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Abstract

With the development of powerful computers, some neethods for solving challenging problems are
introduced. Some of these methods, which are catlethheuristic algorithms, such as bat algorithm or
ant colony algorithm, are inspired by nature andusate a natural phenomenon for finding the best
solution. Today these algorithms with a robust epph can be used to find the solution of a comiaita
problem very fast although they might be trappethi local minimums. Rain optimization algorithm
(ROA) is a new metaheuristic algorithm that is iregh by the raindrops, which move toward minimum
points after getting to the earth. This algoritham ¢ind global extremum as well as local extremifrits
parameters are correctly tuned. After the implemion of this algorithm, we compare it with sombest
existing optimization algorithms such as partickeasm optimization algorithm and bat algorithm by
solving 26 benchmarks and three benchmarks in warihmensions as well as a drilling optimization
problem. Simulations illustrate the performance aeadhputational time in finding the global minimum.
Also, ROA can find local minimum simultaneously aitdcan be confidently used in optimization
problems.

Keywords: rain optimization algorithm, drilling rate, drillig optimization, machine learning

1-Introduction

Drilling operation is a response to the oil and gasrgy demand in the world. There are many dgillin
optimization problems in the various sequence dlirdr operations such as casing design, drilliater
optimization, drilling cost minimization, bit sizelection, bit type selection, directional drillidgsign,
mud weight design, wellbore stability, and so onanyl of these optimization problems are highly
nonlinear and have several local minima that maldifficult to solve these problems with traditidna
methods but metaheuristic optimization algorithras solve many of these problems.

Metaheuristic optimization algorithms raindropsstive many complex global problems in other fields
(Annicchiarico et al., 2005; Gandomi et al., 2013hese algorithms try to simulate natural phenanen
to find a fast and effective solution for compleadiproblems by using iterative sequences (Tallfi9p0

In recent years, the researchers develop sevepalgimn-based metaheuristic optimization algorghm
Some of most famous of them are as follow: the erdgorithm which is developed based on Darwin's
theory by Golberg (1989), Differential Evolutitimat was introduced by Storn and Price (1995, 1997)
the Particle Swarm Optimization algorithm by Kenraiyd Eberhart (1995), Harmony Search (Geem et
al., 2001), Bacterial Foraging Optimization Algbrit (Passino, 2002), Estimation of Distribution
Algorithms (Larra~naga and Lozano, 2002), ArtificBee Colony algorithm (Basturk and Karaboga,
2006; Karaboga, 2005; Karaboga and Basturk, 20008)2 Firefly Algorithm (Yang, 2008, 2009),
League Championship Algorithm (Kashan, 2009), Gr8aprch Optimizer (He et al., 2009), Ant Colony.
Optimization (Dorigo and Birattari, 2010), Cuckoedgch algorithm (Gandomi et al., 2011), Krill Herd
algorithm (Gandomi and Alavi, 2012), Artificial Cimécal Reaction Optimization Algorithm (Alatas,



2012), Stochastic Fractal Search (Salimi, 2014)ml8gtic Organisms Search (Cheng and Prayogo,
2014), Optics Inspired Optimization (Husseinzadetstxan, 2015) and Sperm Whale algorithm (SWA)
(Ebrahimi and Khamechi, 2016) that are charactdrigetheir names.

In this paper, we introduce a new metaheurliorithm, namely rain optimization algorithm (RQA)
inspired by the natural behavior of rain dropleatd sining phenomena for finding minimum locatiams
the earth's surface. We will first formulate thénralgorithm based on the natural behavior of the r
droplets. Then we will declare how it works and pames the proposed method with existing algorithms
such as the genetic algorithm. In the end, theltsesid this algorithm will be discussed in detail b
solving an optimization drilling problem.

2- Basic of rain behavior

When it starts raining, droplets of rainfall on #wrth's surface. After a while, it can be seehgbee of
these droplets joint to each other and some mamifisiant droplets forms which can move on the
surface under the effect of their weight toward liweer locations of the earth's surface. In theithp
some other marvelous happening would occur foretltsplets too. Some of the other droplets might
move toward the previous droplet and joint to itsome fraction of each droplet might be evaporated
absorbed by the soil depending on different progerdf the soil such as nature of the soil surface,
porosity, permeability, wettability etc. Also, soroé the soil would be dissolved in the water. listh
process, droplets that are dropped on the flatmight be absorbed to the soil completely and glisap
while dropped droplets on the inclined area willvea@ownward and connect to other droplets to form a
stream. Being lucky, some streams might conneettt other and form a river. If there is an obstatl
the path of the streams or rivers, some lakesbeiltreated in which the volume of the water impifes
importance of it. Very soon after finishing themastreams and rivers would be discharged to tbal lo
lakes, and after a while, small lakes might be sta@il due to evaporation of water in the lake or
absorption to the soil. Therefore, just a few digant lakes can be remained in the ground depgnaiin
the topology of the earth's surface and propedidgbe soil. These lakes show the local minimunthef
ground surface and deeper lake shows the globamin.

By changing the type of rain, the previously memgid scenario might be changed a little. For exanifple
it is heavy rain with large droplets, all of theodlets will be connected to each other very fashaovit
any absorption or evaporation resulting in a flolodthis case, just the global minimum can be detkc
as all local minimum are connected to each othertdia rainstorm. On the other hand, when theee is
light rain with small droplets, all of the dropletight absorb to the soil resulting in no streammfation.
Therefore, it can be realized that parameter tuhagysignificant importance while using ROA.

The movement of the particle in the proposed methaimilar to gradient-based optimization methods
and that of traditional single-point algorithms Iswas hill-climbing (HC) and gradient-descent andhRa
Fall Optimization algorithm (RFO) (Aghay Kaboli&t, 2016). These methods adjust only one parameter
in each iteration to find if changing this parameteproves cost function or not. However, ROA uaes
set of answers that all of them move toward théraph simultaneously. In this movement, some ofrthei
properties will change in each iteration. For exlntheir size might change or they might elimindite
addition, ROA is able to find all extremum poimstiead of just a minimum or maximum.



