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Political Optimizer: A novel socio-inspired meta-heuristic for global
optimization

Qamar Askaria,∗, Irfan Younasa, Mehreen Saeeda

aDepartment of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan

Abstract

This paper proposes a novel global optimization algorithm called Political Optimizer (PO), inspired by the multi-
phased process of politics. PO is the mathematical mapping of all the major phases of politics such as constituency
allocation, party switching, election campaign, inter-party election, and parliamentary affairs. The proposed algorithm
assigns each solution a dual role by logically dividing the population into political parties and constituencies, which
facilitates each candidate to update its position with respect to the party leader and the constituency winner. Moreover,
a novel position updating strategy called recent past-based position updating strategy (RPPUS) is introduced, which
is the mathematical modeling of the learning behaviors of the politicians from the previous election. The proposed
algorithm is benchmarked with 50 unimodal, multimodal, and fixed dimensional functions against 15 state of the art
algorithms. We show through experiments that PO has an excellent convergence speed with good exploration capa-
bility in early iterations. Root cause of such behavior of PO is incorporation of RPPUS and logical division of the
population to assign dual role to each candidate solution. Using Wilcoxon rank-sum test, PO demonstrates statistically
significant performance over the other algorithms. The results show that PO outperforms all other algorithms, and
consistency in performance on such a comprehensive suite of benchmark functions proves the versatility of the algo-
rithm. Furthermore, experiments demonstrate that PO is invariant to function shifting and performs consistently in
very high dimensional search spaces. Finally, the applicability on real-world application is demonstrated by efficiently
solving four engineering optimization problems.

Keywords: Optimization, Political optimizer (PO), Meta-heuristics, Socio-inspired algorithm, Past-based position
updating, Human behavior-based optimization

1. Introduction

The area of global optimization has attracted consid-
erable attention over the last few decades. The pro-
cess of optimization becomes harder when discontinu-
ities, incomplete information, dynamicity, and uncer-
tainties are involved. In most of these scenarios, op-
timization problems become NP-hard and exact algo-
rithms demand exponential time or may not find the op-
timal solution at all. In such cases, the approximation
algorithms come into play and offer a near-optimal solu-
tion by dealing with computational intractability. Find-
ing the near-optimal solution for inapproximable prob-
lems by using traditional approximation algorithms may
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become as difficult as finding the exact optimal solu-
tion. The nature-inspired meta-heuristics have reason-
ably dealt with such inapproximable nature of optimiza-
tion problems and in the last 2 to 3 decades, a lot of
research has been done on meta-heuristics [1].

