 -1.8013

Worst -1.8013 -1.8013 -1 -1.8013 -1.8013 -1.8013 -1.8013

Mean -1.8013 -1.8013 -1.6162 -1.8013 -1.8013 -1.8013 -1.8013

SD 1.1799E-09 6.0558E-10 3.1729E-01 1.5947E-09 5.0228E-07 2.5679E-10 1.0275E-15

TF16 Best -4.6877 -4.6877 -4.6877 -4.6877 -4.6875 -4.6877 -4.6877

Worst -3.6946 -3.2113 -2.5368 -3.6946 -2.7363 -2.7851 -3.5563

Mean -4.5094 -4.0216 -3.4975 -4.5706 -3.9881 -4.1496 -4.3479

SD 1.8465E-01 4.3490E-01 5.1680E-01 1.8507E-01 4.8414E-01 5.6949E-01 3.2785E-01

TF17 Best -9.5360 -8.8819 -7.3075 -9.4087 -8.7506 -9.4288 -9.4806

Worst -7.7744 -5.7145 -3.6535 -6.6758 -5.6706 -6.3615 -5.9146

Mean -8.8905 -7.0994 -5.7348 -8.4797 -7.3858 -7.8346 -7.5900

SD 3.8495E-01 8.0055E-01 9.5874E-01 7.5993E-01 9.7022E-01 7.7387E-01 9.9570E-01

TF18 Best 2.0692E+01 6.0234E+01 4.6766E+01 1.7612E+01 6.7986E+01 3.0381E+00 0

Worst 1.3329E+02 1.5111E+02 2.3581E+02 4.9853E+01 2.0129E+02 2.4926E+01 7.6657E-06

Mean 6.3527E+01 1.0309E+02 1.2192E+02 2.5069E+01 1.1867E+02 1.2391E+01 4.9059E-07

SD 2.5564E+01 2.4727E+01 3.9334E+01 6.9514E+00 3.3984E+01 5.4147E+00 1.5057E-06

6.4. Experimental Test 4

This test is designed with highest difficulty level in comparison to previous experimental studies. The
functions under consideration have multimodal as well as non-separable characteristics. Table 10 presents
the details of 8 such benchmark functions with both low as well as high dimensions. The recorded statistical
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Fig. 10. Variation in global optimization results for benchmark functions (a) TF13, (b) TF14, (c) TF15, (d) TF16, (e) TF17
and (f) TF18

0 100 200 300 400 500

10
−10

10
−5

10
0

Iteration

F
un

ct
io

n 
V

al
ue

TF13

 

 
GA
PSO
BA
FF
MVO
KH
SSA

(a)

0 100 200 300 400 500

10
−15

10
−10

10
−5

10
0

Iteration

F
un

ct
io

n 
V

al
ue

TF14

 

 
GA
PSO
BA
FF
MVO
KH
SSA

(b)

0 100 200 300 400 500

−1.8

−1.6

−1.4

−1.2

−1

−0.8

Iteration

F
un

ct
io

n 
V

al
ue

TF15

 

 
GA
PSO
BA
FF
MVO
KH
SSA

0 5 10

−1.8

−1.6

−1.4

−1.2

−1

−0.8

 

 

(c)

0 100 200 300 400 500

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Iteration

F
un

ct
io

n 
V

al
ue

TF16

 

 
GA
PSO
BA
FF
MVO
KH
SSA

(d)

0 100 200 300 400 500
−9

−8

−7

−6

−5

−4

−3

−2

−1
TF17

Iteration

F
un

ct
io

n 
V

al
ue

 

 
GA
PSO
BA
FF
MVO
KH
SSA

(e)

0 100 200 300 400 500

10
−6

10
−4

10
−2

10
0

10
2

Iteration

F
un

ct
io

n 
V

al
ue

TF18

 

 
GA
PSO
BA
FF
MVO
KH
SSA

(f)
Fig. 11. Convergence rate comparison for benchmark functions (a) TF13, (b) TF14, (c) TF15, (d) TF16, (e) TF17 and (f)
TF18
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Fig. 12. (a) Perspective view of Rastrigin function (TF18), (b) Position of flying squirrels after 1st iteration, (c) 5th iteration,
(d) 10th iteration and (e) 15th iteration
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results for 8 benchmark functions are given in Table 11. It is revealed from the results that SSA outperforms
the other methods in 7 cases out of 8 benchmark functions. SSA found the best optimal solution for TF19
but could not maintain consistency as its standard deviation (SD) is much higher than GA. All the methods
achieve global optimal solution in case of TF20 and TF23 but SSA is found to be most consistent as it
offers lowest SD. Results of ANOVA test (Fig. 13) also confirm the satisfactory performance of proposed
algorithm. Further convergence rate comparison of optimization algorithms (Fig. 14) reveals that SSA has
superior convergence behaviour with sufficient accuracy in comparison to other optimization methods for
highly complex multimodal as well as non-separable benchmark functions. The results of experimental test 3
and 4 reveal that SSA provides better exploration capability than the algorithms under consideration. This
is due to the incorporation of attributes regarding predator presence and seasonal conditions in foraging
behaviour of flying squirrels.