3-ROA algorithm

In this section, we would try to simulate rain baba as it was described in the previous secticache
solution of the problem can be modeled by a raipdi@epending on the problem, some points in the
answer space can be selected randomly as theapfthll in the ground randomly. The main propeity
each drop of rain is its radius. The radius of gvaindrop can be reduced as time goes by andiibea
increased as a raindrop is connected to other dibpen the initial population of answers is prodlce
the radius of each droplet can be assigned randomfn appropriate range. In each iteration, every
droplet checks its neighborhood dependent on is Single droplets that are not still connectednyp
other droplet, just check for the end limit of fhlace that it has covered. When we are solvingphlpm

in n-dimensional space, every droplet consists wdnmable. So at the first step, the lower and upipat

of variable one will be checked as these limits Midae determined by the radius of the droplet. gt t
next step, two endpoints of variable two would éstéd and this is continued until the last variabie
this stage, the cost of the first droplet wouldupelated by moving it downward. This is not the end
action for this droplet and while cost functiorréglucing, it will move downward in the same direnti
This action will be performed for all droplets, théhe cost and position of all droplets will beigsed.
The radius of each droplet will be changed in twanners:

1- If two droplets with radius;rand g are so close to each other that has a commométteaach
other; they can connect to form a larger dropletdius R:
R = (" +r)t/" (1)

Where n is the number of variables in each droplet.

2- If a droplet with radius;rdoes not move, depending on the soil propertibg;wis shown by,
some volume percentage of it can be adsorbed.
R = (ar{)"" (2)
In fact,a shows the percentage of the volume of a droplétiwban be absorbed in each iteration
and is a number between 0 to 100 percent. We alsalefine a minimum for droplets radiyg,r
where droplets with a smaller radius of that will disappear.

As it can be considered, the population number wdad decreased after a few iterations and larger
droplets will be developed with a larger domain infestigations. By increasing the domain of
investigation for each drop, the local searchinigjitglof drops is increased proportionally to thiamieter

of the droplets. Therefore by increasing the nundfeiteration, weak droplets with a low domain of
investigation disappear or connect to stronger slkgiph a higher domain of investigation and theianhi
population will decrease intensively caused indrepspeed of finding the correct answer(s).

It should be considered that there are some impiodidferences between the proposed optimization
algorithm in this work Rain Optimization AlgorithROA) and the recently developed search algorithm
by Aghay Kaboli et al. (2016) named Rain Fall Aiggom (RFA) which can be summarized as follow:

* In the ROA despite RFA and many other search dlyos, initial population number changes
after each iteration due to the connection of ajadrops or adsorption by the soil. This issue
leads to an increase in the searching ability efdlgorithm and decreases the optimization cost
seriously.

» After each iteration size of each drop changestduie connection of near droplets or adsorption
by the soil. This action changes the searchingtgloif each droplet and categorizes the droplets
from the viewpoint of importance.



* In the RFA and many other search algorithms, inheiéeration, each population would be
comprised by some other random neighbor pointstheddroplet would be improved one step
randomly. On the other hand, in the ROA, each i finds the best path to the minimum
point. After finding the path, it moves toward tth@wnside step by step while the cost function is
decreasing just in one iteration. This causesritiali population to leave the incompetent points
very fast.

Based on the approximations and idealizations meetl above, rain algorithm can be summarized in
Figure 1. Briefly, tunning parameters of this algon such as initial raindrops number (population
number), initial raindrops radius (search spacefmh population), etc., will be entered in thetfpart of
the algorithm. Then a value would be assigned th eaoplet according to the cost function. Afteatth
each droplet starts to move downward. For thiseisthe endpoints of each droplet would be checked b
the cost function. When a droplet starts to mowveijli continue its route until getting to a minimuin its
way. This scenario would be repeated for each dtopi their path, near droplets could joint witkck
other, causing algorithm speed to increase sigmiflg. When a droplet stops to a minimum point, its
radius starts to reduce gradually causing the acguof the answer to increase notably. In this wdth
the algorithm is able to find all extremum pointstioe objective function. A simple version of the
implementation of the ROA can be found in Appendlix

Rain Optimization Algorithm

objective function fiX), X=(xXs,.-.,Xa)

Input initial tuning parameters such as population number (nPop), maximum iteration (MaxIt), number of variables (nVar), the domain of
variables ([VarMin, VarMax]), initial droplet’s radius (InitR) and number of jointed droplets (size), rain speed (Speed) and Soil adsorption
Constant(a).

Initialize droplets position, radius and size.

Evaluate each droplet with the objective function to obtain the cost of each droplet and sort population based on cost

Main loop:
While (iteration number < MaxIt)
For( each droplet)
Change each variable x; to x+R; and x;-R; and evaluate the new position by the objective function.
If the new cost is smaller then the previous cost, accept a new position for x;

while (cost reduces)
move the droplet at the same direction with the same velocity,
reduce size of droplet depending on the soil adsorption properties
joint near droplets to each other, change size of new droplets
end while

end for

omit weak droplets depending on soil adsorption

generate new droplets depending on rain speed
end while

Sort populations based on cost.

Show results and visualizations.

Figure 1: Pseudocode for Rain Optimization AlgamitROA)

4- Validation and comparison
It is not hard work to implement the rain algoritfirom the mentioned steps in the previous section
using any programming language. We implementedaligisrithm using Matlab software for various
test functions to visualize the results and comjitawdth other metaheuristic algorithms. As it was
emphasized before, the strong point of this algorits in finding the local minimums with a high
degree of accuracy, and this is what other algmstbannot do it so easily. For validating and megsti



standard tools have been used, in a similar wagdbother new algorithms such as bat algorithm
(yang, 2010). Therefore, we have considered thdopeance of this algorithm from three
perspectives:

Perspective 1: considering the performance of 1Bé Rsing two benchmark functions in detail

Perspective 2: considering its performance onisgl26 benchmark functions regardless of the
number of function evaluation (NFE) compared to sather optimization algorithm

Perspective 3: considering its performance in sghdrilling optimization problems

4.1 method of performance of ROA
We have chosen the following functions as the bewrk functions for considering the method of
solving a problem using ROA.:

1- Eggcrate function
z =x? +y? + 25(sin?(x) + sin?(y)), -5<x<5 -—-5<y<5 (3)

Figure 2 shows Eggcrate function in 3D view witktire defined domain for x and y. we know that this
function has a global minimum of zero at x=0 an@.y&lso following local minimum can be determined
for this function:

x=0, y=3, z=9.5; x=3, y=0, z=9.5; x=-3, y=3, z=9.5;
x=-3, y=0, z=9.5; x=3, y=3, z=9.5; x=-3, y=-3, z=9.5;
x=0, y=-3, z=9.5; x=3, y=-3, z=9.5;

Figure 2: 3D plot of Eggcrate function



We run the ROA algorithm for finding global andcéd minimums with the following algorithm
parameter:

Initial raindrops number= 1000;
Variables number of each raindrop=2;
Maximum iteration= 100;

Initial raindrops diameter=0.038;

Initially created droplets are distributed on thelpem area as it can be seen in Figure 3; also, th
location of raindrops in iteration 1 to 30 can leersin Figure 4(a). Droplets of the latest itersiare
darker and jointed droplets have a larger diamétsrit is obvious from Figure 4(b), the raindrope a
running from the maximum points toward the minimuamsl in their route, some droplets joint to create
streams. The route of the raindrops after 100titera is shown in Figure 4(b). After 100 iteratignst

70 droplets with various size remain on the surfaoene of these droplets are very big and hasezteat
some lakes. It is obvious that these lakes ard lnogamums of the function and the deepest ondés t
global minimum. The results of the algorithm arewh in Table 1. Some small and unimportant lakes
can be seen in Figure 4(b) and also in Table telfrun the algorithm for more iterations, theselsma
lakes will move toward local minimums or might atis¢o the soil, although this is not important and
from the magnitude of the lakes we can find outolthake is more important.

N
W
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L | it |
4 2 4

Figure 4(a): the moving path of the raindrops aféériterations on the problem area (left), 4(b)e tinoving
path of the raindrops after 100 iterations on thielpgem area (right)



Table 1: position and size of rain droplets aft@0literation

X Y z lake radiu Jointed drople
0.0c -3.02 9.48819 0.49767! 43
-3.02 -3.02 18.97639 0.467846 38
0.0c 0.0C 8.65E-35 0.44899! 3E
-3.02 3.02 18.97639 0.422564 31
0.0C 3.0Z 9.48819 0.42256: 31
3.02 0.00 9.488197 0.408705 29
-3.02 0.00 9.488197 0.39436 27
3.0Z 3.0Z 18.9763! 0.36397! 23
3.03 -3.01 18.97931 0.131453 3
3.0F 3.97 38.8637 0.10733: 2
-2.34 0.00 18.33812 0.107331 2
-2.37 0.53 24.6003 0.107331 2
3.5 0.0C 16.6024! 0.10733: 2
0.47 3.02 14.8654 0.107331 2
0.01 4.11 33.8825I 0.10733: 2
3.02 3.47 24.23667 0.107331 2
-2.5¢ 0.0C 13.5671 0.10733: 2
-3.02 0.4C 13.4461 0.10733: 2
0.00 5.02 47.90627 0.107331 2
3.04 3.8€ 35.2661 0.10733: 2
-2.97 0.90 25.57681 0.107331 2
0.01 0.7: 11.5346: 0.10733: 2
3.4¢ 3.0Z 24.2756! 0.10733: 2
0.01 -2.13 22.54699 0.107331 2

2- Rosenbrock’s function:

Rosenbrock’s function was introduced by Howard Rbseck in 1960Rosenbrock, 19g0and has a
global minimum inside a long, narrow, parabolicgflat valley and can be defined by

fx) =Y — x2)? + 100(x;4, — xP)?, —2.048 < x; < 2.048 (4)

Rosenbrock’s function has a global minimum(xgtx,) = (1,1), where f(x)=0 Figure 5 shows
Rosenbrock's function in 3D view within the defirdmmain for x and y with a=1 and b=100.

Figure 5 shows the shape of Rosenbrock’s functior8D view and Figure 6(a) shows the initially
selected population for solving the problem whishpiroduced randomly. The results of the algorithm
after 100 iterations are shown in Figure 6(b).



Figure 6(a): Rosenbrock function in 2D view andipos of the initial population (left), 6(b): Regslof the rain
algorithm after 100 iterations (1000 rain dropleted Rosenbrock’s function) (right)

As it can be noticed from the produced answer fgg Erate and Rosenbrock functions, in the rain
algorithm, initial populations move gradually addvdy move toward the minimums and in their path
can joint to each other to form larger dropletswiitore local searching ability. In addition, weeklets
that cannot improve themselves would be absorbtedtire soil and vanished. Therefore, at the initial
iteration, we have a lazy algorithm that should chiots of probable answers, but just after a few
iteration lots of these answers or droplets wilhjdo each other or absorbed to the soil and spééae
algorithm will increase rapidly.

4.2 solving 26 benchmark functions

As it can be seen in Table 2, we choose 26 impbtianchmark functions and solve them using Rain
Optimization Algorithm and compare its efficiencytlvsome other optimization algorithms such as
Genetic algorithm (GA), Particle swarm (PSO), Hgbdthm (BA) and Sperm Whale Algorithm (SWA)
(Cheng and Lien, 2012). These problems were s@weldoublished by Cheng and Lien (Cheng and Lien,
2012) except SWA that was solved by Ebrahimi andaréchi (Ebrahimi and Khamechi, 2016).
Optimization algorithm parameters that are usedsé@dving these benchmark functions can be found in
Table 3.