The word ”meta-heuristic” was first coined by Fred
Glover [2]. There are two major characteristics, which
a good meta-heuristic should balance: Intensification
(exploitation) and diversification (exploration). Explo-
ration preserves the diversity and finds the promising ar-
eas. In the absence of this characteristic, the algorithm
may converge prematurely to some local optimum. Ex-
ploitation allows the algorithm to search the promis-
ing areas discovered in the phase of exploration and in
absence of this capability, the algorithm may not even
converge. Thus, a very balanced combination of these
two capabilities is required for an algorithm to reach the
global optimum.
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Nature-inspired meta-heuristic algorithms have been
classified in 4 major groups in the literature:
Evolution-based, swarm-based, physics-based, and hu-
man behavior-based algorithms [3, 4]. The evolution-
ary algorithms are inspired by the concept of natural
evolution. Few well-known evolutionary algorithms are
Genetic Algorithm (GA) [5], Genetic Programming
(GP) [6], Differential Evolution (DE) [7], Biogeog-
raphy Based Optimizer (BBO) [8], and Evolutionary
Strategy (ES) [9]. Swarm-based algorithms are in-
spired by the collaborative natural behavior of living
organisms e.g. how they hunt, how they find their
food, how they mate or how they save themselves from
their hunters etc. Few well-known swarm-based algo-
rithms are Ant colony optimization (ACO) [10], Par-
ticle Swarm Optimization (PSO) [11], Grey Wolf Op-
timizer (GWO) [12], Whale Optimization Algorithm
(WOA) [4], Krill Herd (KH) [13], Salp Swarm Opti-
mization (SSA1) [14], Social Spider Algorithm (SSA2)
[15], Butterfly Optimization Algorithm (BOA) [16],
Harris Hawk Optimization (HHO) [17], Cuckoo Search
(CS) [18], Naked-Mole Rate (NMR) [19], Bald Eagle
Search (BES) [20], Sailfish Optimizer (SFO) [21], Ar-
tificial Coronary Circulation System (ACCS) [22], Em-
peror Penguins Colony (EPC) [23], Artificial Feeding
Birds (AFB) [24], Sea Lion Optimization (SLnO) algo-
rithm [25], Spider Monkey Optimization (SMO1) [26],
Monarch Butterfly Optimization (MBO) [27], Hitch-
cock bird-inspired algorithm (HBIA) [28], Normative
Fish Swarm Algorithm (NFSA) [29], Seagull Optimiza-
tion Algorithm (SOA) [30], and Squirrel Search Al-
gorithm (SSA3) [31]. Physics-based algorithms are
inspired by the laws of physics working behind nat-
ural phenomena. Few examples are Simulated An-
nealing (SA) [32], Gravitational Search Algorithm
(GSA) [33], Black Hole (BH) algorithm [34], Sine Co-
sine Algorithm (SCA) [35], Big-Bang Big-Crunch (BB-
BC) optimization algorithm [36], Water Cycle Algo-
rithm (WCA) [37], Artificial Electric Field Algorithm
(AEFA) [38], Equilibrium Optimizer (EO) [39], New-
ton particle optimizer (NwPO) [40], Quantum Approxi-
mate Optimization Algorithm (QAOA) [41], Physarum-
Energy Optimization algorithm (PEO) [42], and Ther-
mal Exchange Optimization (TEO) [43]. Finally, a lot
of optimization algorithms have been proposed in the
literature, which are inspired by the social behaviors
of the human beings. For example, Teaching-Learning
Based Optimization (TLBO) [44], Soccer League Com-
petition (SLC) [45] algorithm, Exchange Market Algo-
rithm (EMA) [46], Socio Evolution and Learning Opti-
mization Algorithm (SELO) [47], Nomadic People Op-
timizer (NPO) [48], Ludo Game-based Swarm Intelli-

gence (LGSI) [49], Social Mimic Optimization (SMO2)
[50], Bus Transportation Algorithm (BTA) [51], and
Brain Strom Optimization (BSO) [52].

Figure 1: Illustration of the multi-phased political process - A per-
spective. Pi represents members of ith political party, Ci represents
the member(s) contesting election from ith constituency, face color
distinguishes members of one party from the other parties, and face in
bold denotes the winner from the constituency labeled on that face.

Politics in different contexts holds different mean-
ings. In our work, we use the political system of a
country as a reference point and mimic the behavior of
politicians to achieve the end goal of optimization. Poli-
tics is about the governance of a region, state or country.
The party-based political systems can be categorized in
four major types: One-party political system, two-party
political system, dominant-party political system, and
multi-party political system [53, 54]. Each of them is
applicable in different countries/states with several vari-
ations. Moreover, the governance of a state/country
can be practiced through either parliamentary system or
presidential system [55]. We have generalized PO by
incorporating a few commonalities from these systems,
such as the concept of parties and constituencies, asso-
ciation of politicians with political parties, collaboration
between the politicians associated with same party and
competition between the politicians through inter-party
election, change of affiliation of politicians to parties,
campaigning before election for votes, and collabora-
tion between the elected members in parliament. The
politics being practiced in multi-party democracy is a
complex political process, which covers a very wide
range of social levels. The process is illustrated in Fig-
ure 1 and comprises the following phases:

• Party formation: A political party is formed by the
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individuals having a common agenda. The individ-
uals are called politicians or candidates for public
office. In Figure 1, Pi represents members of ith

party and face color distinguishes members of one
party from the other parties.

• Party switching: Members can switch their affili-
ation to a party at any time. It is demonstrated in
Figure 1 by switching a member from P1 to P2,
from P2 to P3, and from P3 to P1.

• Ticket allocation: The members are allocated party
tickets to contest an election from a constituency.
The constituency may be considered as a group of
voters (constituents), who elect a candidate repre-
senting a political party. In Figure 1, the label Ci

above each face denotes that the member is con-
testing election from ith constituency.

• Election campaign: The candidates visit their con-
stituencies and convince their voters to elect them
which results in goodwill/status updating of the
candidates. In Figure 1, it is demonstrated by shift-
ing the positions of the faces.