Table 10
The description of classical multimodal and non-separable benchmark functions used in experimental test 4

Function Name Expression d Range Fmin

TF19 Schaffer TF19(x) = 0.5 +
sin2(

√
x2
1+x2

2)−0.5

(1+0.001(x2
1+x2

2))2
2 [-100, 100] 0

TF20 Six Hump Camel Back TF20(x) = 4x2
1 − 2.1x4

1 + 1
3x

6
1 + x1x2 − 4x2

2 + 4x4
2 2 [-5, 5] -1.03163

TF21 Boachevsky2 TF21(x) = x2
1 + 2x2

2 − 0.3cos(3πx1)cos(4πx2) + 0.3 2 [-100, 100] 0

TF22 Boachevsky3 TF22(x) = x2
1 + 2x2

2 − 0.3cos(3πx1 + 4πx2) + 0.3 2 [-100, 100] 0

TF23 Shubert TF23(x) =
5

(
∑
j=1

jcos(j + 1)x1 + j)
5

(
∑
j=1

jcos((j + 1)x2 + j)) 2 [-10, 10] -186.73

TF24 Rosenbrock TF24(x) =
d−1∑
j=1

100(xj+1 − x2
j )

2 + (xj − 1)2 30 [-30, 30] 0

TF25 Griewank TF25(x) = 1
4000

(
d∑

j=1

(xj − 100)2

)
−
(∏d

j=1 cos
(

xj−100
√

j

))
+ 1 30 [-600, 600] 0

TF26 Ackley TF26(x) = −20exp

(
−0.2

√
1
d

d∑
j=1

x2
j

)
−exp

(
1
d

d∑
j=1

cos(2πxj)

)
+20+e 30 [-32, 32] 0
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Fig. 13. Variation in global optimization results for benchmark functions (a) TF19, (b) TF20, (c) TF21, (d) TF22, (e) TF23,
(f) TF24, (g) TF25 and (h) TF26
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Table 11
Statistical results obtained by GA, PSO, BA, FF, MVO, KH and SSA through 30 independent runs on classical multimodal
and non-separable benchmark functions

Function GA PSO BA FF MVO KH SSA

TF19 Best 0 0 9.7159E-03 4.6615E-03 2.1517E-06 1.2317E-07 0

Worst 1.6601E-11 9.7159E-03 3.7329E-01 3.8682E-02 9.7159E-03 2.0569E-05 9.7159E-03

Mean 1.6854E-12 3.5625E-03 1.4118E-01 1.1809E-02 1.3113E-03 3.3604E-06 9.7159E-04

SD 4.1693E-12 4.7621E-03 1.0699E-01 7.3682E-03 3.3529E-03 4.1334E-06 2.9646E-03

TF20 Best -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163

Worst -1.03163 -1.03163 -0.21546 -1.03163 -1.03163 -1.03163 -1.03163

Mean -1.03163 -1.03163 -0.95001 -1.03163 -1.03163 -1.03163 -1.03163

SD 1.0317E-10 8.2049E-11 2.4904E-01 3.9448E-09 1.6383E-07 6.3582E-10 4.5168E-16

TF21 Best 0 5.7509E-14 1.0396E+00 2.4610E-08 4.1029E-06 7.5512E-10 0

Worst 2.1831E-01 6.7269E-10 4.9188E+02 1.1613E-05 1.6998E-03 1.4776E-07 0

Mean 1.3099E-01 8.7221E-11 8.1426E+01 2.6897E-06 2.7308E-04 3.0532E-08 0

SD 1.0879E-01 1.6722E-10 1.0682E+02 2.6776E-06 3.6355E-04 3.1152E-08 0

TF22 Best 0 1.3156E-14 8.0455E-02 1.1681E-07 1.5801E-05 4.0235E-10 0

Worst 2.2626E-01 8.5075E-10 4.8777E+02 1.7558E-05 6.7957E-04 8.6365E-08 0

Mean 9.8046E-02 4.5608E-11 8.6329E+01 2.2231E-06 2.0969E-04 2.2472E-08 0

SD 1.1404E-01 1.5501E-10 1.2524E+02 3.2160E-06 1.8947E-04 2.5166E-08 0

TF23 Best -186.73 -186.73 -186.73 -186.73 -186.73 -186.73 -186.73

Worst -123.5767 -186.73 -46.5113 -172.9009 -186.7294 -186.73 -186.73

Mean -127.7870 -186.73 -144.3476 -186.0049 -186.73 -186.73 -186.73

SD 1.6023E+01 1.6142E-10 5.4146E+01 2.8688E+00 4.2477E-04 6.5738E-07 2.6389E-14

TF24 Best 3.1244E+00 9.4208E+03 1.0786E+07 2.7551E+01 3.1365E+01 3.1196E+01 3.9637E-19

Worst 2.6849E+01 2.2741E+07 1.6756E+08 1.2619E+03 3.0082E+03 6.7402E+02 2.8475E+01

Mean 1.0939E+01 9.1204E+05 6.6428E+07 1.6842E+02 4.5532E+02 1.0894E+02 9.4919E-01

SD 5.4537E+00 4.1286E+06 4.0242E+07 3.1325E+02 7.4799E+02 1.2680E+02 5.1988E+00

TF25 Best 1.2089E-01 3.9313E+00 1.5357E+02 3.0228E-03 5.6442E-01 1.2790E-02 0

Worst 2.6858E-01 7.5168E+01 5.8882E+02 9.7682E-03 8.8953E-01 1.0182E-01 4.1375E-05

Mean 1.9528E-01 1.5221E+01 3.4748E+02 5.6221E-03 7.4609E-01 3.9617E-02 3.435E-06

SD 3.9152E-02 1.3167E+01 9.7449E+01 1.5095E-03 8.2684E-02 1.9782E-02 9.6702E-06

TF26 Best 2.1422E+00 7.0538E+00 1.7898E+01 2.4479E-02 3.3005E-01 4.2757E-03 2.2418E-10

Worst 3.5251E+00 1.2792E+01 1.9964E+01 8.2453E-02 2.8880E+00 2.5808E+00 2.5867E-03

Mean 3.2409E+00 9.8587E+00 1.9834E+01 5.3031E-02 1.5634E+00 1.4531E+00 1.3915E-04

SD 3.0589E-01 1.5864E+00 4.9211E-01 1.3147E-02 6.1466E-01 8.5527E-01 4.8513E-04
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Fig. 14. Convergence rate comparison for benchmark functions (a) TF19, (b) TF20, (c) TF21, (d) TF22, (e) TF23, (f) TF24,
(g) TF25 and (h) TF26
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6.5. Experimental test 5