Table 2: details of benchmark functions (EbrahimKBamehchi, 2016)

No Name Range D Formulation Min
1 Rastrigin [6.125.12]| n f,(x)=10n+>"[x2-10cos(arx ) 0
i=1
n 2
2 | DeJong (Sphere [-5.12,5.12] f,(x)= Z X 0
1 n 2 n X
3 Griewank -600,600 n f.x)=——)> _x. —[]cosEE=)+1 0
[ ] 3(0) = 002X |‘J )
f,(X) =(L.5- X, + XX, + (2.25- x+ X, & ¥+ ...
4 Beale [-4.5.4.5] 2 4(X) =( 1+ X X,) + ( X+ %% ¥ 0
.(2.625- x+ x X ¥
5 Easom [-100,100] 2 fo(x) = —cos(x,)cos(x )expt (x-mI- (x-13) -1
6 Matyas [-10,10] 2 fo(x) =0.26(x; + x3)— 0.48% X,
7 Bohachevskyl [-100,100] 2 f,(x) =x?+2x2-0.3cos(3t % > 0.4cos@ x4 O. 0
8 Booth [-10,10] 2 fo(X) = (X, +2X, = 7)* + (2%, + X,— 5F 0
D
9 Michalewicz2 [0x] 2 fo(X) == sin(x;)(sin(ix’ /1)) -1.8013
i=1
i02 2 2y _
10 Schaffer [100,100] | 2 fo(x) =0.5+ SN N% * ;) 0.5 0
(1+0.001(¢ + X )f
Six Hump _ 2 _ 4 1 6 _ 2 4
11 Camel Back [-5,5] 2 fio(X) =4x7—-2.1x; + 3 X3+ X, X,— 4x5+ 4X -1.03163
12 Boachevsky2 [-100,100] 2 f(X) =x%+2x35-0.3cos(3t % )(4t % ¥ O.. 0
13 Boachevsky3 [-100,100] 2 fo(x) =x2 +2x2-0.3cos(3t x+ 41 % ¥ O. 0
5 5
14 Shubert [-10,10] 2 f1a(X) =(Zicos(i+l)x1+ i)(Zicos((i+ Dx,+ 1)) -186.73
i=1 i=1
f16(X) =100(x% = X, )* + (X,— 1 + (X;— 1¥ + 90(%— x, V' + .
15 Colville [10.10] 4 15(X) (XE = X,)" + (X, = )7+ (X3= 1) %= %) 0
210106 — 1 + (%, — 17+ 19.8(x- 1)(x- 1)
D
16 Michalewicz5 [07] 5 f,5(X) == _sin(x,)(sin(ix’ /Ty -4.6877
i=1
D D D
17 Zakharov [-5,10] 10 f(x) =D xZ +(3.0.5ix?)* + (3 0.5ix7)* 0
i=1 i=1 i=1
D
18 | Michalewicz10 [Ox] 10 f,5(X) == sin(x,)(sin(x¢ /)y -9.6602
i=1
D
19 Step [-5.12,5.12]| 30 fio(X) =D (x, +0.5f 0
i=1
D
20 SumSquares [-10,10] 3 foo(x) = Dix? 0
i=1
D
21 Quartic [-1.28,1.28]| 30 f,(x) = ix{ +Rand 0
i=1
D
22 Schwefel 2.22 [-10,10] 34 X)) =Y |x | + nzl\xi\ 0
i=1
D D
23 Schwefel 1.2 [100,100]|  3( ) =D (O x)? 0
=1 j=1
D
24 Rosenbrock [-30,30] 3( f,4(X) = D 100(X,., = X )’ + (x — 1 0
i=1
D
25 Dixon-Price [-10,10] 30 f,e(X) =(x, =1)* + Y i(2x? = x, =1)? 0
i=2
1 D D
26 Ackley [-32,32] 30 f,6(X) = -20expE 0. HZ X ) exp%Z cos@@ ,x )) 20 0
i=l i=1




Table 3: Optimization algorithm parameters usesbilving benchmark functions in this work

Optimization parameters
algorithm
GA population size = 50; mutation rate = 0.01; crossoste = 0.8; generation gap = 0.9
PSO population size = 50; inertia weight = 0.9-0.7;itiwf velocity = Xa/10- Xq,in/10
BA population size = 50; elite bee number = n/2; bestnumber = n/4; random bee number = n/4;
elite bee neighborhood number = 2, best bee nergbbd number = 1
SWA Number of main groups = 10; group size = 5; goatjggize = 2; local search iteration = 10

For solving these benchmark functions, maximum remat function evaluations greater than 5*h@s

not allowed. Also in this algorithm, any value l¢ban 10 was assumed to be zero. We perform the
simulations using Matlab software on a 2GHz laptopurthermore, we have tried to use different
population sizes from n = 10 to 250, and a fixedybation size n = 50 for all simulations were apgli
Tuning parameters for ROA was as follow: Populasae=50, rain speed=10, rain radius=0.05(Xmax-
Xmin), soil adsorption=50%. In addition, the resudf the power of various algorithms for solvingsk
benchmark functions are shown in Table 4. As it inayotified, the score and rank of each algorithm
shown in the two last columns of Table 4. Resuitsasthe ROA, SWA, BA, PSO and GA algorithms are
respectively the best algorithms. In addition, ARM@as the best rank with a slight difference coragan

SWA.
Table 4: Optimization algorithms performance conipamn on benchmark functions

f D Min GA PSO BA SWA ROA
Mean 52.92259 (3) 43.9771369 (2) 0 (1) 0(1) 0(1)
f1(x) 30 0
SD 4.56486 11.728676 0 0 0
Mean 1.11 E+03 (2) 0(1) 0(1) 0(1) 0(1)
f2(X) 30 0
SD 74.21447 0 0 0 0
Mean 10.63346 (3) 0.01739 (2) 0(1) 0(1) 0(1)
fa(x) 30 0
SD 1.16146 0.02081 0 0 0
Mean 0(1) 0(1) 1.88E-05 (2) 0(1) 0(1)
fa(x) 2 0
SD 0 0 1.94E-05 0 0
Mean -1(1) -1(1) -0.99994 (2) -1(1) -1 (1)
fs(X) 2 -1
SD 0 0 4.50E-05 0 0
Mean 0(1) 0(1) 0(1) 0 (1) 0(1)
fo(X) 2 0
SD 0 0 0 0 0
Mean 0(1) 0(1) 0(1) 0(1) 0(1)
f2(x) 2 0
SD 0 0 0 0 0
Mean 0(1) 0(1) 0.00053 (2) 0(1) 0(1)
fa(X) 2 0
SD 0 0 0.00074 0 0
Mean -1.8013 (1) -1.57287 (2) -1.8013 (1) -1.801)8 ( -1.8013 (1)
fo(X) 2 -1.8013
SD 0 0.11986 0 0 0
Mean 0.00424 (2) 0(1) 0 (1) 0(1) 0(1)
f10(X) 2 0
SD 0.00476 0 0 0 0
Mean -1.03163 (1) -1.03163 (1) -1.03163 (1 -1.31H -1.03163 (1)
f11(x) 2 -1.0316
SD 0 0 0 0 0




