

Accepted Manuscript

SCA: A Sine Cosine Algorithm for Solving Optimization Problems

Seyedali Mirjalili

PII: S0950-7051(15)00504-3
DOI: 10.1016/j.knosys.2015.12.022
Reference: KNOSYS 3368

To appear in: Knowledge-Based Systems

Received date: 8 June 2015
Revised date: 19 December 2015
Accepted date: 27 December 2015

Please cite this article as: Seyedali Mirjalili , SCA: A Sine Cosine Algorithm for Solving Optimization
Problems, Knowledge-Based Systems (2016), doi: 10.1016/j.knosys.2015.12.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.knosys.2015.12.022

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

SCA: A Sine Cosine Algorithm for Solving Optimization

Problems

Seyedali Mirjalili

School of Information and Communication Technology, Griffith University, Australia

seyedali.mirjalili@griffithuni.edu.au

Abstract

This paper proposes a novel population-based optimization algorithm called Sine Cosine

Algorithm (SCA) for solving optimization problems. The SCA creates multiple initial random

candidate solutions and requires them to fluctuate outwards or towards the best solution using a

mathematical model based on sine and cosine functions. Several random and adaptive variables

also are integrated to this algorithm to emphasize exploration and exploitation of the search

space in different milestones of optimization. The performance of SCA is benchmarked in three

test phases. Firstly, a set of well-known test cases including unimodal, multi-modal, and

composite functions are employed to test exploration, exploitation, local optima avoidance, and

convergence of SCA. Secondly, several performance metrics (search history, trajectory, average

fitness of solutions, and the best solution during optimization) are used to quantitatively and

qualitatively observe and confirm the performance of SCA on shifted two-dimensional test

functions. Finally, the cross-section of an aircraft’s wing is optimized by SCA as a real

challenging case study to verify and demonstrate the performance of this algorithm in practice.

The results of test functions and performance metrics prove that the proposed algorithm is able

to explore different regions of a search space, avoid local optima, converge towards the global

optimum, and exploit promising regions of a search space during optimization effectively. The

SCA algorithm obtains a smooth shape for the airfoil with a very low drag, which demonstrates

that this algorithm can highly be effective in solving real problems with constrained and

unknown search spaces. Note that the source codes of the SCA algorithm are publicly available

at http://www.alimirjalili.com/SCA.html.

Keywords: Optimization; Stochastic optimization; Constrained optimization; Meta-heuristic;

Population-based algorithm

1. Introduction

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

Optimization refers to the process of finding optimal values for the parameters of a given system

from all the possible values to maximize or minimize its output. Optimization problems can be

found in all fields of study, which makes the development of optimization techniques essential

and an interesting research direction for researchers. Due to the drawbacks of the conventional

optimization techniques, local optima stagnation, and the need to derivate the search space [1], a

growing interest has been observed in stochastic optimization techniques [2] over the last two

decades [3-5].

Stochastic optimization algorithms consider optimization problems as black boxes [6]. This

means that the derivation of the mathematical models is not required because such optimization

paradigms only change the inputs and monitor the outputs of the system for maximizing or

minimizing its outputs. Another advantage of considering problems as black boxes is the high

flexibility, meaning that stochastic algorithms are readily applicable to problems in different

fields. As the name of stochastic optimization techniques imply, they optimize optimization

problems randomly [7]. Therefore, they intrinsically benefit from higher local optima avoidance

compared to the conventional optimization algorithms.

There are different classification for stochastic optimization algorithms in the literature. Two

main classifications are based on the inspiration of an algorithm (swarm intelligence-based [8],

evolutionary [9], physics-based [10], etc.) and the number of random solutions that an algorithm

generates in each step of optimization. The last classification divides the algorithms to two

categories: single-solution-based and multi-solution-based algorithms. In the former class, only

one solution is generated randomly and improved over the course of optimization. In the latter

class, however, an optimization algorithm generates more than one random solution (mostly

many) and improves them during optimization.

Due to the above-mentioned advantages, stochastic optimization techniques have become very

popular in the literature. This popularity is not only in the field of optimization but also other

fields of study. The application of stochastic algorithms can be found in different branches of

science and industry. Since the focus of this paper is on the theory, the applications are not

discussed further and interested readers are referred to [11, 12].

The theoretical researches in the literature can be divided to three main directions: improving the

current techniques, hybridizing different algorithms, and proposing new algorithms. In the first

approach, researchers try to equip algorithms with different mathematical or stochastic operators

to improve the performance of such techniques. Popular methods in this class are: chaotic maps

[13-17], evolutionary operators [18-23], and local searches [24-27]. The second popular research

direction deals with hybridizing different algorithms to improve the performance or solve

specific problems [28-35]. There is a significant number of hybrid meta-heuristics in the literature

such as: PSO-GA [36], PSO-ACO [37], ACO-GA [38], GA-DE [39], PSO-DE [40], ACO-DE

[41], KH-CS [42], and KH-BBO [43].

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

Last but not least, the proposal of new algorithms is a popular research avenue for many

researchers. Inspiration of a new algorithm can be from evolutionary phenomena, collective

behaviour of creatures (swarm intelligence techniques), physical rules, and human-related

concepts. Some of the recent and popular algorithms in each of these subclasses are as follows:

 Evolutionary techniques: Genetic Algorithms (GA) [44], Differential Evolution (DE)

[45-48], Biogeography-Based Optimization algorithm (BBO) [49], and Evolution Strategy

(ES) [50].

 Swarm intelligence techniques: Ant Colony Optimization [51] (ACO), Particle Swarm

Optimization (PSO) [52], and Artificial Bee Colony (ABC) algorithm [53].

 Physics-based techniques: Gravitational Search Algorithm (GSA) [54], Colliding Bodies

Optimization (CBO) [55], and Black Hole (BH) [56].

 Human-related techniques: League Championship Algorithm (LCA) [57], Mine Blast

Algorithm (MBA) [58], and Teaching-Learning-Based Optimization (TLBO) [59].

Despite the significant number of recently proposed algorithms in this field, there is a

fundamental questions here as if and why we need more optimization techniques. This question

can be answered referring to the so-called No Free Lunch (NFL) theorem [60]. This theorem

logically proves that no one can proposes an algorithm for solving all optimization problems.

This means that the success of an algorithm in solving a specific set of problems does not

guarantee solving all optimization problems with different type and nature. In other words all the

optimization techniques perform equal in average when considering all optimization problems

despite the superior performance on a subset of optimization problems. The NFL theorem

allows researchers to propose new optimization algorithms or improve/modify the current ones

for solving subsets of problems in different fields.

This is also the motivation of this work, in which a simple yet effective optimization technique is

proposed to optimization real problems with unknown search spaces. The paper also shows that

a meta-heuristic does not necessarily need an actual inspiration, and simple mathematical

functions also can be used to design optimization algorithms in this field. The proposed

algorithm utilizes the functions sine and cosine to explore and exploit the space between two

solutions in the search space with the hope to find better solutions. It is worth mentioning here

that the author has proposed an algorithm called Moth-Flame Algorithm (MFO) [61] recently.

