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Abstract 

This paper proposes a novel population-based optimization algorithm called Sine Cosine 

Algorithm (SCA) for solving optimization problems. The SCA creates multiple initial random 

candidate solutions and requires them to fluctuate outwards or towards the best solution using a 

mathematical model based on sine and cosine functions. Several random and adaptive variables 

also are integrated to this algorithm to emphasize exploration and exploitation of the search 

space in different milestones of optimization. The performance of SCA is benchmarked in three 

test phases. Firstly, a set of well-known test cases including unimodal, multi-modal, and 

composite functions are employed to test exploration, exploitation, local optima avoidance, and 

convergence of SCA. Secondly, several performance metrics (search history, trajectory, average 

fitness of solutions, and the best solution during optimization) are used to quantitatively and 

qualitatively observe and confirm the performance of SCA on shifted two-dimensional test 

functions. Finally, the cross-section of an aircraft’s wing is optimized by SCA as a real 

challenging case study to verify and demonstrate the performance of this algorithm in practice. 

The results of test functions and performance metrics prove that the proposed algorithm is able 

to explore different regions of a search space, avoid local optima, converge towards the global 

optimum, and exploit promising regions of a search space during optimization effectively. The 

SCA algorithm obtains a smooth shape for the airfoil with a very low drag, which demonstrates 

that this algorithm can highly be effective in solving real problems with constrained and 

unknown search spaces. Note that the source codes of the SCA algorithm are publicly available 

at http://www.alimirjalili.com/SCA.html. 

Keywords: Optimization; Stochastic optimization; Constrained optimization; Meta-heuristic; 

Population-based algorithm 

1. Introduction  
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Optimization refers to the process of finding optimal values for the parameters of a given system 

from all the possible values to maximize or minimize its output. Optimization problems can be 

found in all fields of study, which makes the development of optimization techniques essential 

and an interesting research direction for researchers. Due to the drawbacks of the conventional 

optimization techniques, local optima stagnation, and the need to derivate the search space [1], a 

growing interest has been observed in stochastic optimization techniques [2] over the last two 

decades [3-5].  

Stochastic optimization algorithms consider optimization problems as black boxes [6]. This 

means that the derivation of the mathematical models is not required because such optimization 

paradigms only change the inputs and monitor the outputs of the system for maximizing or 

minimizing its outputs. Another advantage of considering problems as black boxes is the high 

flexibility, meaning that stochastic algorithms are readily applicable to problems in different 

fields. As the name of stochastic optimization techniques imply, they optimize optimization 

problems randomly [7]. Therefore, they intrinsically benefit from higher local optima avoidance 

compared to the conventional optimization algorithms.  

There are different classification for stochastic optimization algorithms in the literature. Two 

main classifications are based on the inspiration of an algorithm (swarm intelligence-based [8], 

evolutionary [9], physics-based [10], etc.) and the number of random solutions that an algorithm 

generates in each step of optimization. The last classification divides the algorithms to two 

categories: single-solution-based and multi-solution-based algorithms. In the former class, only 

one solution is generated randomly and improved over the course of optimization. In the latter 

class, however, an optimization algorithm generates more than one random solution (mostly 

many) and improves them during optimization.   

Due to the above-mentioned advantages, stochastic optimization techniques have become very 

popular in the literature. This popularity is not only in the field of optimization but also other 

fields of study. The application of stochastic algorithms can be found in different branches of 

science and industry. Since the focus of this paper is on the theory, the applications are not 

discussed further and interested readers are referred to [11, 12].  

The theoretical researches in the literature can be divided to three main directions: improving the 

current techniques, hybridizing different algorithms, and proposing new algorithms. In the first 

approach, researchers try to equip algorithms with different mathematical or stochastic operators 

to improve the performance of such techniques. Popular methods in this class are: chaotic maps 

[13-17], evolutionary operators [18-23], and local searches [24-27]. The second popular research 

direction deals with hybridizing different algorithms to improve the performance or solve 

specific problems [28-35]. There is a significant number of hybrid meta-heuristics in the literature 

such as: PSO-GA [36], PSO-ACO [37],  ACO-GA [38], GA-DE [39], PSO-DE [40], ACO-DE 

[41], KH-CS [42], and KH-BBO [43]. 
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Last but not least, the proposal of new algorithms is a popular research avenue for many 

researchers. Inspiration of a new algorithm can be from evolutionary phenomena, collective 

behaviour of creatures (swarm intelligence techniques), physical rules, and human-related 

concepts. Some of the recent and popular algorithms in each of these subclasses are as follows: 

 Evolutionary techniques: Genetic Algorithms (GA) [44], Differential Evolution (DE) 

[45-48], Biogeography-Based Optimization algorithm (BBO) [49], and Evolution Strategy 

(ES) [50]. 

 Swarm intelligence techniques: Ant Colony Optimization [51] (ACO), Particle Swarm 

Optimization (PSO) [52], and Artificial Bee Colony (ABC) algorithm [53]. 

 Physics-based techniques: Gravitational Search Algorithm (GSA) [54], Colliding Bodies 

Optimization (CBO) [55], and Black Hole (BH) [56]. 

 Human-related techniques: League Championship Algorithm (LCA) [57], Mine Blast 

Algorithm (MBA) [58], and Teaching-Learning-Based Optimization (TLBO) [59]. 

Despite the significant number of recently proposed algorithms in this field, there is a 

fundamental questions here as if and why we need more optimization techniques. This question 

can be answered referring to the so-called No Free Lunch (NFL) theorem [60]. This theorem 

logically proves that no one can proposes an algorithm for solving all optimization problems. 

