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 Abstract 
With the development of powerful computers, some new methods for solving challenging problems are 
introduced. Some of these methods, which are called metaheuristic algorithms, such as bat algorithm or 
ant colony algorithm, are inspired by nature and simulate a natural phenomenon for finding the best 
solution. Today these algorithms with a robust approach can be used to find the solution of a complicated 
problem very fast although they might be trapped in the local minimums.  Rain optimization algorithm 
(ROA) is a new metaheuristic algorithm that is inspired by the raindrops, which move toward minimum 
points after getting to the earth. This algorithm can find global extremum as well as local extremums if its 
parameters are correctly tuned. After the implementation of this algorithm, we compare it with some other 
existing optimization algorithms such as particle swarm optimization algorithm and bat algorithm by 
solving 26 benchmarks and three benchmarks in various dimensions as well as a drilling optimization 
problem. Simulations illustrate the performance and computational time in finding the global minimum. 
Also, ROA can find local minimum simultaneously and it can be confidently used in optimization 
problems. 

Keywords:  rain optimization algorithm, drilling rate, drilling optimization, machine learning 

 

1-Introduction 
Drilling operation is a response to the oil and gas energy demand in the world. There are many drilling 
optimization problems in the various sequence of drilling operations such as casing design, drilling rate 
optimization, drilling cost minimization, bit size selection, bit type selection, directional drilling design, 
mud weight design, wellbore stability, and so on. Many of these optimization problems are highly 
nonlinear and have several local minima that make it difficult to solve these problems with traditional 
methods but metaheuristic optimization algorithms can solve many of these problems. 
 
Metaheuristic optimization algorithms raindrops to solve many complex global problems in other fields 
(Annicchiarico et al., 2005; Gandomi et al., 2013).  These algorithms try to simulate natural phenomena 
to find a fast and effective solution for complicated problems by using iterative sequences (Talbi, 2009).    

In recent years, the researchers develop several population-based metaheuristic optimization algorithms. 
Some of most famous of them are as follow: the genetic algorithm which is developed based on Darwin's 
theory by Golberg  (1989),  Differential Evolution that was introduced by Storn and Price (1995, 1997), 
the Particle Swarm Optimization algorithm by Kenndy and Eberhart (1995), Harmony Search (Geem et 
al., 2001), Bacterial Foraging Optimization Algorithm (Passino, 2002),  Estimation of Distribution 
Algorithms (Larra~naga and Lozano, 2002), Artificial Bee Colony algorithm (Basturk and Karaboga, 
2006; Karaboga, 2005; Karaboga and Basturk, 2007, 2008), Firefly Algorithm (Yang, 2008, 2009), 
League Championship Algorithm (Kashan, 2009), Group Search Optimizer (He et al., 2009), Ant Colony. 
Optimization (Dorigo and Birattari, 2010), Cuckoo Search algorithm (Gandomi et al., 2011), Krill Herd 
algorithm (Gandomi and Alavi, 2012), Artificial Chemical Reaction Optimization Algorithm (Alatas, 



2012), Stochastic Fractal Search (Salimi, 2014), Symbiotic Organisms Search (Cheng and Prayogo, 
2014), Optics Inspired Optimization (Husseinzadeh Kashan, 2015) and Sperm Whale algorithm (SWA) 
(Ebrahimi and Khamechi, 2016) that are characterized by their names. 
 
In this paper, we introduce a new metaheuristic algorithm, namely rain optimization algorithm (ROA), 
inspired by the natural behavior of rain droplets and raining phenomena for finding minimum locations in 
the earth's surface. We will first formulate the rain algorithm based on the natural behavior of the rain 
droplets. Then we will declare how it works and compares the proposed method with existing algorithms 
such as the genetic algorithm. In the end, the results of this algorithm will be discussed in detail by 
solving an optimization drilling problem. 

 

2- Basic of rain behavior 
When it starts raining, droplets of rainfall on the earth's surface. After a while, it can be seen that some of 
these droplets joint to each other and some more significant droplets forms which can move on the 
surface under the effect of their weight toward the lower locations of the earth's surface. In their path, 
some other marvelous happening would occur for these droplets too. Some of the other droplets might 
move toward the previous droplet and joint to it, or some fraction of each droplet might be evaporated or 
absorbed by the soil depending on different properties of the soil such as nature of the soil surface, 
porosity, permeability, wettability etc. Also, some of the soil would be dissolved in the water. In this 
process, droplets that are dropped on the flat area might be absorbed to the soil completely and disappear 
while dropped droplets on the inclined area will move downward and connect to other droplets to form a 
stream. Being lucky, some streams might connect to each other and form a river. If there is an obstacle in 
the path of the streams or rivers, some lakes will be created in which the volume of the water implies the 
importance of it. Very soon after finishing the rain, streams and rivers would be discharged to the local 
lakes, and after a while, small lakes might be vanished due to evaporation of water in the lake or 
absorption to the soil. Therefore, just a few significant lakes can be remained in the ground depending on 
the topology of the earth's surface and properties of the soil. These lakes show the local minimum of the 
ground surface and deeper lake shows the global minimum. 

By changing the type of rain, the previously mentioned scenario might be changed a little. For example, if 
it is heavy rain with large droplets, all of the droplets will be connected to each other very fast without 
any absorption or evaporation resulting in a flood. In this case, just the global minimum can be detected 
as all local minimum are connected to each other due to a rainstorm. On the other hand, when there is a 
light rain with small droplets, all of the droplets might absorb to the soil resulting in no stream formation. 
Therefore, it can be realized that parameter tuning has significant importance while using ROA. 

The movement of the particle in the proposed method is similar to gradient-based optimization methods 
and that of traditional single-point algorithms such as hill-climbing (HC) and gradient-descent and Rain-
Fall Optimization algorithm (RFO) (Aghay Kaboli et al., 2016). These methods adjust only one parameter 
in each iteration to find if changing this parameter improves cost function or not. However, ROA uses a 
set of answers that all of them move toward the optimum simultaneously. In this movement, some of their 
properties will change in each iteration. For example, their size might change or they might eliminate. In 
addition, ROA is able to find all extremum points instead of just a minimum or maximum.  