Mean 0.06829 (2) 0(1) 0(1) 0(1) 0(1)
f12(X) 2 0
SD 0.07822 0 0 0 0
Mean 0(1) 0(1) 0(1) 0(1) 0(1)
f13(X) 2 0
SD 0 0 0 0 0
Mean -186.73 (1) -186.73 (1) -186.73 (1) -186.78 (1| -186.73 (1)
f14(X) 2 -186.73
SD 0 0 0 0 0
Mean 0.01494 (4) 0(1) 1.1176 (5) 0.00544 (3 0530(R)
f15(x) 4 0
SD 0.00736 0 0.46623 0.00063 0.00032
Mean -4.64483 (2) -2.49087 (3) -4.6877 (1) -4.661)7 -4.6877 (1)
f16(X) 5 -4.6877
SD 0.09785 0.25695 0 0 0
Mean 0.01336 (2) 0(1) 0 (1) 0 (1) 0(1)
f17(X) 10 0
SD 0.00453 0 0 0 0
Mean -9.49683 (3) -4.00718 (4) -9.6602 (1) -9.61@87 -9.6602 (1)
f1(X) 10 -9.6602
SD 0.14112 0.50263 0 0.00236 0
Mean 1.17 E+03 (3) 0(1) 5.1237 (2) 0(1) 0(1)
f19(X) 30 0
SD 76.56145 0 0.39209 0 0
Mean 1.48 E+02 (2) 0(1) 0(1) 0(1) 0(1)
f0(X) 30 0
SD 12.40929 0 0 0 0
Mean 0.1807 (4) 0.00116 (3) 1.72 E-06 (2 0(1) 10 (
fu(x) | 30 0
SD 0.02712 0.00028 1.85E-06 0 0
Mean 11.0214 (3) 0(1) 0(1) 0(1) 0(1)
fo(x) | 30 0
SD 1.38686 0 0 0 0
Mean 7.40 E+03 (2) 0(1) 0(1) 0(1) 0(1)
fa(x) | 30 0
SD 1.14E+03 0 0 0 0
Mean 1.96 E+05 (3) 15.088617 (2) 28.834 (3) 13.3629 9.4536 (1)
f4(X) 30 0
SD 3.85E+04 24170196 0.10597 4.0295 3.4381
Mean 1.22 E+03 (3) 0.66667 (2) 0.66667 (2) 0(1) (10
fs(x) | 30 0
SD 2.66E+02 E-08 1.16E-09 0 0
Mean 14.67178 (3) 0.16462 (2) 0 (1) 0(1) 0(1)
f26(X) 30 0
SD 0.17814 0.49387 0 0 0
Score 48 36 35 30 27
Final Rank 5 4 3 2 1




5. Solving a drilling optimization problem usng ROA

Today, the cost of oil and gas production is arddtastic factor in the industry (Skjerpen et &018).
Therefore, the main objective of drilling optimiiat is to reduce drilling time and cost. For thiggose
there are two main methods, reducing drilling titne selecting optimum drilling parameters before
drilling (for example, selecting a suitable driiifluid or bit) and reducing drilling time by setew
optimum drilling parameters in real-time drillingperations (for example, optimizing weight on bit or
pump pressure) (see e.g. Eren and Ozbayoglu, Feip@tte et al., 2017). For optimizing drilling
parameters, there should be an accurate predictogel (Barbosa et al., 2019). This model should be
able to relate important drilling parameters (sashrotary bit speed, weight on bit, etc.) to thiflinly

rate with acceptable accuracy (Soares and Gray)20kspite many efforts for developing an effestiv
model for ROP (analytically or experimentally), thesults are not so satisficing (Soares et al. 6201
Therefore, many investigators prefer to employ mresthearning methods (for example, artificial ndura
networks, genetic algorithms, random forest, dts. ROP prediction. (Hornik et al., 1989). Mostdits

on the comparison between analytical modeling nusthend intelligent methods concluded that more
accurate models could be obtained using intelligemthods. (for example: Arabjamaloei and
Shadizadeh, 2011; Amar and Ibrahim, 2012; Bataed. eP014; Hegde et al., 2017). Lots of work on
ROP prediction using machine learning (ML) methods be found in the. The newest method employed
for ROP Prediction combines traditional methodshweitmachine learning method that is called a hybrid
method (Yavari et al. 2018). So, ROP predictionhods can be classified as follow (Figure 7):

v/ analytical models,

v’ statistical models (e.g. multiple regression),

v"machine learning models (e.g. genetic algorithrarbficial neural networks),

v hybrid models (e.g. combining analytical modelswitachine learning models).

In this work, we used a new hybrid method for RO&djtion and optimization. In this method, a new
analytical model was developed in the first pattefl this model was solved using ROA (the new search
model that was described in the previous section).

Traditional Models Statistical models Machine Learning models

Physics-based
models

(non) linear

) — Y X — unknown Y
regression

f
Neural networks ‘/
Decision trees

Ensemble Models

Figure 7: Approaches for ROP modeling (Barbosalgt2919).