The algorithm proposed in this work is completely different in terms of inspiration,

mathematical formulation, and real-world application. The MFO algorithm mimics the

navigation of moths in nature, whereas the SCA algorithm is based on sine/cosine mathematical

functions to solve optimization problems. MFO has been utilized to optimize the shape of a

propeller, while SCA is employed to optimize the shape a 2D airfoil in aircraft wings. The rest of

the paper is organized as follows:

Section 2 includes the preliminaries and essential definitions, presents related works, and reviews

the literature. Section 3 demonstrates the mathematical model of the proposed method and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4

proposes the Sine Cosine Algorithm (SCA). The test beds employed and results obtained are

presented and discussed in Section 4. The shape of the cross-section of an aircraft’s wing is

optimized by the SCA algorithm in Section 5, which demonstrate the merits of this algorithm in

solving real challenging problems with a large number of constraints and unknown search

spaces. Eventually, Section 6 lists the achievement of the paper, concludes the work, and

suggests several directions for future studies.

2. Related works

This section first covers the preliminaries and definitions of optimization. The mechanisms and

challenges of stochastic/heuristic optimization techniques are then discussed. Eventually, the

motivation of this work is provided.

2.1. Preliminaries and definitions

Single-objective optimization deals with optimizing only one objective. This terms stands before

multi-objective optimization where there is more than one objective to be optimized. Handling

multiple objectives requires special considerations and mechanisms, so the interested readers are

referred to the recent review paper witter by Zhou et al. [5] since the focus of this work is on

single-objective optimization.

In addition to the objective, other elements involved in the single-objective optimization process

are parameters and constraints. Parameters are the variables (unknowns) of optimization

problems (systems) that have to be optimized. As Fig. 1 shows, variables can be considered as

primary inputs of systems and constraints are the limitations applied to the system. In fact, the

constraints define the feasibility of the obtained objective value. Examples of constraints are

stress constraints when designing aerodynamic systems or the range of variables.

Other inputs of a system that may affect its output are operating/environmental conditions.

Such inputs are considered as secondary inputs that are defined when a system is operating in the

simulated/final environment. Examples of such conditions are: temperature/thickness of fluid

when a propeller is rotating, or the angle of attack when an aircraft is flying. These types of

inputs are not optimized by the optimizers but definitely have to be considered during

optimization since they may have significant impacts on the outputs.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

Figure 1. Different components of an optimization system

Without the loss of generality, a single-objective optimization can be formulated as a

minimization problem as follows:

 (2.1)

 (2.2)

 (2.3)

 (2.4)

where n is number of variables, m indicates the number of inequality constraints, p shows the

number of equality constraints, is the lower bound of the i-th variable, and is the upper

bound of the i-th variable.

As can be seen in Eqs. (2.2) and (2.3), there are two types of constraints: inequality and equality.

The set of variables, constraints, and objective constructs a search space for a given problem.

Unfortunately, it is usually impossible to draw the search space due to the high-dimensionality of

the variables. However, an example of a search space constructed by two variables and several

constraints are shown in Fig. 2.

It may be observed in Fig. 2 that the search space can have multiple local optima, but one of

them is the global optimum (or more than one in case of a flat landscape). The constraints create

gaps in the search space and occasionally split it to various separated regions. In the literature,

infeasible regions refer to the areas of the search space that violate constraints.

The search space of a real problem can be super challenging. Some of the difficulties of the real

search spaces are discontinuity, large number of local optima, large number of constrains, global

optimum located on the boundaries of constraints, deceptive valleys towards local optima, and

Constraints

System

Operating/environmental conditions

Variables

(inputs)

Objective

(output)

Feasibility

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6

isolation of the global optimum. An optimization algorithm should be equipped with suitable

operators for handling all these difficulties to find the global optimum.

Figure 2. Example of a search space with two variables and several constraints

With formulating a problem, an optimizer would be able to tune its variables based on the

outputs and constraints. As mentioned in Section 1, one of the advantages of stochastic

algorithms is that they consider a system as a black box. Fig. 3 shows that the optimizer only

provides the system with variables and observes the outputs. The optimizer then iteratively and

stochastically changes the inputs of the system based on the feedbacks (output) obtained so far

until the satisfaction of an end criterion. The process of changing the variables based on the

history of outputs is defined by the mechanism of an algorithm. For instance, PSO saves the best

solutions obtained so far and encourages new solutions to relocate around them.

Figure 3. Stochastic population-based optimizers consider the system as black box

 Optimizer

System

(black box)

Operating/environmental conditions

V
a

ri
a

b
le

s

Objective

Feasibility

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7

The literature of stochastic/heuristic optimization techniques and challenges for designing them

are reviewed and discussed in details in the following subsection.

2.2. Literature review

In the field of optimization, in 1977, a revolutionary idea was proposed by Holland where

evolutionary concepts in nature was simulated in computer for solving optimization problems

[44]. The GA algorithm came to existence and opened a new way of tackling challenging

problems in different fields of study. The general idea of the GA algorithm was very simple. It

mimicked selection, re-combination, and mutation of genes in nature. In fact, the Darwin’s

theory of evolution was the main inspiration of this algorithm. In GA, the optimization process

is started by creating a set of random solutions as candidate solutions (individuals) for a given

optimization problem. Each variable of the problem is considered as a gene and the set of

variables is analogous to chromosomes. Similarly to nature, a cost function defines the fitness of

each chromosome. The whole set of solutions is considered as a population. When the fitness of

chromosomes is calculated, the best chromosomes are randomly selected for creating the next

population. They main inspiration of the GA algorithm is here, in which the fittest individuals

have higher probability to be selected and participated in creating the next population similar to

what is happening in nature. The next step is the combination of the selected individuals. In this

step the genes of pairs of individuals are randomly merged to produce new individuals.

Eventually, some of the individuals’ genes in the population are changed randomly to mimic

mutation.

The GA algorithm proved that the nature-inspired paradigms can be very simple yet powerful in

optimizing problems. After the proposal of the GA algorithm, the field of stochastic

optimization techniques received much attention. The Particle Swarm Optimization (PSO) [52]

is the outcome of this popularity several years after the invention of the GA algorithm. The PSO

algorithm mimics the social and individual behaviour of herd of animals, schools of fishes, or

flocks of birds in foraging. Similar to the GA algorithm, the optimization process starts with a

set of randomly created solutions. In addition to the set of solutions, there is another set called

velocity set which is responsible for storing and defining the amount of movement of particles.

During optimization, the velocity of a particle is updated based on the best solution that it has

obtained so far as well as the best solution that the swarm has found. There are three random

components in defining the tendency towards previous velocity, effect of the personal best, and

the impact of the global best. Since the best solutions are saved in the PSO algorithm, there is

always high possibility of finding better solutions when searching around them. This is the key

reason about the success of the PSO algorithm.

After the development of these two algorithms, several other algorithms were developed and

proposed as well. As mentioned in the introduction, they can be divided to two main classes:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

individual-based versus population-based algorithms. The individual-based algorithm creates

only a single solutions and evolves/improves it over the course of iterations. However, a

population-based algorithm initializes the optimization process by more than one solutions. The

solutions in this set are then enhanced over the course of iterations. These two families of

optimization techniques are illustrated in Fig. 4. The advantage of individual-based algorithm is

the need for a low number of function evaluation because a single solution only needs one

function evaluation. Therefore, such optimization techniques require 1×T number of function

evaluations where T is the maximum number of iterations. However, high probability of local

optima stagnation and lack of information sharing are the main drawbacks of these algorithms,

which is due to the low number of solutions. Fig. 4 (a) shows that the single candidate solution

entraps in the local optima which is very close the global optimum.