 



3-ROA algorithm 
In this section, we would try to simulate rain behavior as it was described in the previous section. Each 
solution of the problem can be modeled by a raindrop. Depending on the problem, some points in the 
answer space can be selected randomly as the raindrops fall in the ground randomly. The main property of 
each drop of rain is its radius. The radius of every raindrop can be reduced as time goes by and it can be 
increased as a raindrop is connected to other drops. When the initial population of answers is produced, 
the radius of each droplet can be assigned randomly in an appropriate range. In each iteration, every 
droplet checks its neighborhood dependent on its size. Single droplets that are not still connected to any 
other droplet, just check for the end limit of the place that it has covered.  When we are solving a problem 
in n-dimensional space, every droplet consists of n variable. So at the first step, the lower and upper limit 
of variable one will be checked as these limits would be determined by the radius of the droplet. At the 
next step, two endpoints of variable two would be tested and this is continued until the last variable. In 
this stage, the cost of the first droplet would be updated by moving it downward. This is not the end 
action for this droplet and while cost function is reducing, it will move downward in the same direction. 
This action will be performed for all droplets, then the cost and position of all droplets will be assigned. 
The radius of each droplet will be changed in two manners: 

1- If two droplets with radius r1 and r2 are so close to each other that has a common area with each 
other; they can connect to form a larger droplet of radius R: 
� = (��� + ���)�/�          (1) 

Where n is the number of variables in each droplet. 

 
2- If a droplet with radius r1 does not move, depending on the soil properties, which is shown by	�, 

some volume percentage of it can be adsorbed.  
� = (�	���)�/�                                  (2) 
In fact, � shows the percentage of the volume of a droplet which can be absorbed in each iteration 
and is a number between 0 to 100 percent. We also can define a minimum for droplets radius rmin, 
where droplets with a smaller radius of that rmin will disappear. 

As it can be considered, the population number would be decreased after a few iterations and larger 
droplets will be developed with a larger domain of investigations. By increasing the domain of 
investigation for each drop, the local searching ability of drops is increased proportionally to the diameter 
of the droplets. Therefore by increasing the number of iteration, weak droplets with a low domain of 
investigation disappear or connect to stronger drops with a higher domain of investigation and the initial 
population will decrease intensively caused increasing speed of finding the correct answer(s). 

It should be considered that there are some important differences between the proposed optimization 
algorithm in this work Rain Optimization Algorithm (ROA) and the recently developed search algorithm 
by Aghay Kaboli et al. (2016) named Rain Fall Algorithm (RFA) which can be summarized as follow: 

• In the ROA despite RFA and many other search algorithms, initial population number changes 
after each iteration due to the connection of adjacent drops or adsorption by the soil. This issue 
leads to an increase in the searching ability of the algorithm and decreases the optimization cost 
seriously. 

• After each iteration size of each drop changes due to the connection of near droplets or adsorption 
by the soil. This action changes the searching ability of each droplet and categorizes the droplets 
from the viewpoint of importance.  



• In the RFA and many other search algorithms, in each iteration, each population would be 
comprised by some other random neighbor points and the droplet would be improved one step 
randomly. On the other hand, in the ROA, each population finds the best path to the minimum 
point. After finding the path, it moves toward the downside step by step while the cost function is 
decreasing just in one iteration. This causes the initial population to leave the incompetent points 
very fast. 

Based on the approximations and idealizations mentioned above, rain algorithm can be summarized in 
Figure 1. Briefly, tunning parameters of this algorithm such as initial raindrops number (population 
number), initial raindrops radius (search space for each population), etc., will be entered in the first part of 
the algorithm. Then a value would be assigned to each droplet according to the cost function. After that, 
each droplet starts to move downward. For this issue, the endpoints of each droplet would be checked by 
the cost function. When a droplet starts to move, it will continue its route until getting to a minimum in its 
way. This scenario would be repeated for each droplet. In their path, near droplets could joint with each 
other, causing algorithm speed to increase significantly. When a droplet stops to a minimum point, its 
radius starts to reduce gradually causing the accuracy of the answer to increase notably. In this method, 
the algorithm is able to find all extremum points of the objective function.  A simple version of the 
implementation of the ROA can be found in Appendix A. 

Rain Optimization Algorithm 

 

Figure 1: Pseudocode for Rain Optimization Algorithm (ROA) 

4- Validation and comparison 
It is not hard work to implement the rain algorithm from the mentioned steps in the previous section 
using any programming language. We implemented this algorithm using Matlab software for various 
test functions to visualize the results and compare it with other metaheuristic algorithms. As it was 
emphasized before, the strong point of this algorithm is in finding the local minimums with a high 
degree of accuracy, and this is what other algorithms cannot do it so easily. For validating and testing, 



standard tools have been used, in a similar way to test other new algorithms such as bat algorithm 
(yang, 2010). Therefore, we have considered the performance of this algorithm from three 
perspectives: 

Perspective 1: considering the performance of the ROA using two benchmark functions in detail 

Perspective 2:  considering its performance on solving 26 benchmark functions regardless of the 
number of function evaluation (NFE) compared to some other optimization algorithm 

Perspective 3: considering its performance in solving drilling optimization problems 

4.1 method of performance of ROA  
We have chosen the following functions as the benchmark functions for considering the method of 
solving a problem using ROA: 

1- Eggcrate function 

 = �� + �� + 25�����(�) + ����(�)� ,										 − 5 < � < 5,							 − 5 < � < 5    (3) 
 

Figure 2 shows Eggcrate function in 3D view within the defined domain for x and y. we know that this 
function has a global minimum of zero at x=0 and y=0. Also following local minimum can be determined 
for this function: 

x=0, y=3, z=9.5; 

x=-3, y=0, z=9.5; 

x=0, y=-3, z=9.5; 

x=3, y=0, z=9.5; 

x=3, y=3, z=9.5; 

x=3, y=-3, z=9.5; 

x=-3, y=3, z=9.5; 

x=-3, y=-3, z=9.5; 

 

 

 

Figure 2: 3D plot of Eggcrate function 
 



We run the ROA  algorithm for finding global and local minimums with the following algorithm 
parameter: 

Initial raindrops number= 1000; 

Variables number of each raindrop=2; 

Maximum iteration= 100; 

Initial raindrops diameter=0.038; 

Initially created droplets are distributed on the problem area as it can be seen in Figure 3; also, the 
location of raindrops in iteration 1 to 30 can be seen in Figure 4(a). Droplets of the latest iterations are 
darker and jointed droplets have a larger diameter. As it is obvious from Figure 4(b), the raindrops are 
running from the maximum points toward the minimums and in their route, some droplets joint to create 
streams. The route of the raindrops after 100 iterations is shown in Figure 4(b). After 100 iterations just 
70 droplets with various size remain on the surface, some of these droplets are very big and has created 
some lakes. It is obvious that these lakes are local minimums of the function and the deepest one is the 
global minimum. The results of the algorithm are shown in Table 1. Some small and unimportant lakes 
can be seen in Figure 4(b) and also in Table 1. If we run the algorithm for more iterations, these small 
lakes will move toward local minimums or might absorb to the soil, although this is not important and 
from the magnitude of the lakes we can find out which lake is more important. 