The aim of this test is to evaluate the effectiveness and robustness of SSA. Therefore most intensely
investigated benchmark functions used in IEEE CEC 2014 are considered for the purpose. CEC 2014
was a special session and competition on single objective real-parameter numerical optimization problems.
These modern benchmark functions are especially equipped with various novel characteristics such as basic
problems with shifting and rotation. Several hybrid and composite test problems are designed by extract-
ing features dimension-wise for various problems, graded level of linkages, rotated trap problems, and so
on [102]. In this experimental study seven CEC 2014 functions are considered with at least one function
from each category and the details are provided in Table 12. Results obtained from each algorithm after
30 independent runs are recorded in Table 13. As mentioned previously CEC 2014 functions are specially
developed with complex features, consequently all the algorithms can hardly find the global optimum for
these seven functions. However, as per the results reported in Table 13, SSA provides more acceptable
results on the seven benchmark functions than other algorithms. Further, the analysis of variance shown
in Fig. 15 also ensures the stable performance of proposed SSA, as interquartile range is narrow and 25th

and 75th percentiles of the samples collected for the SSA during 30 runs, also decline towards the minimum
solution. The graphical results of convergence analysis (Fig. 16) show that SSA has promising convergence
behaviour in comparison to other six optimization algorithms and hence SSA proves to be the best among
other algorithms on seven CEC 2014 functions. It is revealed from the literature that complex optimization
problems may be solved efficiently, if the metaheuristic possesses an equilibrium among the exploration and
exploitation phases. It is observed from the experimental analysis that SSA maintains the required balance
between exploration and exploitation through proper selection of controlling parameters (Nfs, Gc and Pdp).
It is observed from the results (Table 5, 7, 9, 11) that performance of BA is not very convincing, this may

Table 12
The brief description of CEC 2014 benchmark functions

Function Name d Type Range Fmin

TF27 Rotated High Conditioned Elliptic Function (CEC1) 30 U, N [-100, 100] 100
TF28 Rotated Bent Cigar Function (CEC2) 30 U, N [-100, 100] 200
TF29 Shifted and Rotated Rosenbrock’s Function (CEC4) 30 M, N [-100, 100] 400
TF30 Hybrid Function 1 (CEC17) 30 - [-100, 100] 1700
TF31 Composition Function 1 (CEC23) 30 - [-100, 100] 2300
TF32 Composition Function 2 (CEC24) 30 - [-100, 100] 2400
TF33 Composition Function 3 (CEC25) 30 - [-100, 100] 2500

be due to poor parametric tuning of algorithm. Therefore parametric tuning is carried out and recorded
results for few cases are presented in Table 14 and Table 15. It observed from the analysis that performance
of BA is problem dependent and parameter setting also depends on the type of optimization problem.
Similar parametric analysis is also performed for other algorithms used in the comparative analysis. These
algorithms have several tuning parameters which result in large number of combinations. The analysis is
carried out for all possible combinations and few significant results are presented in Table 16, 17, 18, 19,
20 and 21. The analysis reveals that existing optimizers produce optimal results within certain accuracy
range irrespective of the parametric settings for the present 33 benchmark problems. However, the results
obtained by the proposed method are found superior in comparison to other methods.

6.6. Comprehensive significance analysis

Several non-parametric statistical tests are discussed in the literature by Derrac [105] to analyze the
performance of any two algorithms. However Wilcoxon’s test, the most frequently used non-parametric
statistical test is considered for the present work and results are summarized in Table 22. The test is
performed by considering the best solution obtained by each algorithm for each benchmark function with
30 independent runs and 95% significance level (α = 0.05). In Table 22 ‘+’ sign indicates that reference
algorithm performed better than the compared algorithm and ‘-’ sign indicates that reference algorithm is
inferior to the compared one. The results of last row show that SSA has large number of ‘+’ counts as
compared to other optimization algorithms. It confirms that SSA demonstrates statistically significant and
superior performance than the six compared algorithms in Wilcoxon test under 95% level of significance.
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Table 13
Statistical results obtained by GA, BA, FF, MVO, KH, DA, PSO and SSA through 30 independent runs on CEC 2014
benchmark functions with 30 Dim

Function GA PSO BA FF MVO KH SSA

TF27 Best 3.2121E+08 2.3069E+07 7.2988E+07 5.1533E+05 9.9798E+05 5.6081E+06 9.1044E+04

Worst 4.6388E+08 4.0159E+08 2.5523E+09 5.6161E+06 5.9024E+06 9.2581E+07 1.7503E+06

Mean 3.8257E+08 1.2539E+08 1.0102E+09 2.1259E+06 2.8959E+06 1.7788E+07 8.1899E+05

SD 3.5194E+07 7.9595E+07 6.1849E+08 1.0427E+06 1.1257E+06 1.6125E+07 4.0164E+05

TF28 Best 5.3189E+10 4.4691E+09 3.2169E+10 1.4579E+03 5.8171E+03 7.6562E+03 2.1599E+02

Worst 6.1164E+10 3.5536E+10 9.2830E+10 2.8959E+04 3.8972E+04 2.3140E+05 2.8185E+04

Mean 5.7641E+10 1.4965E+10 6.6295E+10 1.2959E+04 1.7855E+04 5.3419E+04 1.0049E+04

SD 1.9557E+09 8.4581E+09 1.5227E+10 9.0248E+03 1.0593E+04 4.6499E+04 9.8268E+03

TF29 Best 1.3568E+04 7.6658E+02 6.0632E+03 4.6835E+02 4.6344E+02 4.0438E+02 4.0000E+02

Worst 1.6908E+04 4.7321E+03 2.5164E+04 5.0416E+02 5.6404E+02 5.5844E+02 5.4414E+02