This means that the success of an algorithm in solving a specific set of problems does not 

guarantee solving all optimization problems with different type and nature. In other words all the 

optimization techniques perform equal in average when considering all optimization problems 

despite the superior performance on a subset of optimization problems. The NFL theorem 

allows researchers to propose new optimization algorithms or improve/modify the current ones 

for solving subsets of problems in different fields. 

This is also the motivation of this work, in which a simple yet effective optimization technique is 

proposed to optimization real problems with unknown search spaces. The paper also shows that 

a meta-heuristic does not necessarily need an actual inspiration, and simple mathematical 

functions also can be used to design optimization algorithms in this field. The proposed 

algorithm utilizes the functions sine and cosine to explore and exploit the space between two 

solutions in the search space with the hope to find better solutions. It is worth mentioning here 

that the author has proposed an algorithm called Moth-Flame Algorithm (MFO) [61] recently. 

The algorithm proposed in this work is completely different in terms of inspiration, 

mathematical formulation, and real-world application. The MFO algorithm mimics the 

navigation of moths in nature, whereas the SCA algorithm is based on sine/cosine mathematical 

functions to solve optimization problems. MFO has been utilized to optimize the shape of a 

propeller, while SCA is employed to optimize the shape a 2D airfoil in aircraft wings. The rest of 

the paper is organized as follows:  

Section 2 includes the preliminaries and essential definitions, presents related works, and reviews 

the literature. Section 3 demonstrates the mathematical model of the proposed method and 
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proposes the Sine Cosine Algorithm (SCA). The test beds employed and results obtained are 

presented and discussed in Section 4. The shape of the cross-section of an aircraft’s wing is 

optimized by the SCA algorithm in Section 5, which demonstrate the merits of this algorithm in 

solving real challenging problems with a large number of constraints and unknown search 

spaces. Eventually, Section 6 lists the achievement of the paper, concludes the work, and 

suggests several directions for future studies.  

 

2. Related works 

This section first covers the preliminaries and definitions of optimization. The mechanisms and 

challenges of stochastic/heuristic optimization techniques are then discussed. Eventually, the 

motivation of this work is provided.  

 

2.1. Preliminaries and definitions 

Single-objective optimization deals with optimizing only one objective. This terms stands before 

multi-objective optimization where there is more than one objective to be optimized. Handling 

multiple objectives requires special considerations and mechanisms, so the interested readers are 

referred to the recent review paper witter by Zhou et al. [5] since the focus of this work is on 

single-objective optimization.   

In addition to the objective, other elements involved in the single-objective optimization process 

are parameters and constraints. Parameters are the variables (unknowns) of optimization 

problems (systems) that have to be optimized. As Fig. 1 shows, variables can be considered as 

primary inputs of systems and constraints are the limitations applied to the system. In fact, the 

constraints define the feasibility of the obtained objective value. Examples of constraints are 

stress constraints when designing aerodynamic systems or the range of variables.  

Other inputs of a system that may affect its output are operating/environmental conditions. 

Such inputs are considered as secondary inputs that are defined when a system is operating in the 

simulated/final environment. Examples of such conditions are: temperature/thickness of fluid 

when a propeller is rotating, or the angle of attack when an aircraft is flying. These types of 

inputs are not optimized by the optimizers but definitely have to be considered during 

optimization since they may have significant impacts on the outputs.  
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Figure 1. Different components of an optimization system 

Without the loss of generality, a single-objective optimization can be formulated as a 

minimization problem as follows: 

                                       (2.1) 

                                                                (2.2) 

                                                                           (2.3) 

                                                                                         (2.4) 

where n is number of variables, m indicates the number of inequality constraints, p shows the 

number of equality constraints,     is the lower bound of the i-th variable, and     is the upper 

bound of the i-th variable. 

As can be seen in Eqs. (2.2) and (2.3), there are two types of constraints: inequality and equality. 

The set of variables, constraints, and objective constructs a search space for a given problem. 

Unfortunately, it is usually impossible to draw the search space due to the high-dimensionality of 

the variables. However, an example of a search space constructed by two variables and several 

constraints are shown in Fig. 2.  

It may be observed in Fig. 2 that the search space can have multiple local optima, but one of 

them is the global optimum (or more than one in case of a flat landscape). The constraints create 

gaps in the search space and occasionally split it to various separated regions. In the literature, 

infeasible regions refer to the areas of the search space that violate constraints.  

The search space of a real problem can be super challenging. Some of the difficulties of the real 

search spaces are discontinuity, large number of local optima, large number of constrains, global 

optimum located on the boundaries of constraints, deceptive valleys towards local optima, and 
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Operating/environmental conditions 
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(inputs) 

Objective 

(output) 
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isolation of the global optimum. An optimization algorithm should be equipped with suitable 

operators for handling all these difficulties to find the global optimum.   

  

Figure 2. Example of a search space with two variables and several constraints 

With formulating a problem, an optimizer would be able to tune its variables based on the 

outputs and constraints. As mentioned in Section 1, one of the advantages of stochastic 

algorithms is that they consider a system as a black box. Fig. 3 shows that the optimizer only 

provides the system with variables and observes the outputs. The optimizer then iteratively and 

stochastically changes the inputs of the system based on the feedbacks (output) obtained so far 

until the satisfaction of an end criterion.  The process of changing the variables based on the 

history of outputs is defined by the mechanism of an algorithm. For instance, PSO saves the best 

solutions obtained so far and encourages new solutions to relocate around them.  

 

Figure 3. Stochastic population-based optimizers consider the system as black box 
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The literature of stochastic/heuristic optimization techniques and challenges for designing them 

are reviewed and discussed in details in the following subsection.  