 

Figure 3: distribution of initial population on the problem area 
 

  

Figure 4(a): the moving path of the raindrops after 30 iterations on the problem area (left), 4(b): the moving 
path of the raindrops after 100 iterations on the problem area (right) 

 



 
Table 1: position and size of rain droplets after 100 iteration 

X Y Z lake radius Jointed droplet 
0.00 -3.02 9.488197 0.497675 43 
-3.02 -3.02 18.97639 0.467846 38 
0.00 0.00 8.65E-35 0.448999 35 
-3.02 3.02 18.97639 0.422564 31 
0.00 3.02 9.488197 0.422564 31 
3.02 0.00 9.488197 0.408705 29 
-3.02 0.00 9.488197 0.39436 27 
3.02 3.02 18.97639 0.363978 23 
3.03 -3.01 18.97931 0.131453 3 
3.05 3.97 38.86377 0.107331 2 
-2.34 0.00 18.33812 0.107331 2 
-2.37 0.53 24.6003 0.107331 2 
3.55 0.00 16.60245 0.107331 2 
0.47 3.02 14.8654 0.107331 2 
0.01 4.11 33.88256 0.107331 2 
3.02 3.47 24.23667 0.107331 2 
-2.59 0.00 13.56718 0.107331 2 
-3.02 0.40 13.44619 0.107331 2 
0.00 5.02 47.90627 0.107331 2 
3.04 3.86 35.26616 0.107331 2 
-2.97 0.90 25.57681 0.107331 2 
0.01 0.73 11.53468 0.107331 2 
3.48 3.02 24.27566 0.107331 2 
0.01 -2.13 22.54699 0.107331 2 

 

2- Rosenbrock’s function: 

Rosenbrock’s function was introduced by Howard Rosenbrock in 1960(Rosenbrock, 1960) and has a 
global minimum inside a long, narrow, parabolic shaped flat valley and can be defined by 

�(�) = ∑ (1 − ���)� + 100(���� − ���)� ,																						 − 2.048 < �� < 2.048#$��%�    (4) 

Rosenbrock’s function has a global minimum at	(��, ��) = (1,1), where f(x)=0. Figure 5 shows 
Rosenbrock's function in 3D view within the defined domain for x and y with a=1 and b=100.  

 
Figure 5 shows the shape of Rosenbrock’s function in 3D view and Figure 6(a) shows the initially 
selected population for solving the problem which is produced randomly. The results of the algorithm 
after 100 iterations are shown in Figure 6(b). 

 



 

Figure 5: Rosenbrock function in 3D view within the defined domain for x and y with a=1 and b=100 
 

   

Figure 6(a): Rosenbrock function in 2D view and position of the initial population (left), 6(b): Results of the rain 
algorithm after 100 iterations (1000 rain droplets and Rosenbrock’s function) (right) 

 

As it can be noticed from the produced answer for Egg crate and Rosenbrock functions, in the rain 
algorithm, initial populations move gradually and slowly move toward the minimums and in their path 
can joint to each other to form larger droplets with more local searching ability. In addition, week droplets 
that cannot improve themselves would be absorbed into the soil and vanished. Therefore, at the initial 
iteration, we have a lazy algorithm that should check lots of probable answers, but just after a few 
iteration lots of these answers or droplets will joint to each other or absorbed to the soil and speed of the 
algorithm will increase rapidly.  

4.2 solving 26 benchmark functions 
As it can be seen in Table 2, we choose 26  important benchmark functions and solve them using Rain 
Optimization Algorithm and compare its efficiency with some other optimization algorithms such as 
Genetic algorithm (GA), Particle swarm (PSO), bat algorithm (BA) and Sperm Whale Algorithm (SWA) 
(Cheng and Lien, 2012). These problems were solved and published by Cheng and Lien (Cheng and Lien, 
2012) except SWA that was solved by Ebrahimi and Khamechi (Ebrahimi and Khamechi, 2016). 
Optimization algorithm parameters that are used for solving these benchmark functions can be found in 
Table 3. 
 

 



Table 2: details of benchmark functions (Ebrahimi & Khamehchi, 2016) 
No Name Range D Formulation Min 

1 Rastrigin [-5.12,5.12] n 2
1

1

( ) 10 [ 10cos(2 )]
=

=  +  − ∑
n

i i
i

f x n x xπ  0 

2 De Jong (Sphere) [-5.12,5.12] n 
2

2 1
( )

=
=  ∑

n

ii
f x x  0 

3 Griewank [-600,600] n 
2

3 1
1

1
( ) cos( ) 1

4000 =
=

=  − +   ∑ ∏
n

n i
ii

i

x
f x x

i
 0 

4 Beale [-4.5,4.5] 2 
2 2 2

4 1 1 2 1 1 2

3 2
1 1 2

f (x) (1.5 x x x ) (2.25 x x x ) ...