In contrary, population-based algorithms benefit from high local optima avoidance since they

employ multiple solutions. Fig. 4 (b) illustrates how the collection of candidate solutions results

in finding the global optimum. Multiple solutions also assist a population-based algorithm to

collect information from different regions of the search space easily. This is done by information

exchange between the search agents during the optimization process. Therefore, search agents

are able to better and faster explore and exploit search spaces. However, the main drawbacks of

these methods is the large number of function evaluation. Such optimization techniques require

n×T number of function evaluations where n is the number of solutions (search agents) and T is

the maximum number of iterations.

Figure 4. Individual-based versus population-based stochastic optimization algorithms

(b) Population-based stochastic optimization

(a) Individual-based stochastic optimization

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

2.3. Motivation of this work

Despite the need for more function evaluations, the literature shows that population-based

algorithms are highly suitable for solving real challenging problems since they are able avoid local

optima, explore the search space, and exploit the global optimum more reliable than individual-

based algorithms. In addition, the NFL theorem says that all the algorithms perform equal on all

optimization problems. Therefore, there are still problems that have not been solved, or they can

be solved better by new algorithms. These two reasons are the main motivations of this work, in

which a novel population-based optimization algorithm is proposed and compared to the current

well-known algorithms in the literature.

3. Sine Cosine Algorithm (SCA)

Generally speaking, population-based optimization techniques start the optimization process

with a set of random solutions. This random set is evaluated repeatedly by an objective function

and improved by a set of rules that is the kernel of an optimization technique. Since population-

based optimization techniques look for the optima of optimization problems stochastically, there

is no guarantee of finding a solution in a single run. However, with enough number of random

solutions and optimization steps (iterations), the probability of finding the global optimum

increases.

Regardless of the differences between algorithms in the field of stochastic population-based

optimization, the common is the division of optimization process to two phases: exploration

versus exploitation [62]. In the former phase, an optimization algorithm combines the random

solutions in the set of solutions abruptly with a high rate of randomness to find the promising

regions of the search space. In the exploitation phase, however, there are gradual changes in the

random solutions, and random variations are considerably less than those in the exploration

phase.

In this work, the following position updating equations are proposed for both phases:

 |

 | (3.1)

 |

| (3.2)

where
 is the position of the current solution in i-th dimension at t-th iteration, r1/r2/r3 are

random numbers, is position of the destination point in i-th dimension, and || indicates the

absolute value.

These two equations are combined to be used as follows:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

 {

 |

 |

 |

|

 (3.3)

where r4 is a random number in [0,1]

As the above equations show, there are four main parameters in SCA: r1, r2, r3, and r4. The

parameter r1 dictates the next position regions (or movement direction) which could be either in

the space between the solution and destination or outside it. The parameter r2 defines how far

the movement should be towards or outwards the destination. The parameter r3 gives random

weights for destination in order to stochastically emphasize (r3 > 1) or deemphasize (r3 < 1) the

effect of desalination in defining the distance. Finally, the parameter r4 equally switches between

the sine and cosine components in Eq. (3.3).

Due to the use of sine and cosine in this formulation, this algorithm is called Sine Cosine

Algorithm (SCA). The effects of Sine and Cosine on Eqs. (3.1) and (3.2) is illustrated in Fig. 5:

Figure 5. Effects of Sine and Cosine inn Eqs. (3.1) and (3.2) on the next position

Fig. 5 shows that how the proposed equations define a space between two solutions in the

search space. It should be noted that this equation can be extended to higher dimensions

although a two-dimensional model is illustrated in Fig. 5. The cyclic pattern of sine and cosine

function allows a solution to be re-positioned around another solution. This can guarantee

exploitation of the space defined between two solutions. For exploring the search space, the

solutions should be able to search outside the space between their corresponding destinations as

well. This can be achieved by changing the range of the sine and cosine functions as shown in

Fig. 6.

X (solution)

P (destination)

Next position region when r1<1

Next position region when r1>1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11

Figure 6. Sine and cosine with range of [-2,2]

A conceptual model of the effects of the sine and cosine functions with the range in [-2, 2] is

illustrated in the Fig. 7. This figure shows how changing the range of sine and cosine requires a

solution to update its position outside the space between itself and another solution. The

randomness is also achieved by defining a random number for r2 in [0, 2π] in Eq. (3.3).

Therefore, this mechanism guarantees exploration of the search space.

Figure 7. Sine and cosine with the range in [-2,2] allow a solution to go around (inside the space
between them) or beyond (outside the space between them) the destination

An algorithm should be able to balance exploration and exploitation to find the promising

regions of the search space and eventually converge to the global optimum. In order to balance

exploration and exploitation, the range of sine and cosine in Eqs. (3.1) to (3.3) is changed

adaptively using the following equation:

 (3.4)

where t is the current iteration, T is the maximum number of iterations, and a is a constant .

    










    










ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

Fig. 8 shows how this equation decreases the range of sine and cosine functions over the course

of iterations.

Figure 8. Decreasing pattern for range of sine and cosine (a=3)

It may be inferred from Fig. 7 and Fig. 8 that the SCA algorithm explores the search space when

the ranges of sine and cosine functions are in (1,2] and [-2,-1). However, this algorithm exploits

the search space when the ranges are in the interval of [-1,1].

After all, the pseudo code of the SCA algorithm is presented in the following figure:

Initialize a set of search agents (solutions)(X)

Do

 Evaluate each of the search agents by the objective function

 Update the best solution obtained so far (P=X*)

 Update r1, r2, r3, and r4

 Update the position of search agents using Eq. (3.3)

While(t< maximum number of iterations)

Return the best solution obtained so far as the global optimum

Figure 9. General steps of the SCA Algorithm

This figure shows that the SCA algorithm starts the optimization process by a set of random

solutions. The algorithm then saves the best solutions obtained so far, assigns it as the

destination point, and updates other solutions with respect to it. Meanwhile, the ranges of sine

and cosine functions are updated to emphasize exploitation of the search space as the iteration

counter increases. The SCA algorithm terminates the optimization process when the iteration

counter goes higher than the maximum number of iterations by default. However, any other

termination condition can be considered such as maximum number of function evaluation or the

accuracy of the obtained global optimum.

With the above operators, the proposed algorithm theoretically is able to determine the global

optimum of optimization problems due to the following reasons:

    










r
1

R
an

ge

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13

● SCA creates and improves a set of random solutions for a given problem, so it

intrinsically benefits from high exploration and local optima avoidance compared to

other single-solution-based algorithms.

● Different regions of the search space are explored when the sine and cosine functions

return a value greater than 1 or less than -1.

● Promising regions of the search space is exploited when sine and cosine return value

between -1 and 1.

● The SCA algorithm smoothly transits from exploration to exploitation using adaptive

range change in the sine and cosine functions.

● The best approximation of the global optimum is stored in a variables as the destination

point and never get lost during optimization.