Mean 1.5512E+04 1.6374E+03 1.2585E+04 4.7708E+02 4.9611E+02 4.9723E+02 4.5717E+02

SD 6.9712E+02 9.1113E+02 4.9397E+03 8.8691E+00 3.1158E+01 3.4872E+01 3.9877E+01

TF30 Best 6.1113E+06 1.1359E+05 1.6640E+06 1.0691E+04 2.4724E+04 2.6364E+05 7.0506E+03

Worst 1.5695E+07 4.3836E+06 1.6579E+08 4.3608E+05 4.9843E+05 3.1581E+06 6.0131E+04

Mean 1.0730E+07 9.8676E+05 5.0365E+07 1.2391E+05 1.8421E+05 1.3223E+06 2.6151E+04

SD 2.6344E+06 1.0314E+06 4.5527E+07 9.5801E+04 1.2883E+05 7.1854E+05 1.5238E+04

TF31 Best 2.5409E+03 2.6406E+03 2.8174E+03 2.6153E+03 2.6153E+03 2.6153E+03 2.500E+03

Worst 2.5619E+03 2.7447E+03 3.8780E+03 2.6154E+03 2.6158E+03 2.6241E+03 2.500E+03

Mean 2.5540E+03 2.6764E+03 3.0626E+03 2.6153E+03 2.6155E+03 2.6161E+03 2.500E+03

SD 5.4976E+00 2.7560E+01 2.2366E+02 2.9169E-02 1.2047E-01 1.7847E+00 8.4083E-10

TF32 Best 2.6033E+03 2.6398E+03 2.7135E+03 2.6002E+03 2.6009E+03 2.6013E+03 2.600E+03

Worst 2.6078E+03 2.6966E+03 2.8588E+03 2.6260E+03 2.6426E+03 2.6291E+03 2.6004E+03

Mean 2.6053E+03 2.6629E+03 2.7801E+03 2.6079E+03 2.6237E+03 2.6229E+03 2.6000E+03

SD 1.3394E+00 1.3087E+01 3.7039E+01 1.0967E+01 1.3737E+01 6.5139E+00 8.3747E-02

TF33 Best 2.7008E+03 2.7161E+03 2.7250E+03 2.7040E+03 2.7034E+03 2.700E+03 2.700E+03

Worst 2.7011E+03 2.7542E+03 2.7798E+03 2.7069E+03 2.7089E+03 2.7131E+03 2.700E+03

Mean 2.7009E+03 2.7260E+03 2.7499E+03 2.7051E+03 2.7048E+03 2.7055E+03 2.700E+03

SD 6.4016E-02 8.7844E+00 1.5781E+01 8.3501E-01 1.3219E+00 4.0995E+00 4.8285E-11
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Fig. 15. Variation in global optimization results for benchmark functions (a) TF27, (b) TF28, (c) TF29, (d) TF30, (e) TF31,
(f) TF32 and (g) TF33
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Fig. 16. Convergence rate comparison for benchmark functions (a) TF27, (b) TF28, (c) TF29, (d) TF30, (e) TF31, (f) TF32
and (g) TF33

Table 14
The effect of variation of loudness (A) keeping pulse rate (r = 0.5) on the performance of BA

Function Parameter A = 2 A = 1.5 A = 1 A = 0.5 A = 0.35 A = 0.25 A = 0.1

TF1 Mean 7.0930E+03 5.1973E+03 7.3436E+03 8.0254E+03 9.3928E+03 1.0877E+04 1.0908E+04

SD 2.7636E+03 1.8015E+03 2.5153E+03 2.9201E+03 3.4583E+03 3.4485E+03 3.7797E+03

TF9 Mean 7.1232E+01 5.6507E+01 7.7221E+01 5.6136E+01 6.4776E+01 7.8141E+01 6.6976E+01

SD 7.3551E+01 5.5139E+01 8.5643E+01 5.4799E+01 4.8650E+01 7.2201E+01 7.6153E+01

TF13 Mean 5.9455E+01 7.4631E+01 6.7279E+01 1.0399E+02 1.8798E+02 9.0527E+01 1.1965E+02

SD 1.1565E+02 1.3289E+02 9.6873E+01 1.3961E+02 2.2600E+02 1.2093E+02 1.6878E+02

TF19 Mean 1.7442E-01 1.3640E-01 1.3837E-01 1.7202E-01 1.6560E-01 2.0144E-01 1.7363E-01

SD 1.1084E-01 1.0372E-01 1.0675E-01 1.0729E-01 1.0390E-01 1.2805E-01 1.1782E-01

Table 15
The effect of variation of pulse rate (r) keeping loudness (A = 0.5) on the performance of BA

Function Parameter r = 0.9 r = 0.7 r = 0.6 r = 0.4 r = 0.35 r = 0.25 r = 0.1

TF1 Mean 1.0321E+04 1.0506E+04 9.0349E+03 7.6793E+03 8.2458E+03 7.7267E+03 7.9055E+03

SD 4.4886E+03 3.8773E+03 3.7198E+03 3.2272E+03 2.9998E+03 2.7651E+03 2.4840E+03

TF9 Mean 1.6041E+02 7.3076E+01 8.7196E+01 5.6924E+01 4.1761E+01 3.5332E+01 1.6734E+01

SD 1.1298E+02 5.3355E+01 9.6869E+01 6.3834E+01 5.8968E+01 5.1145E+01 2.7489E+01

TF13 Mean 2.8402E+02 1.9413E+02 1.2746E+02 3.8388E+01 9.6727E+01 3.9832E+01 1.9349E+01

SD 3.1375E+02 1.8680E+02 1.8827E+02 6.4789E+01 1.7199E+02 1.0640E+02 4.4570E+01

TF19 Mean 2.1917E-01 1.6084E-01 2.2677E-01 1.9497E-01 1.5760E-01 1.9243E-01 1.5051E-01