...(2.625 x x x )

= − + + − + +

− +
 0 

5 Easom [-100,100] 2 2 2
5 1 2 1 2f (x) cos(x )cos(x )exp( (x ) (x ) )= − − − π − − π  -1 

6 Matyas [-10,10] 2 2 2
6 1 2 1 2f (x) 0.26(x x ) 0.48x x= + −  0 

7 Bohachevsky1 [-100,100] 2 2 2
7 1 2 1 2f (x) x 2x 0.3cos(3 x ) 0.4cos(4 x ) 0.7= + − π − π +  0 

8 Booth [-10,10] 2 2 2
8 1 2 1 2f (x) (x 2x 7) (2x x 5)= + − + + −  0 

9 Michalewicz2 [0, π] 2 
D

2 20
9 i i

i 1

f (x) sin(x )(sin(ix / ))
=

= − π∑  -1.8013 

10 Schaffer [-100,100] 2 
2 2 2

1 2
10 2 2 2

1 2

sin ( x x ) 0.5
f (x) 0.5

(1 0.001(x x ))

+ −
= +

+ +
 0 

11 
Six Hump 

Camel Back 
[-5,5] 2 2 4 6 2 4

10 1 1 1 1 2 2 2

1
f (x ) 4x 2.1x x x x 4x 4x

3
= − + + − +  -1.03163 

12 Boachevsky2 [-100,100] 2 2 2
12 1 2 1 2f (x) x 2x 0.3cos(3 x )(4 x ) 0.3= + − π π +  0 

13 Boachevsky3 [-100,100] 2 2 2
13 1 2 1 2f (x) x 2x 0.3cos(3 x 4 x ) 0.3= + − π + π +  0 

14 Shubert [-10,10] 2 
5 5

14 1 2
i 1 i 1

f (x) ( icos(i 1)x i)( icos((i 1)x i))
= =

= + + + +∑ ∑  -186.73 

15 Colville [-10,10] 4 
2 2 2 2 2 2

15 1 2 1 3 3 4

2 2
2 4 2 4

f (x) 100(x x ) (x 1) (x 1) 90(x x ) ..

..10.1(x 1) (x 1) 19.8(x 1)(x 1)

= − + − + − + − +

− + − + − −
 0 

16 Michalewicz5 [0, π] 5 
D

2 20
16 i i

i 1

f (x) sin(x )(sin(ix / ))
=

= − π∑  -4.6877 

17 Zakharov [-5,10] 10 
D D D

2 2 2 2 4
17 i i i

i 1 i 1 i 1

f (x) x ( 0.5ix ) ( 0.5ix )
= = =

= + +∑ ∑ ∑  0 

18 Michalewicz10 [0, π] 10 
D

2 20
18 i i

i 1

f (x) sin(x )(sin(ix / ))
=

= − π∑  -9.6602 

19 Step [-5.12,5.12] 30 
D

2
19 i

i 1

f (x) (x 0.5)
=

= +∑  0 

20 SumSquares [-10,10] 30 
D

2
20 i

i 1

f (x) ix
=

=∑  0 

21 Quartic [-1.28,1.28] 30 
D

4
21 i

i 1

f (x) ix Rand
=

= +∑  0 

22 Schwefel 2.22 [-10,10] 30 
D

D

22 i ii 1
i 1

f (x) x x
=

=

= +∑ ∏  0 

23 Schwefel 1.2 [-100,100] 30 
D D

2
23 j

i 1 j 1

f (x) ( x )
= =

=∑ ∑  0 

24 Rosenbrock [-30,30] 30 
D

2 2 2
24 i 1 i i

i 1

f (x) 100(x x ) (x 1)+
=

= − + −∑  0 

25 Dixon-Price [-10,10] 30 
D

2 2 2
25 1 i i

i 2

f (x) (x 1) i(2x x 1)
=

= − + − −∑  0 

26 Ackley [-32,32] 30 
D D

2
26 i i

i 1 i 1

1 1
f (x) 20exp( 0.2 x ) exp( cos(2 x )) 20 e

n n= =

= − − − π + +∑ ∑  0 



Table 3: Optimization algorithm parameters used in solving benchmark functions in this work 

Optimization 
algorithm 

parameters 

GA population size = 50; mutation rate = 0.01; crossover rate = 0.8; generation gap = 0.9 
PSO population size = 50; inertia weight = 0.9-0.7; limit of velocity = Xmax/10- Xmin/10 
BA population size = 50; elite bee number = n/2; best bee number = n/4; random bee number = n/4; 

elite bee neighborhood number = 2, best bee neighborhood number = 1 
SWA Number of main groups = 10; group size = 5; good gang size = 2; local search iteration = 10 

 

For solving these benchmark functions, maximum number of function evaluations greater than 5*105 was 
not allowed. Also in this algorithm, any value less than 10-12 was assumed to be zero. We perform the 
simulations using Matlab software on a 2GHz laptop.  Furthermore, we have tried to use different 
population sizes from n = 10 to 250, and a fixed population size n = 50 for all simulations were applied. 
Tuning parameters for ROA was as follow: Population size=50, rain speed=10, rain radius=0.05(Xmax-
Xmin), soil adsorption=50%. In addition, the results of the power of various algorithms for solving these 
benchmark functions are shown in Table 4. As it may be notified, the score and rank of each algorithm is 
shown in the two last columns of Table 4. Results show the ROA, SWA, BA, PSO and GA algorithms are 
respectively the best algorithms. In addition,   ROA has the best rank with a slight difference compared to 
SWA. 

Table 4: Optimization algorithms performance comparison on benchmark functions 
f D Min 

 
GA PSO BA SWA ROA 

f1(x) 30 0 
Mean 52.92259 (3) 43.9771369 (2) 0 (1) 0 (1) 0 (1) 

SD 4.56486 11.728676 0 0 0 

f2(x) 30 0 
Mean 1.11 E+03 (2) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 74.21447 0 0 0 0 

f3(x) 30 0 
Mean 10.63346 (3) 0.01739 (2) 0 (1) 0 (1) 0 (1) 

SD 1.16146 0.02081 0 0 0 

f4(x) 2 0 
Mean 0 (1) 0 (1) 1.88E-05 (2) 0 (1) 0 (1) 

SD 0 0 1.94E-05 0 0 

f5(x) 2 -1 
Mean -1 (1) -1 (1) -0.99994 (2) -1 (1) -1 (1) 

SD 0 0 4.50E-05 0 0 

f6(x) 2 0 
Mean 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 0 0 0 0 0 

f7(x) 2 0 
Mean 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 0 0 0 0 0 

f8(x) 2 0 
Mean 0 (1) 0 (1) 0.00053 (2) 0 (1) 0 (1) 