● Since the solutions always update their positions around the best solution obtained so

far, there is a tendency towards the best regions of the search spaces during optimization

● Since the proposed algorithm considers optimization problem as black boxes, it is readily

incorporable to problems in different fields subject to proper formulation of the

problem.

The next section employs a wide range of test problems and one real case study to investigate,

analyse, and confirm the effectiveness of the proposed SCA algorithm

4- Results and discussion

In the field of optimization using meta-heuristics and evolutionary algorithms, several test cases

should be employed to confirm the performance of an algorithm. This is due to the stochastic

nature of these algorithms, in which a proper and sufficient set of test functions and case studies

should be employed to confidently make sure that the superior results are not happened by

chance. However, there is no clear definition of suitability for a set of benchmark cases studies.

Therefore, researchers try to test their algorithms on as many test cases as possible. This paper

also employs several tests function with different characteristics. Later, a real challenging

Computational Fluid Dynamics (CFD) problem is solved by the SCA algorithm as well.

The set of cases studies employed includes three families of test functions: unimodal, multi-

modal, and composite test functions [63-66]. The mathematical formulation of these test

functions are available in the appendix. The first family of test functions has no local optima and

there is only one global optima. This makes them highly suitable for testing the convergence

speed and exploitation of algorithms. The second group of test functions, however, has multiple

local solutions in addition to the global optimum. These characteristics are beneficial for testing

local optima avoidance and explorative ability of an algorithm. Finally, the composite test

functions are the rotated, shifted, biased, and combined version of several unimodal and multi-

modal test functions.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

For solving the aforementioned test functions, a total of 30 search agents are allowed to

determine the global optimum over 500 iterations. The SCA algorithm is compared Firefly

Algorithm (FA) [67], Bat Algorithm (BA) [68], Flower Pollination Algorithm (FPA) [69],

Gravitational Search Algorithm (GSA) [54], PSO and GA for verification of the results. Since the

results of single run might be unreliable due to the stochastic nature of meta-heuristics, all of the

algorithms are run 30 times and statistical results (mean and standard deviation) are collected and

reported in Table 1. Note that the results are normalized in [0, 1] to compare the results of all

test functions. To decide about the significance of the results, a non-parametric statistical test

called Wilcoxon ranksum test is conducted as well. The p-values obtained from this statistical

test are reported in Table 2.

Table 1. Results on benchmark functions

F
SCA PSO GA BA FPA FA GSA

ave std ave std ave std ave std ave std ave std ave

F1 0.0000 0.0000 0.0003 0.0011 0.8078 0.4393 1.0000 1.0000 0.2111 0.0717 0.0004 0.0002 0.0000

F2 0.0000 0.0001 0.0693 0.2164 0.5406 0.2363 1.0000 1.0000 0.9190 0.7804 0.0177 0.0179 0.0100

F3 0.0371 0.1372 0.0157 0.0158 0.5323 0.2423 1.0000 1.0000 0.2016 0.1225 0.0000 0.0004 0.0016

F4 0.0965 0.5823 0.0936 0.4282 0.8837 0.7528 1.0000 1.0000 0.8160 0.5618 0.0000 0.0107 0.1177

F5 0.0005 0.0017 0.0000 0.0000 0.6677 0.4334 1.0000 1.0000 0.0813 0.0426 0.0000 0.0000 0.0000

F6 0.0002 0.0001 0.0004 0.0033 0.7618 0.7443 1.0000 1.0000 0.2168 0.1742 0.0004 0.0002 0.0000

F7 0.0000 0.0014 0.0398 0.0634 0.5080 0.1125 1.0000 1.0000 0.3587 0.2104 0.0009 0.0022 0.0021

F8 1.0000 0.0036 1.0000 0.0036 1.0000 0.0055 0.0000 1.0000 1.0000 0.0029 1.0000 0.0168 1.0000

F9 0.0000 0.7303 0.3582 0.8795 1.0000 0.6881 0.4248 1.0000 0.8714 0.8665 0.0190 0.3298 0.0222

F10 0.3804 1.0000 0.1045 0.0541 0.8323 0.0686 0.8205 0.0796 1.0000 0.0162 0.0000 0.0079 0.1569

F11 0.0000 0.0051 0.0521 0.0448 0.7679 0.2776 1.0000 1.0000 0.2678 0.0706 0.0074 0.0001 0.4011

F12 0.0000 0.0000 0.0000 0.0000 0.4573 0.4222 1.0000 1.0000 0.0008 0.0015 0.0000 0.0000 0.0000

F13 0.0000 0.0000 0.0000 0.0000 0.6554 0.8209 1.0000 1.0000 0.0187 0.0375 0.0000 0.0000 0.0000

F14 0.3908 0.1924 0.1816 1.0000 0.4201 0.1610 1.0000 0.6977 0.3786 0.1716 0.0000 0.9571 0.0961

F15 0.0230 0.0676 0.3016 1.0000 0.0000 0.0779 1.0000 0.7614 0.2235 0.4252 0.4395 0.9135 0.2926

F16 0.0497 0.4921 0.0427 0.7228 0.0000 0.2422 0.3572 0.7629 0.2652 0.6012 0.5298 1.0000 1.0000

F17 0.0000 0.1105 0.0249 1.0000 0.1093 0.1873 0.8189 0.7754 0.5197 0.4847 0.7093 0.8842 0.7887

F18 0.0129 0.0134 0.1772 0.4289 0.0000 0.0538 1.0000 0.2855 0.1310 0.0429 0.0723 0.2069 0.8018

F19 0.0000 0.2001 0.7727 1.0000 0.0192 0.0312 1.0000 0.2142 0.3192 0.4635 0.8176 0.7924 0.9950

Sum 1.9911 3.5379 3.2346 6.8619 9.9634 5.9972 16.4214 15.5767 7.8004 5.1479 3.6143 5.1403 5.6858

The results in Table 1 show that the SCA algorithm outperforms others on the majority of the

test cases. Firstly, the SCA algorithm shows superior results on 3 out of 6 unimodal test

functions. The p-values in Table 2 show that this superiority is statistically significant. Due to the

characteristics of the unimodal test functions, these results strongly show that the SCA algorithm

has high exploitation and convergence. Secondly, Table 1 shows that the SCA algorithm

outperforms all the algorithms employed on the majority of the multi-modal test functions (F7,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15

F9, F11, and F12). The p-values in Table 2 also support the better results of SCA statistically.

Inspecting the results of this table, the SCA algorithm provides p-values greater than 0.05 for the

rest of test functions, showing that this algorithm provides very competitive results. These

results prove that the SCA algorithm benefits from high exploration and local optima avoidance.

Finally, the results of the proposed algorithm on the composite test functions in Table 1 and

Table 2 demonstrate the merits of SCA in solving composite test functions with challenging

search spaces. Due to the normalization of the results, the overall performance of algorithms can

be compared as well. The last row of Table 1 presents the summation of the average and

standard deviation of algorithms on all test functions. It is evident that SCA shows the minimum

values for both ave and std, proving that this algorithm reliably outperforms others in total.