• Inter-party election: In each constituency, the con-
stituents vote for a candidate to decide a winner.
In Figure 1, the winner from each constituency is
shown in bold. For example, P1 wins from C1 and
C2, P3 wins from C3, and P2 does not win from
any constituency.

• Government formation and parliamentary affairs:
The elected members (winners) from all parties
form the parliament and collaborate with each
other to run the government. It is depicted in the
phase titled ’parliamentary affairs’ of Figure 1.

The main objective of this paper is to propose a new
meta-heuristic called Political Optimizer (PO), which
is inspired by the multi-phased political process. Al-
though, the idea of using politics as an inspiration for
optimization algorithms is not new but politics is a very
diverse and complex process, which encourages us to
map the inspiration from a totally different perspective.
The existing algorithms based on politics are: Greedy
Politics Optimization (GPO) [56] inspired by the polit-
ical strategies adopted during state assembly elections,
Parliamentary Optimization Algorithm (POA) [57] in-
spired by the competition between parliamentarians for
head elections, and Election Campaign Optimization
(ECO) algorithm [58] inspired by the concept of mo-
tivation of candidates in the election campaign. The
description of these algorithms is provided in Section

2. However, the following properties make PO distinct
and different from other politics-based algorithms.

• The concept is mapped from a totally different per-
spective and unlike the earlier politics-inspired al-
gorithms, PO is the mathematical mapping of all
the major phases of politics, such as party forma-
tion, party-ticket/constituency allocation, election
campaign and party switching, inter-party election,
and parliamentary affairs after government forma-
tion.

• A novel position updating strategy called recent
past-based position updating strategy (RPPUS) is
proposed, which is the mathematical modeling of
the learning behavior of politicians from the previ-
ous election.

• Each individual solution plays a dual role. It acts
as a party member as well as an election candidate.
This allows a solution to update its position with
respect to 2 improved solutions: the party leader
and the constituency winner.

• The phase of parliamentary affairs is incorporated,
which allows cooperation between better solutions
to further improve the solutions.

The performance of PO is evaluated on a suite of 50
mathematical benchmark test functions against 15 state
of the art algorithms. The suite contains unimodal, mul-
timodal and fixed dimensional benchmark functions to
demonstrate the versatility of PO. Moreover, we con-
ducted experiments to show that PO is invariant to func-
tion shifting and performs well for the high dimensional
functions. Finally, in order to evaluate the applicability
of PO to real world problems, the performance of PO is
evaluated by solving 4 engineering optimization prob-
lems. The results exhibit superior optimization capabil-
ity of PO for engineering problems as well.

The rest of the article is structured as follows. A few
well-known human social behavior based algorithms
and position updating strategies of a few comparative al-
gorithms are discussed in Section 2. Section 3 presents
how the inspiration derives PO and its corresponding
mathematical model. The position updating mechanism
and time complexity of PO are compared with other
well-known and mathematically similar algorithms in
Section 4. Experiments and simulations are described
in Section 5. The performance of PO is analyzed us-
ing four engineering optimization problems in Section
6. The managerial implications are presented in Section
7. Finally, Section 8 presents the concluding remarks
and future directions.
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2. Related works

Taking into account the relevance of the proposed re-
search with the field of human behavior-inspired meta-
heuristics, it is important to discuss some well-known
human behavior-inspired optimization algorithms, es-
pecially those inspired by the politics. In addition, posi-
tion updating strategies of a few well-known algorithms,
which are contrasted with the proposed algorithm in
Section 4, are also discussed in this section.

2.1. Human social behavior inspired algorithms

Society and Civilization Optimization (SCO) [59]
maps the notion of social interaction among members
of the societies. The group of individuals is called soci-
ety and it is assumed that there are several societies. The
individuals in societies interact with each other in order
to enhance their fitness and societies interact with each
other in order to map the concept of civilization. Im-
perialist Competitive Algorithm (ICA) [60] simulates
the imperialist nations competition to take the control
of weaker colonies, which will further strengthen the
stronger imperialists and weaken the weaker nations un-
less they collapse. League Championship Algorithm
(LCA) [61] maps the concept of league matches. The
teams compete with each other in league matches over
the weeks according to the schedule and the winner is
proclaimed the best team at the end of the season. LCA
considers teams as solutions, weeks as iterations, team
strength as fitness, and the end of the season as a termi-
nating condition. Soccer League Competition (SLC) al-
gorithm [45] is inspired by the soccer league team com-
petition. The population is divided into teams and teams
are divided into two types of players: fixed players and
substitutes. Each player is considered a candidate solu-
tion. Teams compete for top position on the point ta-
ble and players in a team compete for the better perfor-
mance than the other. The overall competition results
in all teams having the best players (solutions). Social
Group Optimization (SGO) [62] is inspired by the social
interaction of individuals in a group to solve complex
problems. The knowledge of each individual is mapped
by its fitness. The algorithm involves two phases: im-
proving phase and acquiring phase. In the improving
phase each individual improves knowledge by interact-
ing with the best person (best solution) and in acquiring
phase the individuals interact with randomly selected in-
dividuals and the best person simultaneously to acquire
knowledge.