SD 0 0 0.00074 0 0 

f9(x) 2 -1.8013 
Mean -1.8013 (1) -1.57287 (2) -1.8013 (1) -1.8013 (1) -1.8013 (1) 

SD 0 0.11986 0 0 0 

f10(x) 2 0 
Mean 0.00424 (2) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 0.00476 0 0 0 0 

f11(x) 2 -1.0316 
Mean -1.03163 (1) -1.03163 (1) -1.03163 (1) -1.03163 (1) -1.03163 (1) 

SD 0 0 0 0 0 



f12(x) 2 0 
Mean 0.06829 (2) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 0.07822 0 0 0 0 

f13(x) 2 0 
Mean 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 0 0 0 0 0 

f14(x) 2 -186.73 
Mean -186.73 (1) -186.73 (1) -186.73 (1) -186.73 (1) -186.73 (1) 

SD 0 0 0 0 0 

f15(x) 4 0 
Mean 0.01494 (4) 0 (1) 1.1176 (5) 0.00544 (3) 0.00053 (2) 

SD 0.00736 0 0.46623 0.00063 0.00032 

f16(x) 5 -4.6877 
Mean -4.64483 (2) -2.49087 (3) -4.6877 (1) -4.6877 (1) -4.6877 (1) 

SD 0.09785 0.25695 0 0 0 

f17(x) 10 0 
Mean 0.01336 (2) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 0.00453 0 0 0 0 

f18(x) 10 -9.6602 
Mean -9.49683 (3) -4.00718 (4) -9.6602 (1) -9.61387 (2) -9.6602 (1) 

SD 0.14112 0.50263 0 0.00236 0 

f19(x) 30 0 
Mean 1.17 E+03 (3) 0 (1) 5.1237 (2) 0 (1) 0 (1) 

SD 76.56145 0 0.39209 0 0 

f20(x) 30 0 
Mean 1.48 E+02 (2) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 12.40929 0 0 0 0 

f21(x) 30 0 
Mean 0.1807 (4) 0.00116 (3) 1.72 E-06 (2) 0 (1) 0 (1) 

SD 0.02712 0.00028 1.85E-06 0 0 

f22(x) 30 0 
Mean 11.0214 (3) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 1.38686 0 0 0 0 

f23(x) 30 0 
Mean 7.40 E+03 (2) 0 (1) 0 (1) 0 (1) 0 (1) 

SD 1.14E+03 0 0 0 0 

f24(x) 30 0 
Mean 1.96 E+05 (3) 15.088617 (2) 28.834 (3) 13.36393 (2) 9.4536 (1) 

SD 3.85E+04 24.170196 0.10597 4.0295 3.4381 

f25(x) 30 0 
Mean 1.22 E+03 (3) 0.66667 (2) 0.66667 (2) 0 (1) 0 (1) 

SD 2.66E+02 E-08 1.16E-09 0 0 

f26(x) 30 0 
Mean 14.67178 (3) 0.16462 (2) 0 (1) 0 (1) 0 (1) 

SD 0.17814 0.49387 0 0 0 

Score 48 36 35 30 27 

Final Rank 5 4 3 2 1 

 

 

 

 



5. Solving a drilling optimization problem using ROA 
Today, the cost of oil and gas production is a deterministic factor in the industry (Skjerpen et al., 2018). 
Therefore, the main objective of drilling optimization is to reduce drilling time and cost. For this purpose 
there are two main methods, reducing drilling time by selecting optimum drilling parameters before 
drilling (for example, selecting a suitable drilling fluid or bit) and reducing drilling time by selecting 
optimum drilling parameters in real-time drilling operations (for example, optimizing weight on bit or 
pump pressure) (see e.g. Eren and Ozbayoglu, 2010; Payette et al., 2017).  For optimizing drilling 
parameters, there should be an accurate predictive model (Barbosa et al., 2019). This model should be 
able to relate important drilling parameters (such as rotary bit speed, weight on bit, etc.) to the drilling 
rate with acceptable accuracy (Soares and Gray, 2019). Despite many efforts for developing an effective 
model for ROP (analytically or experimentally), the results are not so satisficing (Soares et al., 2016). 
Therefore, many investigators prefer to employ machine-learning methods (for example, artificial neural 
networks, genetic algorithms, random forest, etc.) for ROP prediction. (Hornik et al., 1989). Most studies 
on the comparison between analytical modeling methods and intelligent methods concluded that more 
accurate models could be obtained using intelligent methods. (for example: Arabjamaloei and 
Shadizadeh, 2011; Amar and Ibrahim, 2012; Bataee et al., 2014; Hegde et al., 2017). Lots of work on 
ROP prediction using machine learning (ML) methods can be found in the. The newest method employed 
for ROP Prediction combines traditional methods with a machine learning method that is called a hybrid 
method (Yavari et al. 2018). So, ROP prediction methods can be classified as follow (Figure 7): 

� analytical models, 
� statistical models (e.g. multiple regression), 
� machine learning models (e.g. genetic algorithm or artificial neural networks), 
� hybrid models (e.g. combining analytical models with machine learning models). 

In this work, we used a new hybrid method for ROP prediction and optimization. In this method, a new 
analytical model was developed in the first part. Then this model was solved using ROA (the new search 
model that was described in the previous section).  

 

 

Figure 7: Approaches for ROP modeling (Barbosa et al., 2019). 

 

5.1 Developing an analytical model for ROP 
A useful method for increasing the drilling rate is to reduce 'mechanical specific energy (MSE)'-the 
amount of work done for the excavating unit volume of rock- (Teale, 1965). In rotary table drilling, work 
is done both by the piercing the bit, WOB (lb), and the exerted force while rotation of bit or torque, T (lb-
ft). It can be shown that the total work done by bit in one hour in lb-ft is: 



& = &'( × �'* + 60 × 2,- × .   (5) 
Where: 

N is rotation speed in rev/min 
WOB is the weight on the bit in lb  
T is the torque in lb-ft 
ROP is penetration rate in ft/hr 
W is the work done for removing the rock in lb-ft/hr 
 

Therefore the volume of excavated rock in one hour is: 

/ = 0 × �'* (6) 
So, the mechanical specific energy (in lb/in2) can be computed by dividing work by volume: 

123 = &'(
0 + 60 × 2,- × .