Table 2. P-values of the Wilcoxon ranksum test over all runs (p>=0.05 have been underlined)

F SCA PSO GA BA FPA FA GSA

F1 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165

F2 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165

F3 0.004329 0.002165 0.002165 0.002165 0.002165 N/A 0.008658

F4 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 0.002165

F5 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.681818

F6 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 N/A

F7 N/A 0.002165 0.002165 0.002165 0.002165 0.24026 0.002165

F8 0.002165 0.002165 0.002165 N/A 0.002165 0.002165 0.002165

F9 N/A 0.002165 0.002165 0.002165 0.002165 0.484848 0.818182

F10 1.000000 0.002165 0.002165 0.002165 0.002165 N/A 0.093074

F11 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165

F12 N/A 0.015152 0.002165 0.002165 0.002165 0.064935 0.064935

F13 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 0.393939

F14 0.064935 0.588745 0.064935 0.041126 0.064935 N/A 0.132035

F15 0.179654 0.064935 N/A 0.002165 0.008658 0.008658 0.002165

F16 0.818182 0.937229 N/A 0.002165 0.002165 0.002165 0.002165

F17 N/A 1.000000 0.015152 0.002165 0.002165 0.002165 0.002165

F18 0.818182 0.393939 N/A 0.002165 0.002165 0.699134 0.025974

F19 N/A 0.064935 0.699134 0.002165 0.041126 0.041126 0.002165

Although the above-discussed result prove and verify the high performance of the SCA

algorithm, there are several other experiments that need to be done to confidently confirm the

performance of this algorithm in solving real problems. In other words, the behaviour of search

agents during optimization should be monitored to observe: how they move around the search

space, if they face abrupt changes in the initial stages of optimization to explore the search space,

if they undergo small changes in the final steps of iteration to exploit the search space, how they

converge towards the promising regions of the search space, how they improve their initial

random solutions, and how they improve their fitness values over the course of iterations. In

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16

order to observe the behaviour of search agents, the two-dimensional version of the test

functions is solve by 4 search agents. Note that the optima of the test functions are shifted to a

locations other than the origin to provide more challenging test beds. The search history of the

search agents is illustrated in Fig. 10. This figure shows that the SCA algorithm searches around

the promising regions of the search space. The distribution of the sampled points around the

global optima is substantially high, which shows that the SCA algorithm exploits the most

promising region of the search space in addition to the exploration. However, it is not clear from

this figure if the search agents first start exploration or exploitation. To observe this, Fig. 11 is

provided in this regard, which illustrates the fluctuations of the first dimension in the first search

agent.

F1 F2 F8

F10 F14

Figure 10. Search history of search agents when solving the test problems

Fig. 10 shows that the search agents face abrupt fluctuations in the early steps of optimization.

However, the sudden changes are decreased gradually over the course of iterations. This

confirms that the search agents first explore the search space and then converge around the best

solution obtained in the exploration phase. There is a question here as how to make sure that all

of the search agents are improved during optimization despite the rapid and steady changes in

Fig. 11. In order to confirm the improvement of all solutions, the average fitness of all search

agents during optimization is illustrated in Fig. 12.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

F1 F2 F8

F10 F14

Figure 11. Trajectory of the first variable of the first search agent when solving the test problems

This figure shows that the average fitness of all search agents tend to be decreased over the

course of iterations. The interesting pattern that can be observed in this figure is the high

fluctuation of the average fitness in the exploration phase (until nearly the 50th iteration) and low

changes in the average fitness in the exploitation phase (after 50th iteration). Deterioration of the

fitness of some of the search agents is unavoidable in the exploration phase where the SCA

algorithm should discover the promising regions of the search space. However, the observed

patterns in Fig. 12 show that the fitness of search agent has a descending behaviour over the

course of iterations. This proves that the proposed SCA algorithm is able to eventually improve

the fitness of initial random solutions for a given optimization problem.

In the previous paragraphs, it was claimed that the search agents of the SCA algorithm tend

explore the promising regions of the search space and exploit the best one eventually. However,

the convergence behaviour of the algorithm was not observed and verified. Although this can be

inferred indirectly from the trajectory and average fitness, the convergence curve of SCA is

depicted in Fig. 13.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18

F1 F2 F8

F10 F14

Figure 12. Average fitness of search agents during optimization

This figure illustrates the best solution obtained so far during optimization. The descending

trend is quite evident in the convergence curve of SCA on all of the test functions investigated.

This strongly evidences the ability of the SCA algorithm in obtaining a better approximation of

the global optimum over the course of iterations.

All the results and discussions of this section prove that the proposed SCA algorithm is able to
determine the global optima of the test functions. Although it can be claimed here that this
algorithm would be able to approximate the global optima of real problems, there is a main
difference between real problems and benchmark functions. The shape of search space and the
location of the global optimum of the test functions are known, while those of real problems are
completely unknown. In addition, the real problems are mostly accompanied by a large number
of equality and inequality constraints. Therefore, there is a need to investigate the performance
of the proposed SCA algorithm in solving at least one real challenging constrained problem with
unknown global optimum and search space. This is the motivation of the next section, in which
the two-dimensional cross-section of an aircraft’s wing is optimized by the proposed SCA
algorithm to confirm its performance in practice.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

F1 F2 F8

F10 F14

Figure 13. Convergence curve (best solution in each iteration) of the SCA algorithm

5- Airfoil design using SCA

The problem investigated in this subsection is airfoil design. There are two objectives in this
problem: lift versus drag. There two forces are shown in Fig. 14. It may be observed that lift is
when the thrust force is converted to a vertical force, which causes flying a plane. However, drag
is the opposite force that is applied to the wing and cause decreasing speed of a plane. The lift
and drag are in conflict, meaning that increasing one results in decreasing the other. In a real
airplane both of these forces are desirable in different occasions. When the airplane is taking off,
ascending, and cruising maximum lift and minimum drag is fruitful. When descending, landing,
and touching down the drag becomes important to slow down the speed of the vehicle. In this
section the drag is only considered, so the main objective is to minimize this force. In other
words, this section employs the proposed SCA algorithm to define the best shape for the wing to
minimize drag.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

Figure 14. Different forces that apply to an airplane

To design an aircraft wing, several components should be considered: shape of the cross section
of the wing (airfoil), the overall shape of the wing, flaps, internal frames, and position of engines.
This paper only concentrates on designing a 2D airfoild, which is the main and essential
component in a wing. The shape of a 2D airfoil is illustrated in Fig. 15.

Figure 15. Cross section of a real with a 2D airfoil

There are different version of this problem in the literature in terms of the design parameters. In
this work, the B-spline is utilized to define the shape of the airfoil. As shown in Fig. 16, there are
eight controlling parameters of which one of the leading points is fixed. The rest of controlling
parameters, however, are allowed to move along both directions of x and y axes. Therefore, there
is a total of 14 (7×2) parameters, which are the x and y positions of the seven controlling
points.

Weight

Drag

Lift

Thrust

Angle of attack

Max camber location

Max camber

Angle of trailing
edge

Max thickness

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21

Figure 16. B-spline for the problem of Airfoil design

The problem of airfoil design is formulated for the SCA algorithm as follows:

 ⃗ ⃗ ⃗ ⃗ (5.1)

 ⃗ ⃗

where ⃗ { }, ⃗ { }, CO includes many constraints such as
minimum of thickness, maximum of thickness, and constrain on min of max thickness.