5.1 Developing an analytical model for ROP

A useful method for increasing the drilling ratetés reduce 'mechanical specific energy (MSE)'-the
amount of work done for the excavating unit voluofieock- (Teale, 1965). In rotary table drillingprk

is done both by the piercing the bit, WOB (Ib), @hd exerted force while rotation of bit or torqiig(lb-

ft). It can be shown that the total work done hyitbione hour in Ib-ft is:



W =WOB X ROP + 60 X 2N X T (5)
Where:

N is rotation speed in rev/min

WOB is the weight on the bit in Ib

T is the torque in Ib-ft

ROP is penetration rate in ft/hr

W is the work done for removing the rock in Ib-ft/h

Therefore the volume of excavated rock in one f&ur

V =AXxROP (6)
So, the mechanical specific energy (in IB/ican be computed by dividing work by volume:
WOB 60 x 2nN x T 7)

MSE ==+~ XRrop
Where A is the area of the hole iff in

Teale (1965) pointed out that the minimum energpired for cracking a rock in all cases is of theen
of the uniaxial compressive strength (UCS) of tioak.

Teale’s model for specific energy although was a¢what time but contained some significant sowifce
error. Some of these errors were corrected by sesearchers, and some of them still are existihg. T
weakness of Teale model are as follow:

1- Teale conducted all his tests under atmospheriditons, so he underestimated minimum
specific energy. Some other researchers by penfgrmiore exact experiments show that the
minimum energy required for cracking an in-situkég of the order of the confined compressive
strength (CCS) of that rock.

2- Although Teale used surface measured torque feingphis equation but it is clear that surface
measured torque is quite different from real exktterque to the bit. Also measuring exerted
torgue from bit to the beneath rock has provenddift.

3- Measured WOB in the surface can be completely diffefrom real WOB at the bottom of the
hole, especially in deviated and horizontal welle do the effect of drag and pump-off force of
drilling fluid.

4- There is not any term for the hydraulic effect dflidg fluid in Teale’s equation, but it is clear
that the hydraulic power of mud can effect on iglprocess especially in soft formations.

5- In directional drilling, when a downhole motor isedl, exerted torque and RPM by bit are quite
different from measured torque and RPM on the serfa

6- Effect of bit type and bit efficiency is neglectedthe equation but it is obvious that differertsbi
have different efficiencies in the same conditions.

7- The effect of bit wear is missing in this equation.

8- Dirilling problems such as bit balling and drill pipvibration can effectively reduce the drilling
rate and change drilling efficiency that is notrsgethe Teal’'s equation.

Some researchers solve some of the mentioned pmephaut some of them are still existing (Table 5).



Table 5: summary of previous researches for optimgidrilling operations

Researcher( Main developed idea or wc Weakness(es) of wa
Simon (1963) Experimentally measured the magnitude of the  Did not develop a model for MSE.
work required to break out a unit volume of rc
Teale (1965) Developed first equation for computing MSE. | T and WOB where used from surface
Developed a method for ROP optimization using  data instead of bottom hole data.
MSE. The hydraulic effect was missing.
Bit efficiency was ignored,.
Bourgoyne and Young Developed a comprehensive model for predicting There were several constants in the
(1974) ROP equation which should be determined|in

the various situatic
Warren (1987) Winters et | develop models and formulate related parameters to Could not make an accurate and

al. (1987) ROP comprehensive estimation

Pessier and Fear (1992) Developed a relation for T based on WOB for usjng WOB was used from surface data
in Teale’s model. which can be different from real bottomn
Improved Teale’s method for ROP optimization hole WOB.

based on MSE. The hydraulic effect was missing.
Waughman et al., (2003) Provided a method for including bit wear to the The hydraulic effect was missing.
Teale’s equatiol Measurement of real WOB was miss

Dupriest (2005) Included bit mechanical efficiency to the Teale’s Bit efficiency was not exact.
equation. The hydraulic effect was missing.

Improved Teale’s method for ROP optimizationl Measurement of real WOB was missing
based on MSE.

Rahimzadeh et al. (2010) Used intelligent methods (ANN) for predicting Their method was not real-time

Edalatkhah et al., (2010) ROP Solving method was time-consuming

Monazami et al. (2012) Parameter tuning was required for the

network

Cherif (2012) Included bit mechanical efficiency to the Teale’s Bit efficiency was not exact.

Amadi (2012) equation. The hydraulic effect was missing.
Improved Teale’s method for ROP optimization Measurement of real WOB was missing

based on MSI
Chen et al. (2014) developed a formula between bottom hole weight The hydraulic effect was missing.

on bit and surface weight on bit

improved Teale’'s MSE model

Mohan et al. (2015) Included hydraulic effect to the Teale’s MSE Bit efficiency was not exact.
model.

Introduced HMSE concept for the first time.

5.2 Improving the model of ROP:

Many researchers try to improve the weaknesseseaf'sl equation. Pessier et al., 1992 stated that in
rotary-drilling with PDM (Figure 8) the total medatiaal work done by the bit in one hour can be
estimated by

W, = (WOB,, x N) + (60 X 21 X Ny X Ts) + (60 X 27 X Nypy X Tp) ®)

Where:

Ng: bit rotary speed provided by surface rotation;
T,: torque at bit provided by surface rotation;
N,,,: PDM output rotary speed;

T,,: PDM output torque.



Power Input at the Rig Floor
WOB/Torque /RPM

Power Transmission Loss
WOB/Torque

Power Input at Downhole
Motor Torque/RPM

Power at bit

Figure 8: rotary drilling system with PDM (Chenat, 2016)

Cherif, 2012 stated that every bit has a mechamtfadiency related to its cutter size and struetur
Including mechanical efficiency to the Pessier’sagpn, the mechanical work required to break dukr
drilled in 1 hr can be nearly expressed as:

W, = Wi Ey 9)
The volume of rock drilled in 1 hr is

V = A.ROP (10
MSE was defined as the mechanical work done toveeaa unit volume of rock (Teale, 1965). By
combining Egs. 8, 9 and 10, then the MSE for rotatrilling with PDM can be expressed by

MSE = Wy _ E .WOB;,.ROP+60.211'.NS.TS+60.211'.RPNm.Tm (12)
v m A.ROP

However, the mechanical energy provided by theaserhas a significant transmission loss in horaont
and directional drilling. Chen et al. (2014) formtgd a relationship between bottom hole WOB and the
surface measured WOB and presented a method tolataldorque of bit in directional and horizontal
drilling.