0 × �'*  
(7) 

Where A is the area of the hole in in2  

 

Teale (1965) pointed out that the minimum energy required for cracking a rock in all cases is of the order 
of the uniaxial compressive strength (UCS) of that rock.   

Teale’s model for specific energy although was new at that time but contained some significant source of 
error. Some of these errors were corrected by some researchers, and some of them still are existing. The 
weakness of Teale model are as follow: 

1- Teale conducted all his tests under atmospheric conditions, so he underestimated minimum 
specific energy. Some other researchers by performing more exact experiments show that the 
minimum energy required for cracking an in-situ rock is of the order of the confined compressive 
strength (CCS) of that rock.   

2- Although Teale used surface measured torque for solving his equation but it is clear that surface 
measured torque is quite different from real exerted torque to the bit.  Also measuring exerted 
torque from bit to the beneath rock has proven difficult.  

3- Measured WOB in the surface can be completely different from real WOB at the bottom of the 
hole, especially in deviated and horizontal wells due to the effect of drag and pump-off force of 
drilling fluid.  

4- There is not any term for the hydraulic effect of drilling fluid in Teale’s equation, but it is clear 
that the hydraulic power of mud can effect on drilling process especially in soft formations. 

5- In directional drilling, when a downhole motor is used, exerted torque and RPM by bit are quite 
different from measured torque and RPM on the surface. 

6- Effect of bit type and bit efficiency is neglected in the equation but it is obvious that different bits 
have different efficiencies in the same conditions. 

7- The effect of bit wear is missing in this equation. 
8- Drilling problems such as bit balling and drill pipe vibration can effectively reduce the drilling 

rate and change drilling efficiency that is not seen in the Teal’s equation. 
Some researchers solve some of the mentioned problems, but some of them are still existing (Table 5). 
 

 

 



Table 5: summary of previous researches for optimizing drilling operations 
Researcher(s) Main developed idea or work Weakness(es) of work 

Simon (1963) Experimentally measured the magnitude of the 
work required to break out a unit volume of rock. 

Did not develop a model for MSE. 

Teale (1965) Developed first equation for computing MSE. 
Developed a method for ROP optimization using 

MSE. 

T and WOB where used from surface 
data instead of bottom hole data. 
The hydraulic effect was missing. 

Bit efficiency was ignored,… 
Bourgoyne and Young 
(1974) 

Developed a comprehensive model for predicting 
ROP 

There were several constants in the 
equation which should be determined in 

the various situation 
Warren (1987) Winters et 
al. (1987) 

develop models and formulate related parameters to 
ROP 

Could not make an accurate and 
comprehensive estimation 

Pessier and Fear (1992) Developed a relation for T based on WOB for using 
in Teale’s model. 

Improved Teale’s method for ROP optimization 
based on MSE. 

WOB was used from surface data 
which can be different from real bottom 

hole WOB. 
The hydraulic effect was missing. 

Waughman et al., (2003) Provided a method for including bit wear to the 
Teale’s equation. 

The hydraulic effect was missing. 
Measurement of real WOB was missing 

Dupriest (2005) 
 

Included bit mechanical efficiency to the Teale’s 
equation. 

Improved Teale’s method for ROP optimization 
based on MSE. 

Bit efficiency was not exact. 
The hydraulic effect was missing. 

Measurement of real WOB was missing 

Rahimzadeh et al. (2010) 
Edalatkhah et al., (2010) 
Monazami et al. (2012) 

Used intelligent methods (ANN) for predicting 
ROP 

Their method was not real-time 
Solving method was time-consuming 
Parameter tuning was required for the 

network 
Cherif (2012) 
Amadi (2012) 

Included bit mechanical efficiency to the Teale’s 
equation. 

Improved Teale’s method for ROP optimization 
based on MSE. 

Bit efficiency was not exact. 
The hydraulic effect was missing. 

Measurement of real WOB was missing 

Chen et al. (2014) developed a formula between bottom hole weight 
on bit and surface weight on bit 
improved Teale’s MSE model 

The hydraulic effect was missing. 

Mohan et al. (2015) Included hydraulic effect to the Teale’s MSE 
model. 

Introduced HMSE concept for the first time. 

Bit efficiency was not exact. 
 

 

5.2 Improving the model of ROP:  
Many researchers try to improve the weaknesses of Teal’s equation. Pessier et al., 1992 stated that in 
rotary-drilling with PDM (Figure 8) the total mechanical work done by the bit in one hour can be 
estimated by  

&4 = (&'(5 × -) + (60 × 2, × -6 × .6) + (60 × 2, × -7 × .7) (8) 

 

Where:  

-6: bit rotary speed provided by surface rotation; 
 .6: torque at bit provided by surface rotation; 
 -7: PDM output rotary speed; 
 .7: PDM output torque. 



 

Figure 8: rotary drilling system with PDM (Chen et al., 2016) 
 
Cherif, 2012 stated that every bit has a mechanical efficiency related to its cutter size and structure. 
Including mechanical efficiency to the Pessier’s equation, the mechanical work required to break the rock 
drilled in 1 hr can be nearly expressed as: 

&8 = &4 . 37 (9) 
The volume of rock drilled in 1 hr is 

/ = A. �'* (10) 
MSE was defined as the mechanical work done to excavate a unit volume of rock (Teale, 1965). By 
combining Eqs. 8, 9 and 10, then the MSE for rotating drilling with PDM can be expressed by 

123 = :;
< = 37. :=>?.@=A�BC.�D.EF.GF�BC.�D.@AEH.GH

I.@=A   (11) 

However, the mechanical energy provided by the surface has a significant transmission loss in horizontal 
and directional drilling. Chen et al. (2014) formulated a relationship between bottom hole WOB and the 
surface measured WOB and presented a method to calculate torque of bit in directional and horizontal 
drilling. 