2.1.1. Recent development in human -behavior inspired
algorithms

Nomadic People Optimizer [48] is a recently pro-
posed algorithm inspired by the behavior of nomadic
people, which they adopt to search for sources of life
and to live for hundreds of years by migrating to their
most comfortable zones. Ludo Game-based Swarm In-
telligence (LGSI) [49] is also a newly proposed algo-
rithm, which is inspired by the Ludo game playing
strategies adopted by the players. Social Mimic Opti-
mization (SMO) [50] is one another recently developed
human behavior inspired optimization algorithm, which
simulates people’s behavior in society through which
people try to assimilate to famous people through im-
itating their behavior. Find-Fix-Finish-Exploit-Analyze
(F3EA) [63] is inspired by the targeting process, which
was practiced in the war between Iraq and Afghanistan.
This process involves five phases: finding the target,
precising the location of the target, destroying the tar-
get, information gathering from the target area, and
evaluating the results. A few more recently developed
human-behavior inspired algorithms are: Bus Trans-
portation Algorithm (BTA) [51] inspired by smart be-
havior of humans in transportation to reach their desti-
nation, Deer Hunting Optimization Algorithm (DHOA)
[64] inspired by the deer hunting strategy of humans,
and Brain Storm Optimization (BSO) [52] inspired by
humans brainstorming process.

2.2. Existing politics inspired algorithms

Parliamentary Optimization Algorithm (POA) [57] is
inspired by the competitive behavior of the political par-
ties in a parliament. There is a division of population
into political groups. There are two stages involved in
this algorithm. The regular members (ordinary solu-
tions) are attracted to the candidates (better solutions) in
the first stage and in the second stage, groups are merged
with a certain probability and the rest of the groups are
discarded. Greedy Politics Optimization (GPO) [56] is
inspired by the policies adopted during state assembly
elections by the political parties. Population is divided
into party members and independents. In election, the
best on each seat is proclaimed the winner, and those
who lose the election are substituted by alternatives that
are closely located. Diversity is implemented through
a method called scandal that mutates solutions. Elec-
tion Campaign Optimization (ECO) [58] is influenced
by the notion of candidate motivation for the greatest
support in an election campaign. The solution space is
regarded to consist of global-survey voters, local-survey
voters and candidates. The prestige of each individual
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Table 1: Comparison of PO with other algorithms based on their position-updating mechanism and a few well-known performance evaluation
metrics. Weaknesses of the other algorithms are highlighted with references from the literature or learned from the results on benchmark functions.

Algorithms

Position updating mechanism PSO GWO WOA SCA TLBO POA GPO ECO PO

Utilization of global best position Yes Yes Yes Yes Yes No Yes No No
Utilization of subgroup best No No No No No Yes Yes Yes Yes
Utilization of randomly selected
solution

No No Yes No Yes No Yes No Yes

History maintenance of solutions Yes No No No No No No No Yes
Interaction between better solu-
tions for further improvement

No No No No No No No No Yes

Tunable parameters 3 0 0 0 0 10 5 4 1
Provision of the mechanism to bal-
ance exploration and exploitation
in paper

No Yes Yes Yes No No No No Yes

Evaluation metrics PSO GWO WOA SCA TLBO POA GPO ECO PO

Exploitative capability Normal Weak [65] Weak [66] Weak Normal Weak [56] Weak Normal Good
Exploration capability Normal Good Normal [67] Normal Normal Weak Weak Good Good
Premature convergence avoidance Weak [68, 69] Average [70] Average [71] Weak [72, 73] Weak [74–76] Weak [56] Weak Weak Normal
Convergence speed Slow [69, 77] Slow [78] N/A Slow [79, 80] Slow [81] Slow [56] Weak Normal Fast
Capability to converge on lo-
cal/global optimum