 

2.2. Literature review 

In the field of optimization, in 1977, a revolutionary idea was proposed by Holland where 

evolutionary concepts in nature was simulated in computer for solving optimization problems 

[44]. The GA algorithm came to existence and opened a new way of tackling challenging 

problems in different fields of study. The general idea of the GA algorithm was very simple. It 

mimicked selection, re-combination, and mutation of genes in nature. In fact, the Darwin’s 

theory of evolution was the main inspiration of this algorithm. In GA, the optimization process 

is started by creating a set of random solutions as candidate solutions (individuals) for a given 

optimization problem. Each variable of the problem is considered as a gene and the set of 

variables is analogous to chromosomes. Similarly to nature, a cost function defines the fitness of 

each chromosome. The whole set of solutions is considered as a population. When the fitness of 

chromosomes is calculated, the best chromosomes are randomly selected for creating the next 

population. They main inspiration of the GA algorithm is here, in which the fittest individuals 

have higher probability to be selected and participated in creating the next population similar to 

what is happening in nature. The next step is the combination of the selected individuals. In this 

step the genes of pairs of individuals are randomly merged to produce new individuals. 

Eventually, some of the individuals’ genes in the population are changed randomly to mimic 

mutation.  

The GA algorithm proved that the nature-inspired paradigms can be very simple yet powerful in 

optimizing problems. After the proposal of the GA algorithm, the field of stochastic 

optimization techniques received much attention. The Particle Swarm Optimization (PSO) [52] 

is the outcome of this popularity several years after the invention of the GA algorithm. The PSO 

algorithm mimics the social and individual behaviour of herd of animals, schools of fishes, or 

flocks of birds in foraging. Similar to the GA algorithm, the optimization process starts with a 

set of randomly created solutions. In addition to the set of solutions, there is another set called 

velocity set which is responsible for storing and defining the amount of movement of particles. 

During optimization, the velocity of a particle is updated based on the best solution that it has 

obtained so far as well as the best solution that the swarm has found. There are three random 

components in defining the tendency towards previous velocity, effect of the personal best, and 

the impact of the global best. Since the best solutions are saved in the PSO algorithm, there is 

always high possibility of finding better solutions when searching around them. This is the key 

reason about the success of the PSO algorithm.  

After the development of these two algorithms, several other algorithms were developed and 

proposed as well. As mentioned in the introduction, they can be divided to two main classes: 
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individual-based versus population-based algorithms. The individual-based algorithm creates 

only a single solutions and evolves/improves it over the course of iterations. However, a 

population-based algorithm initializes the optimization process by more than one solutions. The 

solutions in this set are then enhanced over the course of iterations. These two families of 

optimization techniques are illustrated in Fig. 4. The advantage of individual-based algorithm is 

the need for a low number of function evaluation because a single solution only needs one 

function evaluation. Therefore, such optimization techniques require 1×T number of function 

evaluations where T is the maximum number of iterations. However, high probability of local 

optima stagnation and lack of information sharing are the main drawbacks of these algorithms, 

which is due to the low number of solutions. Fig. 4 (a) shows that the single candidate solution 

entraps in the local optima which is very close the global optimum. 

In contrary, population-based algorithms benefit from high local optima avoidance since they 

employ multiple solutions. Fig. 4 (b) illustrates how the collection of candidate solutions results 

in finding the global optimum. Multiple solutions also assist a population-based algorithm to 

collect information from different regions of the search space easily. This is done by information 

exchange between the search agents during the optimization process. Therefore, search agents 

are able to better and faster explore and exploit search spaces. However, the main drawbacks of 

these methods is the large number of function evaluation. Such optimization techniques require 

n×T number of function evaluations where n is the number of solutions (search agents) and T is 

the maximum number of iterations. 

 

Figure 4. Individual-based versus population-based stochastic optimization algorithms 

 

(b) Population-based stochastic optimization 

(a) Individual-based stochastic optimization 
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2.3. Motivation of this work 

Despite the need for more function evaluations, the literature shows that population-based 

algorithms are highly suitable for solving real challenging problems since they are able avoid local 

optima, explore the search space, and exploit the global optimum more reliable than individual-

based algorithms. In addition, the NFL theorem says that all the algorithms perform equal on all 

optimization problems. Therefore, there are still problems that have not been solved, or they can 

be solved better by new algorithms. These two reasons are the main motivations of this work, in 

which a novel population-based optimization algorithm is proposed and compared to the current 

well-known algorithms in the literature.  

 

3. Sine Cosine Algorithm (SCA) 

Generally speaking, population-based optimization techniques start the optimization process 

with a set of random solutions. This random set is evaluated repeatedly by an objective function 

and improved by a set of rules that is the kernel of an optimization technique. Since population-

based optimization techniques look for the optima of optimization problems stochastically, there 

is no guarantee of finding a solution in a single run. However, with enough number of random 

solutions and optimization steps (iterations), the probability of finding the global optimum 

increases.   

Regardless of the differences between algorithms in the field of stochastic population-based 

optimization, the common is the division of optimization process to two phases: exploration 

versus exploitation [62]. In the former phase, an optimization algorithm combines the random 

solutions in the set of solutions abruptly with a high rate of randomness to find the promising 

regions of the search space. In the exploitation phase, however, there are gradual changes in the 

random solutions, and random variations are considerably less than those in the exploration 

phase. 

In this work, the following position updating equations are proposed for both phases: 

  
      

             |    
    

 | (3.1) 

  
      

             |    
    

 
 
| (3.2) 

where   
  is the position of the current solution in i-th dimension at t-th iteration, r1/r2/r3 are 

random numbers,    is position of the destination point in i-th dimension, and || indicates the 

absolute value.   