Chen et al. (2014) stated that provided mechamigatgy on the surface has a great difference Wwih t
mechanical energy received by the bit due to icthetween pipes and borehole, especially in dieak

and horizontal drilling. So he formulated a relatioetween surface measured WOB and bottom hole
WOB as well as Surface and bottom hole Torque:

WOB, = WOB.e Hs» (12
-36— 1 13

M = 36Db.WOB.e_”S'Vb (13

Then the mechanical specific energy provided bystitéace can be estimated as

E,. WOBp.ROP+60.21.Ng.T (14)

A.ROP



_ 1 13.33.up.Ng
=E,.WOB.e ﬂs-Vb.(— 13334y N
m A+ Dp.ROP

Also According to Equations 13 and 14, Chen e{2014) deduced that the mechanical specific energy
provided by the PDM can be estimated as

E 60.2TN, Ty E 1155.2.0.AP;,.Q (15)
m - m

M AROP A.ROP )

Finally, substitute Equations 15 and 14 into Equratll, Chen et al. (2014) get a new MSE model for

rotating drilling with PDM

_ —usyp (1 1333.u4p.Ns 1155.2.0.APp.Q 16
MSE = Ep. (WOB' € g (A + D},.ROP ) +t ~aror ) (19
Where in this equation:

APB,,: Pressure drop across the PDM, psi

Q: Pump flow rate, gpm

Dy: Bit diameter, in

n: Efficiency of PDM

Ns: Drill pipe rotary speed, rpm

Em: Mechanical efficiency of the bit

vp: Bit sliding coefficient (between 0.3 and 0.85)

us: Drill string sliding coefficient (between 0.25¢0.4)

Although derived equation by Chen, improved lotsveiknesses of Teal’'s equation, but there are some
coefficients E,,, U, Yp, Up, 1) iN this equation that changes in the variousasitn of drilling. Therefore,
ROA was used to find out these coefficients inaasiconditions of drilling.

Rewriting Equation 16 yields:

_ WOB.e #s¥b (%-Db)-Em-13-33-ub-WOB-e"‘S'Vb-Ns Epm-1155.2.AP.Q
MSE = Em( A ) + ( A.ROP + ( A.ROP )
(17)
Letting
Ay = Us- Vb

a, = (%.Db).13.33.ub

a; = 1155.2.1

Equation 17 can be summarized as follow:

MSE = E,, ((WOBA.e_al) n (az.W:};(e);al_Ns) + (a:i:)n;(?)) (18)

As it can be seen in Equation 18, there are sonparieal constants named, to a; in the model. We
will try to find these constants for various siioas using ROA.

Rearranging Equation 18 for ROP we have:

a,Ng.WOB.e~*1+a3;Apm.q

ROP = %2 38Pm 19
AMSE_ o0 a; ( )
Em



5.3 A brief discussion on the value of MSE

In order to know the manner in which the MSE woiksEquation 19, it is necessary to discuss the
method that bits drill the rock and factors thdg¢eifthe bit performance. Figure 9 shows a typilcéll off

test in the drilling operations. This curve is dieil into three regions.

Region 3: founder point due

 Extra WOB

« Bit balling

» Bottom hole balling
* Vibration

ROF

Region 2: Efficient Bit working
conditions

Region 1: inadequate W(
WOB

Figure 9: a typical drill off test in drilling opations (Dupriest, 2005)

In region 1, the ROP is very low, and it increageedually by increasing WOB. In this region, dridi
operation is suffering from low WOB and it can laédsthat operation is nearly stopped. In regioth&re

is a linear relation between ROP and WOB. In thitien, WOB is so enough that drilling can be strt
In this section by increasing WOB, ROP increasesalily. This region continues until region 3 where
ROP increase stops and reversely starts to decrease

Figure 10 shows the typical relation between thatldef cut (equivalent to WOB) and bit efficien@s

the WOB and resulting depth of cut increases, flitiency increases. Bit efficiency can be defirsegithe
required energy to remove a specific volume of rtackhe actual energy used for drilling this volume
Bits tend to transfer 30% to 40% of their input rgyeto the rock, even when operating at peak
performance (Dupriest et al. 2005).
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Mechanical efficiency of the t

Depth of cut (~WOB)

Figure 10: typical relation between depth of cujufgalent to WOB) and bit efficiency (Pessier, 1992

In the linear portion of Figure 9, although by ies&sing WOB, drilling efficiency does not change ttat
provided energy to the bit would be increased, iogu$e drilling rate to increase. The slope oflihe is
constant for a special formation, bit and rotargexp Figure 11 shows the national relation betvwben
slope of the straight line in the drill off testdathe bit type. When a bit is loaded enough torenédion to
reach to the linear region, it can transfer onlgo3t 40% of its energy to the rock due to friction
coefficient. In the best situation, the minimum ambof MSE has a value of the order of confining
compressive strength (CCS) of the rock, as it wastioned by Pessier (1992). Therefore, in the most
efficient situation, the minimum amount of MSE igual to CCS, and just about 35% of the energy is
transferred by the bit. This means in Equationvl8can use CCS instead of MSE. Also, we can suppose
the mechanical efficiency of the bit to be 0.35e @mount of CCS can be found from adjacent wells or
can be calculated from the log or empirical equetid herefore, Equation 19 can be rewritten asvoll

ROP = aZNS;qI./ZcOSB.e_al-'—%Apm.q (20)

ik —-a
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Figure 11: national plot showing that the slop il off test is determined by and RPM, but the
maximum ROP is limited by founder point (DuprieX205)

5.4 Solving the developed model using ROA

Maximizing ROP for reducing drilling cost is the rpgnent objective of researchers in the drilling
industry. Many parameters affect the drilling rateme of them are controllable such as WOB and RPM,
and some of them are uncontrollable such as foomayipe. Changing and optimization of controllable
drilling parameters can lead to drilling rate maization. For optimizing drilling parameters, there
should be an exact relation between these parasnater the drilling rate of penetration (ROP). listh
section, the Rain Optimization Algorithm would bged for ROP modeling and prediction. Therefore,
drilling parameters would be optimized, leadingltitling cost-effectively reduced.