Weak [82] Weak [65] Weak Weak [79, 80] Strong Weak Weak N/A Strong

Dependence on location of the
global optimum

No Yes [65] Yes Yes Yes No No No No

Parameter tuning overhead Average Nil Nil Nil Nil V.High High High Low

is mapped with the fitness. In the search space, the can-
didates are generated randomly. Global sample-survey
voters are generated in the entire search space evenly
and local sample-survey voters are generated in investi-
gated ranges of candidates. The prestige of candidates
and voters is compared and a voter replaces the candi-
date if a voter’s prestige is better than the candidate’s
prestige.

2.3. Position updating strategies of comparative algo-
rithms

Like PSO [11], GWO [12], WOA [4], SCA [35], and
TLBO [44], the algorithm proposed in this paper also
utilizes the position of the better solution to update the
position of a search agent. To compare the position up-
dating strategy of PO with such algorithms, it is required
to first discuss their position updating strategies.

PSO is inspired by the social behavior of bird flocks.
In PSO, a search agent interacts with the best among
all solutions known as the global best and best posi-
tion the search agent has so far discovered known as
the local best. A search agent is attracted to the global
best position, the local best position, and the direction
in which the search agent is currently moving. GWO
is inspired by the hunting behavior of the grey wolves.
The search agents update their position with reference
to the top three best solutions named as alpha (α), beta
(β), and delta (δ). First the next position is calculated
in reference to each better solution and then the search
agent jumps to the mean of independently calculated

positions. WOA is inspired by the hunting behavior
of humpback whales. WOA mimics three behaviors of
whales known as searching the prey, encircling the prey
and the bubble-net attacking method. The encircling be-
havior is modeled by searching around the best solution
in a circular way. The attacking behavior is modeled
by searching the space around the best solution in spi-
ral form. Finally, the searching behavior is modeled by
exploring the region around a randomly selected solu-
tion. Self-adaptive parameters are designed to decide
the behavior of a search agent. In SCA too, the search
agents interact with global best to update their positions.
However, the best solution is just considered a reference
position to find the difference, while the search agent ex-
plores the vicinity around itself by adding the weighted
difference in its own position. Uniqueness of the this
algorithm is the utilization of sine and cosine functions
to explore and exploit the search space. TLBO is in-
spired by the teaching-learning behavior in a classroom.
TLBO involves two phases: teacher phase and learner
phase. In the teacher phase, each search agent updates
the position with respect to the best solution (teacher)
and mean position of all search agents (class). How-
ever, in the learner phase, a search agent interacts with
two random solutions to update its position.

The algorithms discussed above have been critically
evaluated in the literature and many limitations have
been identified in these algorithms. Original version of
PSO has a few shortcomings, such as premature conver-
gence [69], inability to escape local optima in complex
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functions [68], slow convergence [77], and not guaran-
teed to converge on local/global optimum [82]. GWO
faces slow convergence and low precision in many cases
[78]. Although, first half of the iterations allow explo-
ration and rest of the iterations allow exploitation but
both are not well-balanced for complex functions [70].
The performance of GWO is also shown to be depen-
dent on the location of the global optimum [65]. WOA
faces poor exploration [67], low local search mech-
anism [66], inability to escape complex local optima
[71], and poor performance for the functions having
global optimum away from the origin. SCA has a few
shortcomings too, such as low optimization precision
[72], premature convergence [73], slow convergence,
local optima stagnation, skipping of true solutions, and
overflow of diversity [79, 80]. TLBO has a few limita-
tions, such as unbalanced exploration and exploitation
[74], slow convergence speed [81], dependence on the
location of the global optimum, and sticking in local op-
tima [75, 76]. Moreover, the existing politics-based al-
gorithms require tuning of 4 to 10 parameters while the
results reported in their respective papers are not very
promising. On the contrary, we show in section 5 that
PO has excellent exploitative capability with very good
convergence speed; however, a balance between explo-
ration and exploitation is also attained to escape local
optima and avoid premature convergence. Furthermore,
PO is independent of the position of the global optimum
unlike GWO, WOA, SCA, and TLBO. Another distinc-
tive feature of PO, which we also demonstrate in section
5, is consistent performance on very high dimensional
search spaces. By referring the literature and learning
from experiments, we summarize a comparison of PO
with comparative algorithms in Table 1 based on the
evaluation metrics and position updating mechanisms.