These two equations are combined to be used as follows:  
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             |    

    
 
 
|       

 (3.3) 

where r4 is a random number in [0,1] 

 

As the above equations show, there are four main parameters in SCA: r1, r2, r3, and r4. The 

parameter r1 dictates the next position regions (or movement direction) which could be either in 

the space between the solution and destination or outside it. The parameter r2 defines how far 

the movement should be towards or outwards the destination. The parameter r3 gives random 

weights for destination in order to stochastically emphasize (r3 > 1) or deemphasize (r3 < 1) the 

effect of desalination in defining the distance. Finally, the parameter r4 equally switches between 

the sine and cosine components in Eq. (3.3).   

Due to the use of sine and cosine in this formulation, this algorithm is called Sine Cosine 

Algorithm (SCA). The effects of Sine and Cosine on Eqs. (3.1) and (3.2) is illustrated in Fig. 5: 

 

Figure 5. Effects of Sine and Cosine inn Eqs. (3.1) and (3.2) on the next position 

Fig. 5 shows that how the proposed equations define a space between two solutions in the 

search space. It should be noted that this equation can be extended to higher dimensions 

although a two-dimensional model is illustrated in Fig. 5. The cyclic pattern of sine and cosine 

function allows a solution to be re-positioned around another solution. This can guarantee 

exploitation of the space defined between two solutions. For exploring the search space, the 

solutions should be able to search outside the space between their corresponding destinations as 

well. This can be achieved by changing the range of the sine and cosine functions as shown in 

Fig. 6.  

X (solution) 

P (destination) 

 

Next position region when r1<1 

 

Next position region when r1>1 
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Figure 6. Sine and cosine with range of [-2,2] 

A conceptual model of the effects of the sine and cosine functions with the range in [-2, 2] is 

illustrated in the Fig. 7. This figure shows how changing the range of sine and cosine requires a 

solution to update its position outside the space between itself and another solution. The 

randomness is also achieved by defining a random number for r2 in [0, 2π] in Eq. (3.3). 

Therefore, this mechanism guarantees exploration of the search space.  

 

Figure 7. Sine and cosine with the range in [-2,2] allow a solution to go around (inside the space 
between them) or beyond (outside the space between them) the destination 

An algorithm should be able to balance exploration and exploitation to find the promising 

regions of the search space and eventually converge to the global optimum. In order to balance 

exploration and exploitation, the range of sine and cosine in Eqs. (3.1) to (3.3) is changed 

adaptively using the following equation:  

      
 

 
 (3.4) 

where t is the current iteration, T is the maximum number of iterations, and a is a constant .  
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Fig. 8 shows how this equation decreases the range of sine and cosine functions over the course 

of iterations.  

 

 

Figure 8. Decreasing pattern for range of sine and cosine (a=3) 

It may be inferred from Fig. 7 and Fig. 8 that the SCA algorithm explores the search space when 

the ranges of sine and cosine functions are in (1,2] and [-2,-1). However, this algorithm exploits 

the search space when the ranges are in the interval of [-1,1].  

After all, the pseudo code of the SCA algorithm is presented in the following figure:  

Initialize a set of search agents (solutions)(X) 

Do  

   Evaluate each of the search agents by the objective function 

   Update the best solution obtained so far (P=X*) 

   Update r1, r2, r3, and r4 

   Update the position of search agents using Eq. (3.3)  

While(t< maximum number of iterations) 

Return the best solution obtained so far as the global optimum  

Figure 9. General steps of the SCA Algorithm 

This figure shows that the SCA algorithm starts the optimization process by a set of random 

solutions. The algorithm then saves the best solutions obtained so far, assigns it as the 

destination point, and updates other solutions with respect to it. Meanwhile, the ranges of sine 

and cosine functions are updated to emphasize exploitation of the search space as the iteration 

counter increases. The SCA algorithm terminates the optimization process when the iteration 

counter goes higher than the maximum number of iterations by default. However, any other 

termination condition can be considered such as maximum number of function evaluation or the 

accuracy of the obtained global optimum.  

With the above operators, the proposed algorithm theoretically is able to determine the global 

optimum of optimization problems due to the following reasons: 
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● SCA creates and improves a set of random solutions for a given problem, so it 

intrinsically benefits from high exploration and local optima avoidance compared to 

other single-solution-based algorithms.  

● Different regions of the search space are explored when the sine and cosine functions 

return a value greater than 1 or less than -1. 

● Promising regions of the search space is exploited when sine and cosine return value 

between -1 and 1. 

● The SCA algorithm smoothly transits from exploration to exploitation using adaptive 

range change in the sine and cosine functions. 

● The best approximation of the global optimum is stored in a variables as the destination 

point and never get lost during optimization. 

● Since the solutions always update their positions around the best solution obtained so 

far, there is a tendency towards the best regions of the search spaces during optimization  

● Since the proposed algorithm considers optimization problem as black boxes, it is readily 

incorporable to problems in different fields subject to proper formulation of the 

problem.  

 

The next section employs a wide range of test problems and one real case study to investigate, 

analyse, and confirm the effectiveness of the proposed SCA algorithm  

 

4- Results and discussion 

In the field of optimization using meta-heuristics and evolutionary algorithms, several test cases 

should be employed to confirm the performance of an algorithm. This is due to the stochastic 

nature of these algorithms, in which a proper and sufficient set of test functions and case studies 

should be employed to confidently make sure that the superior results are not happened by 

chance. However, there is no clear definition of suitability for a set of benchmark cases studies. 

Therefore, researchers try to test their algorithms on as many test cases as possible. This paper 

also employs several tests function with different characteristics. Later, a real challenging 

Computational Fluid Dynamics (CFD) problem is solved by the SCA algorithm as well.  