It may be seen in Eq. (5.1) that the problem is subject to several constraints as well. Generally
speaking, Computational Fluid Dynamics (CFD) problem are highly constrained, which make
them very challenging. For solving such problems, an optimization algorithm should be
equipped with a proper constraint handling method. There are different constraint handling
methods in the literature of which penalty functions are the simplest ones. In such methods, the
main objective function is penalized by a penalty function with respect to the level of constraints’
violation. Other powerful constraint handling methods can be found in [70-73]. Interested
readers are referred to the comprehensive literature review by Coello Coello [74]. In this work
the following penalty function is utilized, which penalizes F proportional to the level of violation:

 ⃗ ⃗ ⃗ ⃗ ∑

 (5.2)

where p is a constant and Pi is the violation size on the i-th constraint in the CO set in Equation
(5.1).

For solving this problem, 30 search agents is employed and allowed to determine the optimal
shape for the airfoil over 1000 iterations. The algorithm is run 4 times and the best results are
illustrated in Fig. 17.

x -x

y

-y

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22

Figure 17. Convergence curve of the SCA on the airfoil design problem, initial aifoil, and optimized airfoil

This figure clearly shows that the SCA algorithm improves the initial random shape for the

airfoil to minimize drag. The improvement is quite significant, in which drag was reduced from

0.009 to 0.0061. These results highly demonstrate that the proposed SCA algorithm is able to

solve real problems with unknown, challenging, and constrained search spaces. This is due to

several reasons. Firstly, SCA algorithm is a population-based algorithm, so it intrinsically benefits

from high exploration and local optima avoidance. This assists this algorithm to avoid the large

number of local solutions in a real search space and explore different regions extensively.

Secondly, SCA smoothly transits from exploration to exploitation using the adaptive mechanism

for the range of since and cosine functions. This causes local optima avoidance at the beginning

of optimization and quick convergence towards the most promising region of the search space in

the final steps of optimization. Thirdly, SCA obliges the solutions to update their positions

around the best solution obtained so far as the destination point. Therefore, there is always a

tendency towards the best regions of the search spaces during optimization and chances for

improving the solutions are considerably high. Finally, the SCA algorithm considers optimization

problems as black boxes, so it is readily incorporable to problems in different fields subject to

the proper formulation of the problem. In addition, the problem independency allows this

algorithm to not to need gradient information of the search space and works with any types of

penalty functions for solving constrained problems.

6- Conclusion

In this paper a novel population-based optimization algorithm was proposed as an alternative for

solving optimization problems among the current techniques in the literature. In the proposed

SCA algorithm, the solutions were required to update their positions with respect to the best

0 200 400 600 800 1000

6

6.5

7

7.5

8

8.5

9

9.5

10
x 10

-3

Iteration

C
d

(d
ra

g)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23

solution obtained so far as the reference point. The mathematical model of position updating

fluctuated the solutions outwards or towards the reference point to guarantee exploration and

exploitation of the search space, respectively. Several random and adaptive variables also

facilitated divergence and convergence of the search agents in the SCA algorithm. To benchmark

the performance of SCA, several experiments were done. Firstly, the a set of well-known test

cases including unimodal, multi-modal, and composite functions were employed to test

exploration, exploitation, local optima avoidance, and convergence of the proposed algorithm.

Secondly, the two-dimensional versions of some of the test functions were chosen and re-solved

by SCA. Several performance metrics (search history, trajectory, average fitness of solutions, and

best solution during optimization) were employed to quantitatively and qualitatively observe and

confirm the performance of SCA. Finally, the shape of a two-dimensional airfoil (cross-section

of an aircraft’s wing) was optimized by SCA as a real challenging case study to verify and

demonstrate the performance of this algorithm in solving real problems with constrained and

unknown search spaces.

The results of unimodal test functions showed that the SCA algorithm converged substantially

faster than FA, BA, FPA, GSA, PSO and GA. A similar behaviour was observed in the multi-

modal test functions, which proved the high exploration and local optima avoidance of the

proposed algorithm. As per the results of composite test functions, SCA outperformed other

algorithms occasionally, which showed that this algorithm was also able to successfully balance

exploration and exploitation to determine the global optima of challenging test functions. The

results of performance metrics proved that SCA required its search agent to change abruptly in

the initial stage of optimization and gradually in the final steps of optimization. The results

showed that this behaviour caused exploration of the search space extensively and exploitation

of the most promising regions. The average fitness of solutions and convergence curves also

evidenced and confirmed the improvement of initial random population and the best solution

obtained so-far (convergence) by SCA. The results of the first two test phases proved the SCA is

able to successfully solve test problems, which have known shape of search space. The results of

SCA on the aroifoil design problem also showed that this algorithm had the potential to solve

challenging real problems as well. The airfoil design problem was a highly constrained case study

with a completely unknown search space. Therefore, the results of real case study highly

demonstrate and confirmed the merits of SCA in solving real problems as well.

As per the finding of this paper and refereeing the NFL theorem, it can be concluded that the

SCA can be a very suitable alternative compared the current algorithms in the literature for

solving different optimization problems. On the other hand, this algorithm might not be able to

outperform other algorithms on specific set of problems, but definitely worth testing and

applying to problems in different fields. Therefore, the SCA algorithm is offered to researchers

in different fields.

This paper opens up several research directions for future studies. Firstly, binary and multi-

objective version of this algorithm can be proposed to solve problems with binary and multiple

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24

objectives respectively. Secondly, levy flight, mutation, and other evolutionary operators can be

integrated to this algorithm for improving its performance. Thirdly, the SCA algorithm can be

hybridized with other algorithms in the field of stochastic optimization to improve its

performance. Finally, investigation of the application of SCA in different fields would be a

valuable contribution.

Reference

[1] A. R. Simpson, G. C. Dandy, and L. J. Murphy, "Genetic algorithms compared to other
techniques for pipe optimization," Journal of water resources planning and management, vol. 120, pp.
423-443, 1994.

[2] C. James, "Introduction to Stochastics Search and Optimization," ed: Wiley-Interscience, New
Jersey, 2003.

[3] I. Boussaïd, J. Lepagnot, and P. Siarry, "A survey on optimization metaheuristics," Information
Sciences, vol. 237, pp. 82-117, 2013.

[4] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez, "Metaheuristic optimization
frameworks: a survey and benchmarking," Soft Computing, vol. 16, pp. 527-561, 2012.

[5] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, "Multiobjective
evolutionary algorithms: A survey of the state of the art," Swarm and Evolutionary Computation, vol.
1, pp. 32-49, 2011.

[6] S. Droste, T. Jansen, and I. Wegener, "Upper and lower bounds for randomized search heuristics
in black-box optimization," Theory of computing systems, vol. 39, pp. 525-544, 2006.