3. Political optimizer

Politics itself is a process of optimization from two
perspectives: each individual optimizes its goodwill to
win the election and each party tries to maximize its
number of seats in parliament to form a government.
These aspects make politics an ideal inspiration for an
optimization algorithm because an individual (a party
member) may be considered a candidate solution, indi-
vidual’s goodwill is considered the position of the can-
didate solution in the search space, and goodwill of a
political member can be defined by many performance-
related parameters which can be mimicked by design
variables or components of the position vector of a can-
didate solution. Election may be considered the evalu-
ation (objective) function and the number of votes ob-

Figure 2: Flowchart of the proposed algorithm.

tained by an individual in election is mapped by the fit-
ness of the candidate solution. Furthermore, following
are the four major inspirational aspects of the politics
that motivate us to propose a new optimization algo-
rithm.

• The electoral process, in which election candidates
campaign for votes.

• The intra-party collaboration and inter-party com-
petitiveness.

• The analytical behavior of election candidates to
improve their performance based on their experi-
ence in the past election.
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• The interaction and cooperation of the winning
candidates with each other to run the government
in the post-election phase.

Political Optimizer (PO) is structured as a sequence
of five phases involving party formation and con-
stituency allocation, election campaign, party switch-
ing, inter-party election, and parliamentary affairs. The
phase of party formation and constituency allocation
runs just once for the sake of initialization and rest of
the four phases execute in a loop. The flowchart of the
proposed algorithm is presented in Figure 2.

Table 2: List of the variables used in mathematical formulations of the
political phases and their descriptions.

Variable Description
P set of all political parties (whole population)
Pi ith political party
pj

i jth member of ith party
P j

i,k kth dimension of jth member of ith political party
C set of all constituencies
C j jth constituency
p∗i leader of ith political party
c∗j winner of jth constituency
λ party switching rate
n number of parties, constituencies, and

members in each party
Tmax total number of iterations

Figure 3: Illustration of the logical division of the population P in
political parties and constituencies.

3.1. Mathematical model and optimization algorithm
In this subsection, it is described how each phase of

the multi-party political system is mathematically mod-
eled to propose the new algorithm, which is presented
in Algorithm 1. The mapping is kept very simple. How-
ever, in Section 8 it is suggested that the variants of PO
can be proposed by trying different mappings. Variables
used in mathematical formulation of the political phases
along with their descriptions are presented in Table 2.

Algorithm 1 Main Framework of the Proposed PO
Input: n (number of constituencies, political parties and party
members), λmax (upper limit of the party switching rate), Tmax

(total number of iterations)
Output: final population P(Tmax)
/*Initialization*/

initialize P as expressed in Eq. (1) to Eq. (5) and depicted in
Figure 3
compute and save the fitness of each member p j

i
compute the set of the party leaders P∗, by using Eq. (6)
compute the set of the constituency winners C∗, by using Eq.
(12)
t = 1;
P(t − 1) = P;
f (P(t − 1)) = f (P);
λ = λmax;
while t ≤ Tmax do
Ptemp = P;
f (Ptemp) = f (P);
foreach Pi ∈ P do

foreach pj
i
∈ Pi do

pj
i

= ElectionCampaign(pj
i
, pj

i
(t − 1), p∗

i
, c∗

j
);

end
end
PartySwitching(P, λ);
/*Election phase*/

compute and save the fitness of each member p j
i

compute the set of the party leaders P∗, by using Eq. (6)
compute the set of the constituency winners C∗, by using
Eq. (12)
ParliamentaryAffairs(C∗, P);
P(t − 1) = Ptemp;
f (P(t − 1)) = f (Ptemp);
λ = λ − λmax/Tmax;
t = t + 1;

end

3.1.1. Party formation and constituency allocation
The population P is divided in n political parties, as

expressed in Eq. (1). Each party Pi consists of n can-
didates/members, as shown in Eq. (2). Each jth mem-
ber pj

i
is considered a potential solution, which is a d-

dimensional vector, as presented in Eq. (3). In Eq. (3)
the value of d is the number of input variables of the
problem being solved and p j

i,k denotes kth dimension of

pj
i
.