The set of cases studies employed includes three families of test functions: unimodal, multi-

modal, and composite test functions [63-66]. The mathematical formulation of these test 

functions are available in the appendix. The first family of test functions has no local optima and 

there is only one global optima. This makes them highly suitable for testing the convergence 

speed and exploitation of algorithms. The second group of test functions, however, has multiple 

local solutions in addition to the global optimum. These characteristics are beneficial for testing 

local optima avoidance and explorative ability of an algorithm. Finally, the composite test 

functions are the rotated, shifted, biased, and combined version of several unimodal and multi-

modal test functions.   
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For solving the aforementioned test functions, a total of 30 search agents are allowed to 

determine the global optimum over 500 iterations. The SCA algorithm is compared Firefly 

Algorithm (FA) [67], Bat Algorithm (BA) [68], Flower Pollination Algorithm (FPA) [69], 

Gravitational Search Algorithm (GSA) [54], PSO and GA for verification of the results. Since the 

results of single run might be unreliable due to the stochastic nature of meta-heuristics, all of the 

algorithms are run 30 times and statistical results (mean and standard deviation) are collected and 

reported in Table 1. Note that the results are normalized in [0, 1] to compare the results of all 

test functions. To decide about the significance of the results, a non-parametric statistical test 

called Wilcoxon ranksum test is conducted as well. The p-values obtained from this statistical 

test are reported in Table 2.   

Table 1.  Results on benchmark functions 

F 
SCA   PSO   GA   BA   FPA   FA   GSA 

ave std ave std ave std ave std ave std ave std ave 

F1 0.0000 0.0000 0.0003 0.0011 0.8078 0.4393 1.0000 1.0000 0.2111 0.0717 0.0004 0.0002 0.0000 

F2 0.0000 0.0001 0.0693 0.2164 0.5406 0.2363 1.0000 1.0000 0.9190 0.7804 0.0177 0.0179 0.0100 

F3 0.0371 0.1372 0.0157 0.0158 0.5323 0.2423 1.0000 1.0000 0.2016 0.1225 0.0000 0.0004 0.0016 

F4 0.0965 0.5823 0.0936 0.4282 0.8837 0.7528 1.0000 1.0000 0.8160 0.5618 0.0000 0.0107 0.1177 

F5 0.0005 0.0017 0.0000 0.0000 0.6677 0.4334 1.0000 1.0000 0.0813 0.0426 0.0000 0.0000 0.0000 

F6 0.0002 0.0001 0.0004 0.0033 0.7618 0.7443 1.0000 1.0000 0.2168 0.1742 0.0004 0.0002 0.0000 

F7 0.0000 0.0014 0.0398 0.0634 0.5080 0.1125 1.0000 1.0000 0.3587 0.2104 0.0009 0.0022 0.0021 

F8 1.0000 0.0036 1.0000 0.0036 1.0000 0.0055 0.0000 1.0000 1.0000 0.0029 1.0000 0.0168 1.0000 

F9 0.0000 0.7303 0.3582 0.8795 1.0000 0.6881 0.4248 1.0000 0.8714 0.8665 0.0190 0.3298 0.0222 

F10 0.3804 1.0000 0.1045 0.0541 0.8323 0.0686 0.8205 0.0796 1.0000 0.0162 0.0000 0.0079 0.1569 

F11 0.0000 0.0051 0.0521 0.0448 0.7679 0.2776 1.0000 1.0000 0.2678 0.0706 0.0074 0.0001 0.4011 

F12 0.0000 0.0000 0.0000 0.0000 0.4573 0.4222 1.0000 1.0000 0.0008 0.0015 0.0000 0.0000 0.0000 

F13 0.0000 0.0000 0.0000 0.0000 0.6554 0.8209 1.0000 1.0000 0.0187 0.0375 0.0000 0.0000 0.0000 

F14 0.3908 0.1924 0.1816 1.0000 0.4201 0.1610 1.0000 0.6977 0.3786 0.1716 0.0000 0.9571 0.0961 

F15 0.0230 0.0676 0.3016 1.0000 0.0000 0.0779 1.0000 0.7614 0.2235 0.4252 0.4395 0.9135 0.2926 

F16 0.0497 0.4921 0.0427 0.7228 0.0000 0.2422 0.3572 0.7629 0.2652 0.6012 0.5298 1.0000 1.0000 

F17 0.0000 0.1105 0.0249 1.0000 0.1093 0.1873 0.8189 0.7754 0.5197 0.4847 0.7093 0.8842 0.7887 

F18 0.0129 0.0134 0.1772 0.4289 0.0000 0.0538 1.0000 0.2855 0.1310 0.0429 0.0723 0.2069 0.8018 

F19 0.0000 0.2001 0.7727 1.0000 0.0192 0.0312 1.0000 0.2142 0.3192 0.4635 0.8176 0.7924 0.9950 

Sum 1.9911 3.5379 3.2346 6.8619 9.9634 5.9972 16.4214 15.5767 7.8004 5.1479 3.6143 5.1403 5.6858 

 

The results in Table 1 show that the SCA algorithm outperforms others on the majority of the 

test cases. Firstly, the SCA algorithm shows superior results on 3 out of 6 unimodal test 

functions. The p-values in Table 2 show that this superiority is statistically significant. Due to the 

characteristics of the unimodal test functions, these results strongly show that the SCA algorithm 

has high exploitation and convergence. Secondly, Table 1 shows that the SCA algorithm 

outperforms all the algorithms employed on the majority of the multi-modal test functions (F7, 
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F9, F11, and F12). The p-values in Table 2 also support the better results of SCA statistically. 