Using mud logging data of a drilling rig in a sgaciformation, we have ROP, WOB,, Ap,,, q and
CCS in several points. For this work, we used 58ta ceries in the Asmary formation of one of the
Iranian oil fields.

The cost function for thé"idata set is equal to:

_ a;Ng; WOB;.e~ %1 +azApp;.q;
COStl‘ = ROPl - ACCS

0.35

(21)

—WOB;.e~%1

Moreover, the cost function for the total data barobtained as follow:

Cost = /21-521 Cost? (22)



In this case, using ROA, we will fing, to a; so that the amount of cost minimized. For thisky®OA
will guess the amount of thig to as first time and amount of cost in Equation 22 Wil calculated. At
the next iterations, this algorithm tries to changeo a5 to reduce the cost.

Therefore, briefly, we used Equation 19 as the regimtion. Then in each data point of the data thet,
real ROP was compared with the computed ROP by titqua9 as it can be seen in Equation 20. In
Equation 21, it was tried to minimize some of thes with changing the constantsto as. In the end,
by obtaining these constants a special relatiopfedicting ROP in a certain formation was obtaiagdt
can be seen in Equation 22.

For solving this problem using ROA, the initial pdgtion was 100, the minimum amount of each
variable was zero, the maximum amount was one dtett AOO iteration amount of cost was reduced to
le-16.

After 100 iterations calculated amount @f to a; using ROA were as follow:

a, =0.07;
az = 0.99 = 1;

Figure 12 shows the process of finding the ans&erthe ROP model for this formation can be obtained
as follow:
__ 0.58Ns.WO0B.e %07 +Ap,, q (23)

ROP =
ACCS_ o =007
0.35

Having A=29.5in? and CCS=2000 psi, ROP equation for this formatidhbe:

0.58Ns.WO0B.e %7 +Ap,,.q
ROP = 2952000 -0 0,07 (24)
0.35

This equation can be more simplified as follow:

0.54N, . WOB+Ap,.
ROP = 2= Pm A (25)
168571—-0.93WOB

0E T T T T T T

w0 E

| | | 1 | | |
1 2 3 4 5 6 7 8
NFE 10

Figure 12: the process of cost function reductiersus the number of function evaluation for sohdnifing
problem



This formula was tested in another drilling poiat the same formation with the same drilling candi)
with following drilling parameters for obtainingitling rate:

WOB=9000 Ib;

A=29.5in?;

N=100 rpm;

Ap,,=2000 psi;

=150 gpm;

CCS=2000 psi;

ROP=1.2 ft/hr;

Moreover, the obtained ROP was close to 1.1 aastexpected.

It should be emphasized that Equation 20 was dpedlfor directional drilling using a down hole mioto

If it is interested to use this equation in veftiddlling conditions when there is no a down hpietor in

the well, lettingAp,,, = 0 yields:
a,Ns . WOB.e~%1

ROP =
AcCCs_ —a
035 WOB.e~%1

(26)

Equation 26 is simpler than Equation 20 and itig phecessary to fingy anda, to solve the equation for
specific drilling conditions. Equation 20 and 26 dze used for drilling optimization using the deyed
method by Dupriest (2005) more effectively. Duprig005) stated a method for hydraulics optimizatio
during drilling. It is recommended to optimize Hadtics using the Dupriest method and optimize WOB
and bit RPM using the proposed method in this work.

At the next attempt, we tried to solve Equationu®ihg some other metaheuristic algorithms. For this
purpose, GA, PSO, BA and SWA with the availableapzters in Table 3 (except population number
that was set to 100) were used. Table 6 comparpdaiver and exactness of these 4 algorithms with the
ROA. As it can be seen from this table, BA coultlfthe answer with almost the same exactness of the
ROA but nearly 2 times NFE. PSO, SWA and GA couwdtthe next ranks respectively. Figure 13 shows
the process of finding the answer for these fogprthms that can be compared with Figure 12 that
shows the process of finding an answer for the ROA.

Table 6: comparison of the speed and exactnesge ROA with BA, PSO, SWA and GA in solving the
drilling optimization problem in this work

Algorithm name NFE Error Rank
ROA 6435( le-16 1
BA 9010( 1.7¢1E 2
PSO 7850( 1.6e-12 3
SWA 14559° 1.5¢-6 4
GA 6302¢ 2.5¢-2 5
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Figure 13: the process of cost function reductiersus the number of function evaluation for sohdnifing
problem using (a): BA, (b): PSO, (c): SWA, (d): GA.

6. Conclusons

In this study, a new metaheuristic optimizationoailipm called ROA that was inspired from raining
phenomena was introduced and developed in detas. dlgorithm was used to solve some important and
standard benchmark functions as well as one dyifliroblem and its performance was compared with the
genetic and particle swarm optimization algorithesswell as Sperm Whale and Bat algorithms. Results
of this work summarized as follows:

The developed algorithm, in addition to obtainings@ute extremums, was able to obtain local
extremums with a high degree of accuracy.

ROA needed a fewer number of cost function evalnat time and cost to solve most of the problems
compared to GA and PSO that is very important iwisg complicated engineering problenResults
show that ROA could get ranking 1 between other Compared optimization algorithms.

ROA was used to solve a drilling problem and wds &b find the answers very quickly and accurately.
Also, the proposed algorithm could reduce the nunatbdéunction evaluations (NFE) to half of the BA
that has the best performance between selectedthigs.

A new hybrid method for developing a new ROP matias$ introduced. This model was able to predict
the drilling rate in directional drilling as welsavertical drilling.
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Rain optimization algorithm (ROA) is a new metaheuristic algorithm, inspired by the raindrops,
which move toward minimum points after getting to the earth. This agorithm can find global
extremum as well aslocal extremumsif its parameters are correctly tuned. After implementation
of this agorithm, we compare it with some other existing optimization a gorithm such as genetic
algorithm and ant colony agorithm by solving 26 benchmarks and 3 benchmarks in various
dimensions as well as a drilling optimization problem. Simulations show that ROA seems more
superior to other agorithms in finding the global minimum and also it can find local minimum
simultaneously and it can be confidently used in optimization problems.

ROA was used to solve a drilling problem and was able to find the answers very quickly and

accurately.
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