SD 1.4373E-01 1.0701E-01 1.3385E-01 1.0420E-01 1.2137E-01 1.1164E-01 1.0732E-01

Table 16
The effect of variation of cognitive constant (C1) keeping social constant (C2=2) and inertial weight (w=0.9) on the performance
of PSO

Function Parameter C1=0.1 C1=0.3 C1=0.5 C1=1 C1=1.3 C1=1.5 C1=2

TF13 Mean 5.7648E-08 9.6235E-09 2.4484E-09 3.6733E-10 3.9848E-10 2.1737E-10 1.6065E-10

SD 2.5309E-07 4.5132E-08 9.0398E-09 1.3841E-09 6.9483E-10 4.8836E-10 3.4677E-10

Table 17
The effect of variation of α keeping β=0.20 and γ=1 on the performance of FF

Function Parameter α=0.1 α=0.25 α=0.3 α=0.5 α=0.6 α=0.8 α=0.9

TF24 Mean 3.9836E+01 5.3053E+01 1.3151E+02 8.2012E+01 2.2691E+02 7.3650E+01 8.7297E+01

SD 2.6186E+01 7.4206E+01 2.3776E+02 8.6548E+01 4.5404E+02 8.2723E+01 1.0847E+02
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Table 18
The effect of variation of WEPmax keeping WEPmin=0.2 on the performance of MVO

Function Parameter WEPmax=0.3 WEPmax=0.6 WEPmax=0.9 WEPmax=1.1 WEPmax=1.3 WEPmax=1.5

TF14 Mean 1.1116E-06 5.4784E-07 6.1269E-07 6.4180E-07 5.0591E-07 4.6799E-07

SD 1.2520E-06 6.8009E-07 5.1326E-07 6.9295E-07 4.6183E-07 2.9343E-07

Table 19
The effect of variation of Vf keeping Dmax=0.005 and Nmax=0.01 on the performance of KH algorithm

Function Parameter Vf=0.05 Vf=0.1 Vf=0.3 Vf=0.6 Vf=0.8 Vf=1 Vf=1.2

TF21 Mean 4.8877E-08 8.8259e-08 1.4895E-06 7.4618E-06 2.1242E-05 3.9623E-05 6.1378E-05

SD 7.2770E-08 8.2842e-08 1.7252E-06 9.0189E-06 2.8757E-05 5.8044E-05 6.5387E-05

Table 20
The effect of different types of Crossover on the performance of GA while keeping Crossover fraction=0.8, Tournament selection
and Adaptive feasible mutation

Function Parameter Crossover =Scattered Crossover =Single point Crossover =Two points

TF18 Mean 9.2654E+00 1.1424E+01 1.0583E+01

SD 3.3379E+00 2.9959E+00 2.9161E+00

Table 21
The effect of different types of selection operators on the performance of GA while keeping Crossover fraction=0.8, Arithmetic
crossover and Adaptive feasible mutation

Function Parameter Selection =Stochastic uniform Selection =Uniform Selection =Roulette

TF18 Mean 1.1026E+02 1.9581E+02 1.0917E+02

SD 3.0096E+01 3.0510E+01 2.8615E+01

Table 22
Results of Wilcoxon’s test for SSA against other six algorithms for each benchmark function with 30 independent runs (α =
0.05)

Function
GA vs SSA SPSO vs SSA BA vs SSA FF vs SSA MVO vs SSA KH vs SSA

p-value win p-value win p-value win p-value win p-value win p-value win

TF1(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF2(x) 8.2702E-10 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF3(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF4(x) 5.3430E-08 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF5(x) 4.8415E-13 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF6(x) 3.0495E-05 + 4.9499E-14 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF7(x) 3.1E-03 + 7.8683E-05 + 1.6911E-17 + 3.5480E-14 + 1.8614E-08 + 1.0603E-07 +

TF8(x) 9.2268E-014 + 1.7411E-10 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF9(x) 9.2268E-14 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF10(x) 5.2425E-16 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF11(x) 1.6911E-17 + 4.9940E-01 - 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF12(x) 1.6911E-17 + 7.6236E-14 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF13(x) 6.125E-01 - 2.2395E-06 + 3.5555E-09 + 5.039E-01 - 8.2025E-04 + 5.32E-02 -

TF14(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF15(x) 1.0858E-010 + 6.438E-01 - 5.9588E-08 + 9.1611E-08 + 9.357E-01 - 5.4264E-04 +

TF16(x) 7.9701E-04 + 1.6911E-17 + 1.6911E-17 + 1.000E+00 - 1.2362E-04 + 1.000E+00 -

TF17(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF18(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF19(x) 1.5721E-13 + 3.1900E-02 + 1.6911E-17 + 3.2131E-16 + 1.7733E-05 + 1.5474E-14 +

TF20(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF21(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF22(x) 3.8938E-13 + 1.6911E-17 + 1.6911E-17 + 1.1331E-15 + 1.6911E-17 + 1.6911E-17 +

TF23(x) 6.7645E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF24(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF25(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF26(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF27(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 9.3016E-11 + 2.3507E-15 + 1.6911E-17 +

TF28(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 6.333E-01 - 8.2025E-04 + 7.5007E-09 +

TF29(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 5.91E-02 - 1.42E-02 + 4.6453E-07 +

TF30(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.4295E-09 + 4.8415E-13 + 1.6911E-17 +

TF31(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF32(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

TF33(x) 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 + 1.6911E-17 +

+/- 32/1 31/2 33/0 29/4 32/1 31/2
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The quantitative analysis of all algorithms is also carried out on the basis of mean absolute error (MAE)
for all 33 cases. MAE is an effective and valid performance index used to rank the optimization algo-
rithms [106]. Table 23 provides the average error rates obtained for these benchmark functions. The MAE
can be computed as:

MAE =

∑Ns

j=1 |mj − oj |
Ns

(27)

where mj is the mean of optimal results produced by an algorithm, oj is actual value of global optimum for
function under optimization and Ns indicates the number of samples. In the present study, Ns number of
benchmark functions are considered and computed MAE is given in Table 24. SSA is ranked 1 as it provides
minimum MAE. Further SSA is found most consistent in comparison to other optimization algorithms as it
reached the global optimum solution 475 times out of 990 runs (Fig. 17).