Inspecting the results of this table, the SCA algorithm provides p-values greater than 0.05 for the 

rest of test functions, showing that this algorithm provides very competitive results. These 

results prove that the SCA algorithm benefits from high exploration and local optima avoidance. 

Finally, the results of the proposed algorithm on the composite test functions in Table 1 and 

Table 2 demonstrate the merits of SCA in solving composite test functions with challenging 

search spaces. Due to the normalization of the results, the overall performance of algorithms can 

be compared as well. The last row of Table 1 presents the summation of the average and 

standard deviation of algorithms on all test functions. It is evident that SCA shows the minimum 

values for both ave and std, proving that this algorithm reliably outperforms others in total.  

Table 2.  P-values of the Wilcoxon ranksum test over all runs (p>=0.05 have been underlined) 

F SCA PSO GA BA FPA FA GSA 

F1 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 

F2 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 

F3 0.004329 0.002165 0.002165 0.002165 0.002165 N/A 0.008658 

F4 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 0.002165 

F5 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.681818 

F6 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 

F7 N/A 0.002165 0.002165 0.002165 0.002165 0.24026 0.002165 

F8 0.002165 0.002165 0.002165 N/A 0.002165 0.002165 0.002165 

F9 N/A 0.002165 0.002165 0.002165 0.002165 0.484848 0.818182 

F10 1.000000 0.002165 0.002165 0.002165 0.002165 N/A 0.093074 

F11 N/A 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 

F12 N/A  0.015152 0.002165 0.002165 0.002165 0.064935 0.064935 

F13 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 0.393939 

F14 0.064935 0.588745 0.064935 0.041126 0.064935 N/A 0.132035 

F15 0.179654 0.064935 N/A 0.002165 0.008658 0.008658 0.002165 

F16 0.818182 0.937229 N/A 0.002165 0.002165 0.002165 0.002165 

F17 N/A 1.000000 0.015152 0.002165 0.002165 0.002165 0.002165 

F18 0.818182 0.393939 N/A 0.002165 0.002165 0.699134 0.025974 

F19 N/A 0.064935 0.699134 0.002165 0.041126 0.041126 0.002165 

 

Although the above-discussed result prove and verify the high performance of the SCA 

algorithm, there are several other experiments that need to be done to confidently confirm the 

performance of this algorithm in solving real problems. In other words, the behaviour of search 

agents during optimization should be monitored to observe: how they move around the search 

space, if they face abrupt changes in the initial stages of optimization to explore the search space, 

if they undergo small changes in the final steps of iteration to exploit the search space, how they 

converge towards the promising regions of the search space, how they improve their initial 

random solutions, and how they improve their fitness values over the course of iterations. In 
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order to observe the behaviour of search agents, the two-dimensional version of the test 

functions is solve by 4 search agents. Note that the optima of the test functions are shifted to a 

locations other than the origin to provide more challenging test beds. The search history of the 

search agents is illustrated in Fig. 10. This figure shows that the SCA algorithm searches around 

the promising regions of the search space. The distribution of the sampled points around the 

global optima is substantially high, which shows that the SCA algorithm exploits the most 

promising region of the search space in addition to the exploration. However, it is not clear from 

this figure if the search agents first start exploration or exploitation. To observe this, Fig. 11 is 

provided in this regard, which illustrates the fluctuations of the first dimension in the first search 

agent.  

F1 F2                               F8                                

   
F10                                F14 

  

Figure 10. Search history of search agents when solving the test problems 

 

Fig. 10 shows that the search agents face abrupt fluctuations in the early steps of optimization. 

However, the sudden changes are decreased gradually over the course of iterations. This 

confirms that the search agents first explore the search space and then converge around the best 

solution obtained in the exploration phase. There is a question here as how to make sure that all 

of the search agents are improved during optimization despite the rapid and steady changes in 

Fig. 11.  In order to confirm the improvement of all solutions, the average fitness of all search 

agents during optimization is illustrated in Fig. 12.  
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F1 F2                               F8                                

   
F10                                F14 

  

Figure 11. Trajectory of the first variable of the first search agent when solving the test problems 

 

This figure shows that the average fitness of all search agents tend to be decreased over the 

course of iterations. The interesting pattern that can be observed in this figure is the high 

fluctuation of the average fitness in the exploration phase (until nearly the 50th iteration) and low 

changes in the average fitness in the exploitation phase (after 50th iteration). Deterioration of the 

fitness of some of the search agents is unavoidable in the exploration phase where the SCA 

algorithm should discover the promising regions of the search space. However, the observed 

patterns in Fig. 12 show that the fitness of search agent has a descending behaviour over the 

course of iterations. This proves that the proposed SCA algorithm is able to eventually improve 

the fitness of initial random solutions for a given optimization problem.  

In the previous paragraphs, it was claimed that the search agents of the SCA algorithm tend 

explore the promising regions of the search space and exploit the best one eventually. However, 

the convergence behaviour of the algorithm was not observed and verified. Although this can be 

inferred indirectly from the trajectory and average fitness, the convergence curve of SCA is 

depicted in Fig. 13.  
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F1 F2                               F8                                

   
F10                                F14 

  

Figure 12. Average fitness of search agents during optimization 

This figure illustrates the best solution obtained so far during optimization. The descending 

trend is quite evident in the convergence curve of SCA on all of the test functions investigated. 

This strongly evidences the ability of the SCA algorithm in obtaining a better approximation of 

the global optimum over the course of iterations.  