[7] H. H. Hoos and T. Stützle, Stochastic local search: Foundations & applications: Elsevier, 2004.
[8] R. S. Parpinelli and H. S. Lopes, "New inspirations in swarm intelligence: a survey," International

Journal of Bio-Inspired Computation, vol. 3, pp. 1-16, 2011.
[9] C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in multiobjective

optimization," Evolutionary computation, vol. 3, pp. 1-16, 1995.
[10] A. Biswas, K. Mishra, S. Tiwari, and A. Misra, "Physics-inspired optimization algorithms: A

survey," Journal of Optimization, vol. 2013, 2013.
[11] A. Gogna and A. Tayal, "Metaheuristics: review and application," Journal of Experimental &

Theoretical Artificial Intelligence, vol. 25, pp. 503-526, 2013.
[12] X.-S. Yang, Z. Cui, R. Xiao, A. H. Gandomi, and M. Karamanoglu, Swarm intelligence and bio-

inspired computation: theory and applications: Newnes, 2013.
[13] S. Saremi, S. Mirjalili, and A. Lewis, "Biogeography-based optimisation with chaos," Neural

Computing and Applications, vol. 25, pp. 1077-1097, 2014.
[14] G.-G. Wang, L. Guo, A. H. Gandomi, G.-S. Hao, and H. Wang, "Chaotic krill herd algorithm,"

Information Sciences, vol. 274, pp. 17-34, 2014.
[15] G.-G. Wang, A. Hossein Gandomi, and A. Hossein Alavi, "A chaotic particle-swarm krill herd

algorithm for global numerical optimization," Kybernetes, vol. 42, pp. 962-978, 2013.
[16] G. G. Wang, S. Deb, A. H. Gandomi, Z. Zhang, and A. H. Alavi, "A Novel Cuckoo Search with

Chaos Theory and Elitism Scheme," in Soft Computing and Machine Intelligence (ISCMI), 2014
International Conference on, 2014, pp. 64-69.

[17] G.-G. Wang, S. Deb, A. H. Gandomi, Z. Zhang, and A. H. Alavi, "Chaotic cuckoo search," Soft
Computing, pp. 1-14, 1726.

[18] G. Wang, L. Guo, H. Wang, H. Duan, L. Liu, and J. Li, "Incorporating mutation scheme into
krill herd algorithm for global numerical optimization," Neural Computing and Applications, vol. 24,
pp. 853-871, 2014.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25

[19] G. Wang, L. Guo, H. Duan, L. Liu, and H. Wang, "A bat algorithm with mutation for UCAV
path planning," The Scientific World Journal, vol. 2012, 2012.

[20] J. W. Zhang and G. G. Wang, "Image matching using a bat algorithm with mutation," Applied
Mechanics and Materials, vol. 203, pp. 88-93, 2012.

[21] H.-R. Li and Y.-L. Gao, "Particle swarm optimization algorithm with exponent decreasing inertia
weight and stochastic mutation," in Information and Computing Science, 2009. ICIC'09. Second
International Conference on, 2009, pp. 66-69.

[22] S. Chen, "Particle swarm optimization with pbest crossover," in Evolutionary Computation (CEC),
2012 IEEE Congress on, 2012, pp. 1-6.

[23] Q. Zhu and Z. Yang, "An ant colony optimization algorithm based on mutation and dynamic
pheromone updating," Journal of Software, vol. 15, pp. 185-192, 2004.

[24] J. J. Liang and P. N. Suganthan, "Dynamic multi-swarm particle swarm optimizer with local
search," in Evolutionary Computation, 2005. The 2005 IEEE Congress on, 2005, pp. 522-528.

[25] K. Premalatha and A. Natarajan, "A new approach for data clustering based on PSO with local
search," Computer and Information Science, vol. 1, p. p139, 2008.

[26] N. Noman and H. Iba, "Accelerating differential evolution using an adaptive local search," IEEE
Transactions on Evolutionary Computation, vol. 12, pp. 107-125, 2008.

[27] J. Levine and F. Ducatelle, "Ant colony optimization and local search for bin packing and cutting
stock problems," Journal of the Operational Research Society, vol. 55, pp. 705-716, 2004.

[28] C. Blum and A. Roli, "Hybrid metaheuristics: an introduction," in Hybrid Metaheuristics, ed:
Springer, 2008, pp. 1-30.

[29] M. Ehrgott and X. Gandibleux, "Hybrid metaheuristics for multi-objective combinatorial
optimization," in Hybrid metaheuristics, ed: Springer, 2008, pp. 221-259.

[30] G. Wang and L. Guo, "A novel hybrid bat algorithm with harmony search for global numerical
optimization," Journal of Applied Mathematics, vol. 2013, 2013.

[31] G.-G. Wang, A. H. Gandomi, A. H. Alavi, and G.-S. Hao, "Hybrid krill herd algorithm with
differential evolution for global numerical optimization," Neural Computing and Applications, vol.
25, pp. 297-308, 2014.

[32] G. Wang, L. Guo, H. Duan, H. Wang, L. Liu, and M. Shao, "A hybrid metaheuristic DE/CS
algorithm for UCAV three-dimension path planning," The Scientific World Journal, vol. 2012, 2012.

[33] G.-g. Wang, L. Guo, H. Duan, H. Wang, L. Liu, and M. Shao, "Hybridizing harmony search with
biogeography based optimization for global numerical optimization," Journal of Computational and
Theoretical Nanoscience, vol. 10, pp. 2312-2322, 2013.

[34] H. Duan, W. Zhao, G. Wang, and X. Feng, "Test-sheet composition using analytic hierarchy
process and hybrid metaheuristic algorithm TS/BBO," Mathematical Problems in Engineering, vol.
2012, 2012.

[35] G. Wang, L. Guo, H. Duan, L. Liu, H. Wang, and B. Wang, "A hybrid meta-heuristic DE/CS
algorithm for UCAV path planning," Journal of Information and Computational Science, vol. 5, pp.
4811-4818, 2012.

[36] X. Shi, Y. Liang, H. Lee, C. Lu, and L. Wang, "An improved GA and a novel PSO-GA-based
hybrid algorithm," Information Processing Letters, vol. 93, pp. 255-261, 2005.

[37] N. Holden and A. A. Freitas, "A hybrid PSO/ACO algorithm for discovering classification rules
in data mining," Journal of Artificial evolution and Applications, vol. 2008, p. 2, 2008.

[38] S. Nemati, M. E. Basiri, N. Ghasem-Aghaee, and M. H. Aghdam, "A novel ACO–GA hybrid
algorithm for feature selection in protein function prediction," Expert systems with applications, vol.
36, pp. 12086-12094, 2009.

[39] W.-Y. Lin, "A GA–DE hybrid evolutionary algorithm for path synthesis of four-bar linkage,"
Mechanism and Machine Theory, vol. 45, pp. 1096-1107, 2010.

[40] B. Niu and L. Li, "A novel PSO-DE-based hybrid algorithm for global optimization," in advanced
intelligent computing theories and applications. With aspects of artificial intelligence, ed: Springer, 2008, pp.
156-163.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26

[41] H. Duan, Y. Yu, X. Zhang, and S. Shao, "Three-dimension path planning for UCAV using
hybrid meta-heuristic ACO-DE algorithm," Simulation Modelling Practice and Theory, vol. 18, pp.
1104-1115, 2010.

[42] G.-G. Wang, A. H. Gandomi, X.-S. Yang, and A. H. Alavi, "A new hybrid method based on krill
herd and cuckoo search for global optimization tasks," Int J Bio-Inspired Comput, 2013.

[43] G.-G. Wang, A. H. Gandomi, and A. H. Alavi, "An effective krill herd algorithm with migration
operator in biogeography-based optimization," Applied Mathematical Modelling, vol. 38, pp. 2454-
2462, 2014.