Table 23
Average Error rates offered by various algorithms including SSA, for 33 benchmark functions

Function GA SPSO BA FF MVO KH SSA

TF1(x) 1.5004E-07 6.2888E-02 1.5241E-01 8.4259E-10 5.0805E-02 1.7322E-10 9.5584E-22

TF2(x) 0 0 9.6665E-01 2.6667E-01 3.3359E-02 3.334E-02 0

TF3(x) 1.2012E-06 8.4738E-13 2.9659E-11 3.1396E-10 1.3148E-08 8.8694E-12 1.542E-25

TF4(x) 1.8113E-10 1.4898E-10 6.9719E+01 3.4682E-06 3.5952E-04 2.2989E-07 0

TF5(x) 9.8814E-11 8.7865E-11 6.7996E-10 5.4966E-09 5.8026E-07 1.9913E-10 9.5859E-25

TF6(x) 0 0 1.851E-01 0 0 0 0

TF7(x) 1.6854E-12 3.5625E-03 1.4118E-01 1.1809E-02 1.3113E-03 3.3604E-06 9.7159E-04

TF8(x) 0 0 8.162E-02 0 0 0 0

TF9(x) 1.3099E-01 8.7221E-11 8.1426E+01 2.6897E-06 2.7308E-04 3.0532E-08 0

TF10(x) 9.8046E-02 4.5608E-11 8.6329E+01 2.2231E-06 2.0969E-04 2.2472E-08 0

TF11(x) 5.8943E+01 0 4.2382E+01 7.2509E-01 0 0 0

TF12(x) 2.9713E-02 1.3576E+00 1.1779E+02 6.9498E-02 1.3897E-02 1.4707E+00 1.4309E-09

TF13(x) 1.783E-01 6.661E-01 1.1902E+00 1.1710E-01 6.996E-01 5.381E-01 3.398E-01

TF14(x) 9.3216E-03 2.8145E+00 5.7976E+01 1.9991E-05 3.3653E-04 5.7794E-01 5.2215E-09

TF15(x) 7.697E-01 2.5608E+00 3.9254E+00 1.1805E+00 2.2744E+00 1.8256E+00 2.0702E+00

TF16(x) 1.3333E-01 8.0333E+00 8.9976E+03 0 4.6667E-01 0 0

TF17(x) 4.4609E+00 1.3576E+03 3.9384E+04 1.1597E-02 7.8582E-01 5.7558E-02 4.1689E-08

TF18(x) 6.4872E+01 1.9168E+02 2.9497E+03 6.5045E-01 6.1321E-01 5.7491E-02 1.5201E-07

TF19(x) 2.9543E+00 1.0084E+00 1.8324E+01 3.2152E-02 2.6035E-01 5.2810E-02 5.0192E-01

TF20(x) 1.0964E+01 1.8341E+01 6.3387E+05 3.7229E-01 4.2299E+00 4.5339E+01 5.1849E-04

TF21(x) 6.2471E+01 1.3279E+04 5.4751E+05 2.3487E+01 5.6701E+01 7.6901E+00 1.6925E-05

TF22(x) 1.0939E+01 9.1204E+05 6.6428E+07 1.6842E+02 4.5532E+02 1.0894E+02 9.4919E-01

TF23(x) 1.3711E+00 1.1892E+03 1.8201E+05 3.0817E+00 5.1183E+00 1.7567E+00 2.2412E-01

TF24(x) 6.3527E+01 1.0309E+02 1.2192E+02 2.5069E+01 1.1867E+02 1.2391E+01 4.9059E-07

TF25(x) 1.9528E-01 1.5221E+01 3.4748E+02 5.6221E-03 7.4609E-01 3.9617E-02 3.435E-06

TF26(x) 3.2409E+00 9.8587E+00 1.9834E+01 5.3031E-02 1.5634E+00 1.4531E+00 1.3915E-04

TF27(x) 3.8257E+08 1.2538E+08 1.0102E+09 2.1258E+06 2.8958E+06 1.7788E+07 8.1889E+05

TF28(x) 5.7641E+10 1.4965E+10 6.6295E+10 1.2759E+04 1.7655E+04 5.3219E+04 9.8490E+03

TF29(x) 1.5112E+04 1.2374E+03 1.2185E+04 7.7080E+01 9.6110E+01 9.7230E+01 5.7170E+01

TF30(x) 1.0728E+07 9.8506E+05 5.0363E+07 1.2221E+05 1.8251E+05 1.3206E+06 2.4451E+04

TF31(x) 2.54E+02 3.7640E+02 7.6260E+02 3.1530E+02 3.1550E+02 3.1610E+02 2.00E+02

TF32(x) 2.0530E+02 2.6290E+02 3.8010E+02 2.0790E+02 2.2370E+02 2.2290E+02 2.00E+02

TF33(x) 2.0090E+02 2.26E+02 2.4990E+02 2.0510E+02 2.0480E+02 2.0550E+02 2.00E+02

Table 24
Ranking of algorithms using MAE

Algorithm MAE Rank

SSA 2.5874E+04 1

FF 6.8539E+04 2

MVO 9.3862E+04 3

KH 5.8069E+05 4

SPSO 4.5734E+08 5

GA 1.7586E+09 6

BA 2.0431E+09 7

6.7. Effect of Nfs and n on performance of SSA

SSA is formulated by considering a small region of forest around one hickory tree and hence it can be
assumed that the availability of food sources is limited in the vicinity of this region. If the boundary of this
region is expanded or a different region is considered, then number of food sources as well as number of
flying squirrels will be different. In the proposed algorithm, global optimum is assumed to be one, therefore
one hickory nut tree is considered and one squirrel is assumed to be on one tree. However, there is no strict
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Fig. 17. Comparison of algorithms in finding the global optimal solution out of 990 runs