All the results and discussions of this section prove that the proposed SCA algorithm is able to 
determine the global optima of the test functions. Although it can be claimed here that this 
algorithm would be able to approximate the global optima of real problems, there is a main 
difference between real problems and benchmark functions. The shape of search space and the 
location of the global optimum of the test functions are known, while those of real problems are 
completely unknown. In addition, the real problems are mostly accompanied by a large number 
of equality and inequality constraints. Therefore, there is a need to investigate the performance 
of the proposed SCA algorithm in solving at least one real challenging constrained problem with 
unknown global optimum and search space. This is the motivation of the next section, in which 
the two-dimensional cross-section of an aircraft’s wing is optimized by the proposed SCA 
algorithm to confirm its performance in practice.  
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F1 F2                               F8                                

   
F10                                F14 

  
Figure 13. Convergence curve (best solution in each iteration) of the SCA algorithm  

 

5- Airfoil design using SCA 

The problem investigated in this subsection is airfoil design. There are two objectives in this 
problem: lift versus drag. There two forces are shown in Fig. 14. It may be observed that lift is 
when the thrust force is converted to a vertical force, which causes flying a plane. However, drag 
is the opposite force that is applied to the wing and cause decreasing speed of a plane. The lift 
and drag are in conflict, meaning that increasing one results in decreasing the other. In a real 
airplane both of these forces are desirable in different occasions. When the airplane is taking off, 
ascending, and cruising maximum lift and minimum drag is fruitful. When descending, landing, 
and touching down the drag becomes important to slow down the speed of the vehicle. In this 
section the drag is only considered, so the main objective is to minimize this force. In other 
words, this section employs the proposed SCA algorithm to define the best shape for the wing to 
minimize drag.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 

 

 
Figure 14. Different forces that apply to an airplane 

 

To design an aircraft wing, several components should be considered: shape of the cross section 
of the wing (airfoil), the overall shape of the wing, flaps, internal frames, and position of engines. 
This paper only concentrates on designing a 2D airfoild, which is the main and essential 
component in a wing. The shape of a 2D airfoil is illustrated in Fig. 15. 

 

 

Figure 15. Cross section of a real with a 2D airfoil  

 

There are different version of this problem in the literature in terms of the design parameters. In 
this work, the B-spline is utilized to define the shape of the airfoil. As shown in Fig. 16, there are 
eight controlling parameters of which one of the leading points is fixed. The rest of controlling 
parameters, however, are allowed to move along both directions of x and y axes. Therefore, there 
is a total of 14 (7×2) parameters, which are the x and y positions of the seven controlling 
points.   
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Figure 16. B-spline for the problem of Airfoil design 

The problem of airfoil design is formulated for the SCA algorithm as follows: 

                   ⃗  ⃗      ⃗  ⃗  (5.1) 

                     ⃗  ⃗                            

where  ⃗  {          },  ⃗  {           }, CO includes many constraints such as 
minimum of thickness, maximum of thickness, and constrain on min of max thickness. 

It may be seen in Eq. (5.1) that the problem is subject to several constraints as well. Generally 
speaking, Computational Fluid Dynamics (CFD) problem are highly constrained, which make 
them very challenging. For solving such problems, an optimization algorithm should be 
equipped with a proper constraint handling method. There are different constraint handling 
methods in the literature of which penalty functions are the simplest ones. In such methods, the 
main objective function is penalized by a penalty function with respect to the level of constraints’ 
violation. Other powerful constraint handling methods can be found in [70-73]. Interested 
readers are referred to the comprehensive literature review by Coello Coello [74]. In this work 
the following penalty function is utilized, which penalizes F proportional to the level of violation:  

   ⃗  ⃗     ⃗  ⃗   ∑  

 

   

 (5.2) 

where p is a constant and Pi is the violation size on the i-th constraint in the CO set in Equation 
(5.1). 

For solving this problem, 30 search agents is employed and allowed to determine the optimal 
shape for the airfoil over 1000 iterations. The algorithm is run 4 times and the best results are 
illustrated in Fig. 17.  

x -x 

y 
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Figure 17. Convergence curve of the SCA on the airfoil design problem, initial aifoil, and optimized airfoil 

This figure clearly shows that the SCA algorithm improves the initial random shape for the 

airfoil to minimize drag.  The improvement is quite significant, in which drag was reduced from 

0.009 to 0.0061. These results highly demonstrate that the proposed SCA algorithm is able to 

solve real problems with unknown, challenging, and constrained search spaces. This is due to 

several reasons. Firstly, SCA algorithm is a population-based algorithm, so it intrinsically benefits 

from high exploration and local optima avoidance. This assists this algorithm to avoid the large 

number of local solutions in a real search space and explore different regions extensively. 

Secondly, SCA smoothly transits from exploration to exploitation using the adaptive mechanism 

for the range of since and cosine functions.  This causes local optima avoidance at the beginning 

of optimization and quick convergence towards the most promising region of the search space in 

the final steps of optimization. Thirdly, SCA obliges the solutions to update their positions 

around the best solution obtained so far as the destination point. Therefore, there is always a 

tendency towards the best regions of the search spaces during optimization and chances for 

improving the solutions are considerably high. Finally, the SCA algorithm considers optimization 

problems as black boxes, so it is readily incorporable to problems in different fields subject to 

the proper formulation of the problem. In addition, the problem independency allows this 

algorithm to not to need gradient information of the search space and works with any types of 

penalty functions for solving constrained problems.  

 

6- Conclusion 

In this paper a novel population-based optimization algorithm was proposed as an alternative for 

solving optimization problems among the current techniques in the literature. In the proposed 

SCA algorithm, the solutions were required to update their positions with respect to the best 
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solution obtained so far as the reference point. The mathematical model of position updating 

fluctuated the solutions outwards or towards the reference point to guarantee exploration and 

exploitation of the search space, respectively. Several random and adaptive variables also 

facilitated divergence and convergence of the search agents in the SCA algorithm. To benchmark 

the performance of SCA, several experiments were done. Firstly, the a set of well-known test 

cases including unimodal, multi-modal, and composite functions were employed to test 

exploration, exploitation, local optima avoidance, and convergence of the proposed algorithm. 