[44] J. H. Holland and J. S. Reitman, "Cognitive systems based on adaptive algorithms," ACM
SIGART Bulletin, pp. 49-49, 1977.

[45] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces," Journal of global optimization, vol. 11, pp. 341-359, 1997.

[46] Y. Wang, H.-X. Li, T. Huang, and L. Li, "Differential evolution based on covariance matrix
learning and bimodal distribution parameter setting," Applied Soft Computing, vol. 18, pp. 232-247,
2014.

[47] Y. Wang, Z. Cai, and Q. Zhang, "Differential evolution with composite trial vector generation
strategies and control parameters," IEEE Transactions on Evolutionary Computation, vol. 15, pp. 55-
66, 2011.

[48] Y. Wang, Z. Cai, and Q. Zhang, "Enhancing the search ability of differential evolution through
orthogonal crossover," Information Sciences, vol. 185, pp. 153-177, 2012.

[49] D. Simon, "Biogeography-based optimization," IEEE Transactions on Evolutionary Computation, vol.
12, pp. 702-713, 2008.

[50] I. Rechenberg, "Evolutionsstrategien," in Simulationsmethoden in der Medizin und Biologie. vol. 8, B.
Schneider and U. Ranft, Eds., ed: Springer Berlin Heidelberg, 1978, pp. 83-114.

[51] M. Dorigo and M. Birattari, "Ant colony optimization," in Encyclopedia of machine learning, ed:
Springer, 2010, pp. 36-39.

[52] R. C. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proceedings of
the sixth international symposium on micro machine and human science, 1995, pp. 39-43.

[53] D. Karaboga and B. Basturk, "A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm," Journal of global optimization, vol. 39, pp. 459-
471, 2007.

[54] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm,"
Information sciences, vol. 179, pp. 2232-2248, 2009.

[55] A. Kaveh and V. Mahdavi, "Colliding Bodies Optimization method for optimum discrete design
of truss structures," Computers & Structures, vol. 139, pp. 43-53, 2014.

[56] A. Hatamlou, "Black hole: A new heuristic optimization approach for data clustering," Information
sciences, vol. 222, pp. 175-184, 2013.

[57] A. H. Kashan, "League Championship Algorithm (LCA): An algorithm for global optimization
inspired by sport championships," Applied Soft Computing, vol. 16, pp. 171-200, 2014.

[58] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi, "Mine blast algorithm: A new
population based algorithm for solving constrained engineering optimization problems," Applied
Soft Computing, vol. 13, pp. 2592-2612, 2013.

[59] R. V. Rao, V. J. Savsani, and D. Vakharia, "Teaching–learning-based optimization: a novel
method for constrained mechanical design optimization problems," Computer-Aided Design, vol.
43, pp. 303-315, 2011.

[60] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE
Transactions on Evolutionary Computation, vol. 1, pp. 67-82, 1997.

[61] S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm,"
Knowledge-Based Systems, vol. 89, pp. 228-249, 2015.

[62] M. Črepinšek, S.-H. Liu, and M. Mernik, "Exploration and exploitation in evolutionary
algorithms: a survey," ACM Computing Surveys (CSUR), vol. 45, p. 35, 2013.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27

[63] X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Transactions on
Evolutionary Computation, vol. 3, pp. 82-102, 1999.

[64] J. Digalakis and K. Margaritis, "On benchmarking functions for genetic algorithms," International
journal of computer mathematics, vol. 77, pp. 481-506, 2001.

[65] M. Molga and C. Smutnicki, "Test functions for optimization needs," Test functions for optimization
needs, 2005.

[66] X.-S. Yang, "Test problems in optimization," arXiv preprint arXiv:1008.0549, 2010.
[67] X.-S. Yang, "Firefly algorithm, stochastic test functions and design optimisation," International

Journal of Bio-Inspired Computation, vol. 2, pp. 78-84, 2010.
[68] X.-S. Yang, "A new metaheuristic bat-inspired algorithm," in Nature inspired cooperative strategies for

optimization (NICSO 2010), ed: Springer, 2010, pp. 65-74.
[69] X.-S. Yang, M. Karamanoglu, and X. He, "Flower pollination algorithm: a novel approach for

multiobjective optimization," Engineering Optimization, vol. 46, pp. 1222-1237, 2014.
[70] Y. Wang and Z. Cai, "Combining multiobjective optimization with differential evolution to solve

constrained optimization problems," IEEE Transactions on Evolutionary Computation, vol. 16, pp.
117-134, 2012.

[71] S. H. R. Pasandideh, S. T. A. Niaki, and A. Gharaei, "Optimization of a multiproduct economic
production quantity problem with stochastic constraints using sequential quadratic
programming," Knowledge-Based Systems, vol. 84, pp. 98-107, 2015.

[72] S. Jalali, M. Seifbarghy, J. Sadeghi, and S. Ahmadi, "Optimizing a Bi-objective Reliable Facility
Location Problem with Adapted Stochastic Measures Using Tuned-Parameter Multi-Objective
Algorithms," Knowledge-Based Systems, 2015.

[73] H. Salimi, "Stochastic Fractal Search: A powerful metaheuristic algorithm," Knowledge-Based
Systems, vol. 75, pp. 1-18, 2015.

[74] C. A. C. Coello, "Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art," Computer methods in applied mechanics and
engineering, vol. 191, pp. 1245-1287, 2002.

Appendix:

Table 1. Unimodal benchmark functions

Function Dim Range Shift position fmin

 ∑

 20 [-100,100] [-30,-30,..,-30] 0

 ∑ | | ∏ | |

20
[-10,10] [-3,-3,..,-3] 0

 ∑ (∑

)

20
[-100,100] [-30,-30,..,-30] 0

{| | }
20

[-100,100] [-30,-30,..,-30] 0

 ∑ [
]

20
[-30,30] [-15,-15,..,-15] 0

 ∑ []

20
[-100,100] [-750,..,-750] 0

 ∑

 [

20
[-1.28,1.28] [-0.25,..,-0.25] 0

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28

Table 2. Multimodal benchmark functions

Function Dim Range Shift position fmin

 ∑ (√| |)

20
[-500,500] [-300,..,-300] -418.9829 5

 ∑ [
]

20
[-5.12,5.12] [-2,-2,..,-2] 0

 (√

∑

) (

∑

)

20

[-32,32]
 0

∑

 ∏ (

√
)

20
[-600,600] [-400,..,-400] 0

{ ∑ []

}

 ∑

 {

20

[-50,50] [-30,-30,..,-30]

0

 {

 ∑ [] []

}

 ∑

20

[-50,50] [-100,..,-100] 0

Table 3. Composite benchmark functions

Function Dim Range fmin

F14 (CF1):

[] []
[] []

10 [-5,5] 0

F15 (CF2):

[] []
[] []

10 [-5,5] 0

F16 (CF3):

[] []
[] []

10 [-5,5] 0

f17 (CF4):

[] []
[] []

10 [-5,5] 0

f18 (CF5):

[] []
[] []

10 [-5,5] 0

f19 (CF6):

[] []

10 [-5,5] 0

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29

Function Dim Range fmin

[] [
]