Chen et al. (2014) stated that provided mechanical energy on the surface has a great difference with the 
mechanical energy received by the bit due to friction between pipes and borehole, especially in directional 
and horizontal drilling. So he formulated a relation between surface measured WOB and bottom hole 
WOB as well as Surface and bottom hole Torque:  

&'(5 = &'(. J$KF.L?  (12) 

M5 = 36 G
O?.:=>.PQRF.S?  (13) 

Then the mechanical specific energy provided by the surface can be estimated as 

37 . :=>?.@=A�BC.�D.EF.GF
I.@=A   (14) 



= 37. &'(. J$KF.L? . T�
I + �U.UU.K?.EF

O?.@=A V   

Also According to Equations 13 and 14, Chen et al. (2014) deduced that the mechanical specific energy 
provided by the PDM can be estimated as 

37 BC.�D.Nm.GHI.@=A = 37. ��YY.�.Z.∆AH.\
I.@=A   (15) 

Finally, substitute Equations 15 and 14 into Equation 11, Chen et al. (2014) get a new MSE model for 
rotating drilling with PDM 

123 = 37. T&'(. J$KF.L? . T�
I + �U.UU.K?.EF

O?.@=A V + ��YY.�.Z.∆AH.\
I.@=A V   (16) 

Where in this equation: 

∆*7: Pressure drop across the PDM, psi Q: Pump flow rate, gpm ^5: Bit diameter, in _: Efficiency of PDM  
Ns: Drill pipe rotary speed, rpm  
Em: Mechanical efficiency of the bit `5: Bit sliding coefficient (between 0.3 and 0.85) 
 M6: Drill string sliding coefficient (between 0.25 and 0.4)  
Although derived equation by Chen, improved lots of weaknesses of Teal’s equation, but there are some 
coefficients (Eb, μd,	γf, μf, η) in this equation that changes in the various situation of drilling. Therefore, 
ROA was used to find out these coefficients in various conditions of drilling. 

Rewriting Equation 16 yields: 

MSE = 37 T:=>.PQRF.S?
I V + jTk

l.O?V.mH.�U.UU.K?.:=>.PQRF.S? .EF
I.@=A n + TmH .��YY.�.Z.∆AH.\

I.@=A V                                    

(17) 

Letting  

o� = M6. `5 

o� = Tπ
4 . ^5V . 13.33. M5 

oU = 1155.2. _ 

Equation 17 can be summarized as follow: 

MSE = 37 qT:=>.PQrs
I V + Ttu.:=>.PQrs .EF

I.@=A V + Ttv.∆AH.\
I.@=A Vw                           (18) 

As it can be seen in Equation 18, there are some empirical constants named o�	xy	oU  in the model. We 
will try to find these constants for various situations using ROA. 

Rearranging Equation 18 for ROP we have: 

�'* = tuEF.:=>.PQrs�tv∆zH.{
|.}~�

�H $:=>.PQrs                                                                              (19) 

 



5.3 A brief discussion on the value of MSE 
In order to know the manner in which the MSE works in Equation 19, it is necessary to discuss the 
method that bits drill the rock and factors that affect the bit performance. Figure 9 shows a typical drill off 
test in the drilling operations. This curve is divided into three regions. 

Figure 9: a typical drill off test in drilling operations (Dupriest, 2005) 

 

In region 1, the ROP is very low, and it increases gradually by increasing WOB. In this region, drilling 
operation is suffering from low WOB and it can be said that operation is nearly stopped. In region 2, there 
is a linear relation between ROP and WOB. In this section, WOB is so enough that drilling can be started. 
In this section by increasing WOB, ROP increases linearly. This region continues until region 3 where 
ROP increase stops and reversely starts to decrease. 

Figure 10 shows the typical relation between the depth of cut (equivalent to WOB) and bit efficiency. As 
the WOB and resulting depth of cut increases, bit efficiency increases. Bit efficiency can be defined as the 
required energy to remove a specific volume of rock to the actual energy used for drilling this volume. 
Bits tend to transfer 30% to 40% of their input energy to the rock, even when operating at peak 
performance (Dupriest et al. 2005).  

Region 3: founder point due to 

• Extra WOB 
• Bit balling 
• Bottom hole balling 
• Vibration 

 

 
Region 2: Efficient Bit working 
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Figure 10: typical relation between depth of cut (equivalent to WOB) and bit efficiency (Pessier, 1992) 

In the linear portion of Figure 9, although by increasing WOB, drilling efficiency does not change but the 
provided energy to the bit would be increased, causing the drilling rate to increase. The slope of the line is 
constant for a special formation, bit and rotary speed. Figure 11 shows the national relation between the 
slope of the straight line in the drill off test and the bit type. When a bit is loaded enough to a formation to 
reach to the linear region, it can transfer only 30% to 40% of its energy to the rock due to friction 
coefficient. In the best situation, the minimum amount of MSE has a value of the order of confining 
compressive strength (CCS) of the rock, as it was mentioned by Pessier (1992). Therefore, in the most 
efficient situation, the minimum amount of MSE is equal to CCS, and just about 35% of the energy is 
transferred by the bit. This means in Equation 18, we can use CCS instead of MSE. Also, we can suppose 
the mechanical efficiency of the bit to be 0.35. The amount of CCS can be found from adjacent wells or 
can be calculated from the log or empirical equations. Therefore, Equation 19 can be rewritten as follow: 

�'* = tuEF.:=>.PQrs�tv∆zH.{
|.��~

�.v� $:=>.PQrs                                                    (20) 
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Figure 11: national plot showing that the slop of drill off test is determined by M and RPM, but the 
maximum ROP is limited by founder point (Dupriest, 2005) 

 

5.4 Solving the developed model using ROA 
Maximizing ROP for reducing drilling cost is the permanent objective of researchers in the drilling 
industry. Many parameters affect the drilling rate, some of them are controllable such as WOB and RPM, 
and some of them are uncontrollable such as formation type. Changing and optimization of controllable 
drilling parameters can lead to drilling rate maximization. For optimizing drilling parameters, there 
should be an exact relation between these parameters and the drilling rate of penetration (ROP). In this 
section, the Rain Optimization Algorithm would be used for ROP modeling and prediction. Therefore, 
drilling parameters would be optimized, leading to drilling cost-effectively reduced. 

Using mud logging data of a drilling rig in a specific formation, we have ROP, WOB, -6, ∆�7, q and 
CCS in several points. For this work, we used 500 data series in the Asmary formation of one of the 
Iranian oil fields.  