criterion to decide the number of food sources (Nfs) and flying squirrels (n). These parameters depend
on the nature of optimization problem and hence user defined. Therefore, the effect of Nfs and n on the
performance of SSA is also studied on benchmark problems and some significant results are presented in
Table 25 and Table 26. It is observed from the analysis that increase in number of food sources results in

Table 25
The effect of food sources (Nfs) on the performance of SSA with fixed population size n=50

Function Parameter Nfs=5% Nfs=8% Nfs=15% Nfs=30% Nfs=40% Nfs=60% Nfs=80%

TF5 Best 4.5368E-27 1.6006E-28 4.1323E-30 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst 1.5066E-19 2.3501E-21 6.5759E-22 3.3398E-23 2.4831E-24 2.0901E-26 1.9083E-28

Mean 5.2319E-21 9.9573E-23 3.7590E-23 1.2447E-24 9.9097E-26 1.0914E-27 1.2975E-29

SD 2.7485E-20 4.3201E-22 1.3303E-22 6.0955E-24 4.5557E-25 3.8835E-27 4.3389E-29

TF18 Best 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst 9.9506E-01 2.4154E-03 6.6716E-05 1.0149E-05 5.9740E-06 1.2212E-08 2.1005E-07

Mean 3.3318E-02 8.2779E-05 6.0602E-06 3.8840E-07 2.5481E-07 1.4247E-09 7.4923E-09

SD 1.8165E-01 4.4060E-04 1.5405E-05 1.8467E-06 1.0969E-06 3.2659E-09 3.8335E-08

TF26 Best 1.3483E-10 4.4079E-10 1.1789E-10 3.4897E-12 2.5757E-14 6.1284E-14 8.8818E-16

Worst 2.5999E-03 5.7313E-04 1.3847E-03 2.8901E-05 5.4130E-04 1.1424E-05 3.6429E-06

Mean 1.0417E-04 2.6091E-05 7.6173E-05 4.2343E-06 3.4202E-05 1.2524E-06 2.3699E-07

SD 4.7571E-04 1.0590E-04 2.6303E-04 8.5141E-06 1.0745E-04 2.8913E-06 7.0631E-07

enhanced optimization accuracy as well as stability of the algorithm. Increased percentage of Nfs leads to
more points in search space around which search is focused. Thus new solutions are generated and better
exploration of search space is achieved. Hence, Nfs is an attribute of SSA which provides flexibility to vary
exploration capability of the algorithm. However, there is no thumb rule for selection of Nfs and it depends
on the nature of problem. Similarly, increase in population size also optimizes the problem more accurately.
However higher values of n provide accuracy at the cost of computational effort while lower values of n
leads to unsatisfactory performance of the algorithm. Thus proper selection of Nfs and n is necessary for
satisfactory performance of SSA. The experimentation results reveal the robustness of proposed algorithm
as classical and CEC 2014 functions are considered for optimization. Further efficiency and consistency
of developed SSA is proved using standard procedures i.e. convergence rate analysis, Wilcoxon’s test and
ANOVA. The practical applicability of proposed algorithm is also tested by implementing it on a real-time
system.
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Table 26
The effect of population size (n) on the performance of SSA with Nfs=8%

Function Parameter n=10 n=20 n=30 n=40 n=60 n=70

TF5 Best 1.1003E-19 1.6719E-25 2.1846E-28 1.1229E-28 7.3426E-29 3.1382E-29

Worst 1.5457E-07 3.0109E-18 1.8408E-17 1.2910E-20 2.6412E-21 3.4424E-23

Mean 5.1643E-09 2.6981E-19 6.6253E-19 7.2629E-22 8.9792E-23 1.6093E-24

SD 2.8219E-08 6.4466E-19 3.3557E-18 2.4352E-21 4.8192E-22 6.2747E-24

TF18 Best 4.4906E-12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst 1.3421E+02 2.9849E+01 2.9849E+01 2.6864E-04 5.9108E-07 5.6132E-07

Mean 2.4862E+01 5.9748E+00 1.0007E+00 1.3586E-05 3.2866E-08 3.0694E-08

SD 3.1152E+01 1.2141E+01 5.4486E+00 4.9998E-05 1.2477E-07 1.0906E-07

7. Real-time experimental study

In this study, a common problem of process industry known as “controller tuning” is considered and SSA
is employed for the purpose. The results obtained are compared statistically with the existing optimization
algorithms. Finally, the performance of SSA optimized controller is validated and compared with the
conventional controller on a real-time hardware known as Heat Flow Experiment.