Secondly, the two-dimensional versions of some of the test functions were chosen and re-solved 

by SCA. Several performance metrics (search history, trajectory, average fitness of solutions, and 

best solution during optimization) were employed to quantitatively and qualitatively observe and 

confirm the performance of SCA. Finally, the shape of a two-dimensional airfoil (cross-section 

of an aircraft’s wing) was optimized by SCA as a real challenging case study to verify and 

demonstrate the performance of this algorithm in solving real problems with constrained and 

unknown search spaces.  

The results of unimodal test functions showed that the SCA algorithm converged substantially 

faster than FA, BA, FPA, GSA, PSO and GA. A similar behaviour was observed in the multi-

modal test functions, which proved the high exploration and local optima avoidance of the 

proposed algorithm. As per the results of composite test functions, SCA outperformed other 

algorithms occasionally, which showed that this algorithm was also able to successfully balance 

exploration and exploitation to determine the global optima of challenging test functions. The 

results of performance metrics proved that SCA required its search agent to change abruptly in 

the initial stage of optimization and gradually in the final steps of optimization. The results 

showed that this behaviour caused exploration of the search space extensively and exploitation 

of the most promising regions. The average fitness of solutions and convergence curves also 

evidenced and confirmed the improvement of initial random population and the best solution 

obtained so-far (convergence) by SCA. The results of the first two test phases proved the SCA is 

able to successfully solve test problems, which have known shape of search space. The results of 

SCA on the aroifoil design problem also showed that this algorithm had the potential to solve 

challenging real problems as well. The airfoil design problem was a highly constrained case study 

with a completely unknown search space. Therefore, the results of real case study highly 

demonstrate and confirmed the merits of SCA in solving real problems as well.  

As per the finding of this paper and refereeing the NFL theorem, it can be concluded that the 

SCA can be a very suitable alternative compared the current algorithms in the literature for 

solving different optimization problems. On the other hand, this algorithm might not be able to 

outperform other algorithms on specific set of problems, but definitely worth testing and 

applying to problems in different fields. Therefore, the SCA algorithm is offered to researchers 

in different fields.  

This paper opens up several research directions for future studies. Firstly, binary and multi-

objective version of this algorithm can be proposed to solve problems with binary and multiple 
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objectives respectively. Secondly, levy flight, mutation, and other evolutionary operators can be 

integrated to this algorithm for improving its performance. Thirdly, the SCA algorithm can be 

hybridized with other algorithms in the field of stochastic optimization to improve its 

performance. Finally, investigation of the application of SCA in different fields would be a 

valuable contribution.  
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Appendix: 
 
 

Table 1.  Unimodal benchmark functions 

Function Dim  Range Shift position fmin 

      ∑   
 

 

   
 20 [-100,100] [-30,-30,..,-30] 0 

      ∑ |  |  ∏ |  |
 

   

 

   
 

20 
[-10,10] [-3,-3,..,-3] 0 

      ∑ (∑   
 

   
)

  

   
 

20 
[-100,100] [-30,-30,..,-30] 0 

         
 

{|  |      } 
20 

[-100,100] [-30,-30,..,-30] 0 

      ∑ [           
           ]

   

   
 

20 
[-30,30] [-15,-15,..,-15] 0 

      ∑  [      ]  
 

   
 

20 
[-100,100] [-750,..,-750] 0 

      ∑    
 

 

   
       [     

20 
[-1.28,1.28] [-0.25,..,-0.25] 0 
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Table 2.  Multimodal benchmark functions 

Function Dim  Range Shift position fmin 

      ∑       (√|  |)
 

   
  

20 
[-500,500] [-300,..,-300] -418.9829 5 

      ∑ [  
                ]

 

   
 

20 
[-5.12,5.12] [-2,-2,..,-2] 0 

             (    √
 

 
∑   

 
 

   
)     (

 

 
∑          

 

   
)       

20 

[-32,32] 
 0 

       
 

    
∑   

  ∏    (
  

√ 
)   

 

   

 

   
 

20 
[-600,600] [-400,..,-400] 0 

       
 

 
{           ∑        [               ]         
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 ∑               
 

   
 

     
    

 
 

            {

                               
                               

                            
 

20 

[-50,50] [-30,-30,..,-30] 
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          {          

 ∑        [              ]         [            ]
 

   
}

 ∑              
 

   
 

20 

[-50,50] [-100,..,-100] 0 

 

Table 3.  Composite benchmark functions 

Function Dim Range fmin 

F14 (CF1): 

                               

[              ]  [          ] 
[             ]  [                          ] 

10 [-5,5] 0 

F15 (CF2): 

                                   

[               ]  [          ] 
[              ]  [                          ] 

10 [-5,5] 0 

F16 (CF3): 

                                   

[              ]  [          ] 
[              ]  [          ] 

10 [-5,5] 0 

f17 (CF4): 

                       

                           

                           

                          

                       

[              ]  [          ] 
[              ]  [                                                 ] 

10 [-5,5] 0 

f18 (CF5): 

                           

                           

                          

                        

                       

[              ]  [          ] 
[              ]  [                                                     ] 

10 [-5,5] 0 

f19 (CF6): 

                           

                           

                          

                        

                       

[              ]  [                                     ] 

10 [-5,5] 0 
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Function Dim Range fmin 

[              ]  [                                               
                                               ] 

 