The cost function for the ith  data set is equal to: 

�y�x� = �'*� − tuEF�.:=>�.PQrs�tv∆zH�.{�|.��~
�.v� $:=>�.PQrs                                                                                              (21) 

Moreover, the cost function for the total data can be obtained as follow: 

�y�x = �∑ �y�x��YC�%�                                                       (22) 
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In this case, using ROA, we will find o�	xy	oU so that the amount of cost minimized. For this work, ROA 
will guess the amount of the o�	xy	oU first time and amount of cost in Equation 22 will be calculated. At 
the next iterations, this algorithm tries to change o�	xy	oU to reduce the cost.  

Therefore, briefly, we used Equation 19 as the main equation. Then in each data point of the data set,  the 
real ROP was compared with the computed ROP by Equation 19 as it can be seen in Equation 20. In 
Equation 21, it was tried to minimize some of the errors with changing the constants o�	xy	oU. In the end, 
by obtaining these constants a special relation for predicting ROP in a certain formation was obtained as it 
can be seen in Equation 22. 

For solving this problem using ROA, the initial population was 100, the minimum amount of each 
variable was zero, the maximum amount was one and After 100 iteration amount of cost was reduced to 
1e-16. 

After 100 iterations calculated amount of  o�	xy	oU  using ROA were as follow: 

o� =0.07; 

o� = 0.58; 
oU = 0.99 ≅ 1; 

Figure 12 shows the process of finding the answer. So the ROP model for this formation can be obtained 
as follow: 

�'* = C.Y�EF.:=>.PQ�.���∆zH.{
|.��~

�.v� $:=>.PQ�.��                                                                            (23) 

Having A=29.5 ��� and CCS=2000 psi, ROP equation for this formation will be: 

�'* = C.Y�EF.:=>.PQ�.���∆zH.{
u�.�∗u���

�.v� $:=>.PQ�.��                                                                                                                (24) 

This equation can be more simplified as follow: 

�'* = C.Y�EF.:=>�∆zH.{
�B�Y��$C.�U:=>                                                                                                               (25) 

 

Figure 12: the process of cost function reduction versus the number of function evaluation for solving drilling 
problem 



 

This formula was tested in another drilling point (at the same formation with the same drilling conditions) 
with following drilling parameters for obtaining drilling rate: 

WOB=9000 lb; 

A=29.5 ���; 

-6=100 rpm; 

∆�7=2000 psi; 

q=150 gpm; 

CCS=2000 psi; 

 ROP=1.2 ft/hr; 

Moreover, the obtained ROP was close to 1.1 as it was expected. 

It should be emphasized that Equation 20 was developed for directional drilling using a down hole motor. 
If it is interested to use this equation in vertical drilling conditions when there is no a down hole motor in 
the well, letting ∆�7 = 0 yields: 

�'* = tuEF.:=>.PQrs
|.��~

�.v� $:=>.PQrs                                                                                                                         (26) 

Equation 26 is simpler than Equation 20 and it is just necessary to find o� and o� to solve the equation for 
specific drilling conditions. Equation 20 and 26 can be used for drilling optimization using the developed 
method by Dupriest (2005) more effectively. Dupriest (2005) stated a method for hydraulics optimization 
during drilling. It is recommended to optimize Hydraulics using the Dupriest method and optimize WOB 
and bit RPM using the proposed method in this work. 

At the next attempt, we tried to solve Equation 20 using some other metaheuristic algorithms. For this 
purpose, GA, PSO, BA and SWA with the available parameters in Table 3 (except population number 
that was set to 100) were used. Table 6 compare the power and exactness of these 4 algorithms with the 
ROA. As it can be seen from this table, BA could find the answer with almost the same exactness of the 
ROA but nearly 2 times NFE. PSO, SWA and GA could get the next ranks respectively. Figure 13 shows 
the process of finding the answer for these four algorithms that can be compared with Figure 12 that 
shows the process of finding an answer for the ROA. 

Table 6: comparison of the speed and exactness of the ROA with BA, PSO, SWA and GA in solving the 
drilling optimization problem in this work 

Algorithm name NFE Error Rank 
ROA 64350 1e-16 1 
BA 90100 1.7e-15 2 

PSO 78500 1.6e-12 3 
SWA 145597 1.5e-6 4 
GA 63024 2.5e-2 5 

 

 



 

(a): BA 

 

(b): PSO 

 

(c):SWA 

 

(d): GA

Figure 13: the process of cost function reduction versus the number of function evaluation for solving drilling 
problem using (a): BA, (b): PSO, (c): SWA, (d): GA. 

6. Conclusions 
In this study, a new metaheuristic optimization algorithm called ROA that was inspired from raining 
phenomena was introduced and developed in detail. This algorithm was used to solve some important and 
standard benchmark functions as well as one drilling problem and its performance was compared with the 
genetic and particle swarm optimization algorithms as well as Sperm Whale and Bat algorithms. Results 
of this work summarized as follows: 
 
The developed algorithm, in addition to obtaining absolute extremums, was able to obtain local 
extremums with a high degree of accuracy. 

ROA needed a fewer number of  cost function evaluations, time and cost to solve most of the problems 
compared to GA and PSO that is very important in solving complicated engineering problems. Results 

show that ROA could get ranking 1 between other Compared optimization algorithms. 

ROA was used to solve a drilling problem and was able to find the answers very quickly and accurately. 
Also, the proposed algorithm could reduce the number of function evaluations (NFE) to half of the BA 
that has the best performance between selected algorithms. 

A new hybrid method for developing a new ROP model was introduced. This model was able to predict 
the drilling rate in directional drilling as well as vertical drilling. 
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Rain optimization algorithm (ROA) is a new metaheuristic algorithm, inspired by the raindrops, 

which move toward minimum points after getting to the earth. This algorithm can find global 

extremum as well as local extremums if its parameters are correctly tuned. After implementation 

of this algorithm, we compare it with some other existing optimization algorithm such as genetic 

algorithm and ant colony algorithm by solving 26 benchmarks and 3 benchmarks in various 

dimensions as well as a drilling optimization problem. Simulations show that ROA seems more 

superior to other algorithms in finding the global minimum and also it can find local minimum 

simultaneously and it can be confidently used in optimization problems. 

ROA was used to solve a drilling problem and was able to find the answers very quickly and 

accurately. 
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