7.1. 2DOFPI control scheme for Heat Flow Experiment

The Quanser Heat Flow Experiment (HFE) is an excellent platform for researchers to design and validate
a new control strategy. It consists of a blower followed by a coil-based heater at one end and three equidistant
temperature sensors in duct with other end open (Fig. 18a). The apparatus is enclosed by solid Plexiglass
chamber and the objective is to ensure a constant temperature profile inside the duct area. Fig. 18b shows
the laboratory setup of HFE. The plant can be controlled using MATLAB/Simulink environment installed
on a personal computer, however WinCon 5.2 software facilitates the real-time control of HFE. Analog

(a) Apparatus (b) Experimental setup
Fig. 18. Heat Flow Experiment

signals ranging from 0 to 5V are used to control the power of heater and speed of fan. These control
signals are generated by controller and applied to HFE apparatus through a data acquisition (DAQ) board.
The temperature variation inside the chamber depends on the magnitude of applied input voltage signals
and measured at three different points along the duct by temperature sensors. The output of sensors is
available on three analog input channels of DAQ board. As one side of the duct is open, changes in ambient
environment directly affect the temperature inside the plant. Hence, it becomes difficult to maintain a
constant temperature profile inside the chamber by conventional one degree of freedom proportional and
integral (1DOFPI) controller. In the present work, a two degree of freedom PI (2DOFPI) control scheme
(Fig. 19) is employed to control the temperature of HFE. The output (Uc) of controller is generally expressed
as follows [107, 108]:

Uc(s) = Kp

[
βR(s)− Y (s) +

1

Tis
{R(s)− Y (s)}

]
= Kp {βR(s)− Y (s)}+ Ki

s
{R(s)− Y (s)} (28)
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Fig. 19. Block diagram of 2DOFPI control scheme for temperature control of HFE

In Eq. (28), there are three unknown parameters: proportional gain (Kp), integral gain (Ki) and set-point
weighing factor (β) known as controller parameters. Appropriate value of these parameters leads to precise
control action and stable performance of the plant. The situation presents a combinatorial optimization
problem whose optimal solution may be obtained heuristically. In the present study, SSA is applied for
tuning of 2DOFPI controller which leads to SSA2DOFPI controller. The transfer function of HFE under
consideration is identified as follows:

P (s) =
−0.2405s+ 1.721

s2 + 1.17s+ 0.2
(29)

The controller parameters are tuned to meet the following design objective:

J = 0.30IAE + 0.25tr + 0.45ts (30)

where IAE is integral absolute error, tr is rise time and ts is settling time. The aim is to find a solution set
[Kp,Ki, β] while optimizing J .

Apart from SSA, other existing algorithms are also employed for tuning of 2DOFPI controller and
statistical analysis for 30 independent runs is presented in Table 27. The common parameters of algorithms
are considered to be same for fair comparison. For example same parametric search range is considered
(0 ≤ Kp ≤ 5, 0 ≤ Ki ≤ 5 and 0 ≤ β ≤ 2) and maximum 800 number of function evaluations are allowed.
It is observed from Table 27 that SSA outperforms all other algorithms except KH. The SSA and KH
performed equally well on the defined combinatorial optimization problem on statistical grounds. However
SSA provides accelerated convergence (Fig. 20) in comparison to KH as well as other techniques. The
parameters obtained after tuning by SSA i.e. Kp= 0.7524, Ki= 0.6978 and β= 0.9972 are used in 2DOFPI
controller for real-time control of HFE. The experimental results are compared with conventional Tyreus-
Luyben tuned 1DOFPI controller. It is revealed from Fig. 21a that SSA2DOFPI controller provides more
precise and tight temperature control of HFE. The obvious reason is that SSA2DOFPI controller makes more
precise variations in control signal (Fig. 21b) in comparison to conventional controller. Quantitative analysis
based on IAE (Fig. 22) also confirms the superiority of proposed technique. The successful implementation
of SSA on real-time system proves the robustness and suitability of the algorithm for complex optimization
problems.

Table 27
Statistical analysis of algorithms for objective function J

Function GA PSO BA FF MVO KH SSA

J Mean 4.7209E+01 5.0446E+01 5.1236E+01 6.5932E+01 4.6276e+001 4.0149E+01 4.0149E+01

SD 2.7214E+01 5.2425E+00 2.6044E+01 4.0365E+01 2.7573e+001 3.6604E+00 3.6604E+00
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Fig. 22. IAE comparison of designed controllers for set point tracking
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8. Conclusion

A novel nature-inspired squirrel search algorithm is designed for unconstrained optimization problems.
The foraging behaviour of southern flying squirrels is studied and modeled mathematically including each
and every feature of their food search for the desired optimization. The proposed algorithm is tested using
several classical and modern unconstrained benchmark functions. It is observed from the comparative
statistical analysis that SSA achieves the global optimum solutions with remarkable convergence behaviour
in comparison to the other reported optimizers. Further in case of modern highly complex CEC 2014
benchmark functions, all the algorithms can hardly find the global optimum solution but the performance
of SSA is found accurate and consistent. Moreover, the SSA is successfully applied to design 2DOFPI
controller for temperature control of HFE. Hence it is concluded that SSA offers quite competitive results
in comparison to other reported optimizers for numerical optimization as well as real-time problems. The
present work provides a basic framework of SSA for low dimension optimization problems, which may be
further extended to large scale optimization and constrained optimization problems. In future SSA may
also be used for multi-objective optimization problems. The proposed method may also be applied to solve
NP-hard combinatorial optimization problems found in real-world.
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[45] F. Fausto, E. Cuevas, A. Valdivia, A. González, A global optimization algorithm inspired in the behavior of selfish herds,

Biosystems 160 (2017) 39–55.
[46] A. Tabari, A. Ahmad, A new optimization method: Electro-search algorithm, Computers & Chemical Engineering 103

(2017) 1–11.
[47] A. Kaveh, A. Dadras, A novel meta-heuristic optimization algorithm: Thermal exchange optimization, Advances in

Engineering Software 110 (2017) 69–84.
[48] E. Jahani, M. Chizari, Tackling global optimization problems with a novel algorithm-mouth brooding fish algorithm,

Applied Soft Computing.
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Highlights 
 

• A novel nature-inspired algorithm named as squirrel search algorithm (SSA) is proposed.  
 

• Testing is performed using 33 optimization benchmark problems. 
 

• The proposed algorithm is compared with six well-known optimization algorithms. 
 
• Experimental results show the superiority of the proposed algorithm. 
 
 