P = {P1,P2,P3, . . . ,Pn} (1)

Pi = {p1
i , p2

i , p3
i , . . . , pn

i } (2)

pj
i

= [p j
i,1, p j

i,2, p j
i,3, . . . , p j

i,d]T (3)
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In addition to its role of a party member, a potential so-
lution also acts as an election candidate. It is assumed
that there are n constituencies, as illustrated in Eq. (4)
and jth member of each party contests election from the
jth constituency C j, as expressed in Eq. (5). The pop-
ulation and its logical division in political parties and
constituencies is depicted in Figure 3. This logical divi-
sion requires the tuning of only one parameter n. In our
mapping the number of parties, the number constituen-
cies and the number of candidates in each party are all
set to an equal value n. The phase of party formation
and constituency allocation by assuming n = 3 is illus-
trated in Figure 4 (a).

C = {C1,C2,C3, . . . ,Cn} (4)

C j = {pj
1
, pj

2
, pj

3
, . . . , pj

n} (5)

The fittest member of a party is declared the party
leader, which is decided right after the general election
(inter-party election). The selection of the party leader
is modeled in Eq. (6), where p∗

i
denotes the leader of

the ith party and f (pj
i
) computes the fitness of pj

i
. It is

illustrated in Figure 4 (b).

q = argmin
1≤ j≤n

f (pj
i
), ∀i ∈ {1, . . . , n}

p∗i = pq
i

(6)

The set of all the party leaders is represented by P∗ as
expressed in Eq. (7).

P∗ = {p∗1, p∗2, p∗3, . . . , p∗n} (7)

After the election, the winners from all the con-
stituencies become the parliamentarians. In Eq. (8), C∗
represents the set of all the parliamentarians and c∗

j
de-

notes the winner of jth constituency. It is also depicted
in Figure 4 (b).

C∗ = {c∗1, c∗2, c∗3, . . . , c∗n} (8)

3.1.2. Election campaign (Exploration and exploita-
tion)

This phase helps candidates to improve their perfor-
mance in the election. In this paper, we map three as-
pects of this phase, which are discussed as follows:

1. Learning from the previous election is mapped by
proposing a novel position updating strategy called
recent past-based position updating strategy (RP-
PUS), which is mathematically formulated by us-
ing Eq. (9) and Eq. (10).

2. The influence of the vote bank of the party leader
is mapped by updating the position of the members
with reference to the party leader.

3. The comparative analysis with the constituency
winner is modeled by updating the position of the
candidates with reference to the constituency win-
ner.

The whole process of election campaign is expressed
in Algorithm 2, which uses Eq. (9) and Eq. (10) to up-
date the position of a candidate. Depending upon the re-
lationship of current fitness f (pj

i
(t)) of a candidate with

its previous fitness f (pj
i
(t − 1)), it is decided whether to

update the position by using Eq. (9) or Eq. (10). If the
fitness improves, then Eq. (9) is used to update the posi-
tion, however, if the fitness deteriorates, then Eq. (10) is
used. In both scenarios, the position is first updated with
reference to the party leader p∗

i
and then with reference

to the constituency winner c∗
j
. It should be noted that

the r and m∗, which are presented in Algorithm 2, are
used in both equations to update the position of the can-
didate. The variable r is a random number in the range
[0, 1] and m∗ first holds the value of kth dimension of the
party leader p∗i,k then the constituency winner c∗j,k.

Both Eq. (9) and Eq. (10) have three cases each,
which are graphically illustrated in Figure 5. Parts (a
- c) illustrate the cases of Eq. (9) and (d - f) illustrate
the cases of Eq. (10). The purpose of these cases is to
identify and exploit the most promising region, which is
highlighted with grey color in each part of Figure 5. The
cases of Eq. (9) are discussed below, while the cases of
Eq. (10) can be interpreted in similar way.

p j
i,k(t + 1) =



m∗ + r(m∗ − p j
i,k(t)), if p j

i,k(t − 1) ≤ p j
i,k(t) ≤ m∗ or p j

i,k(t − 1) ≥ p j
i,k(t) ≥ m∗

m∗ + (2r − 1)|m∗ − p j
i,k(t)|, if p j

i,k(t − 1) ≤ m∗ ≤ p j
i,k(t) or p j

i,k(t − 1) ≥ m∗ ≥ p j
i,k(t)

m∗ + (2r − 1)|m∗ − p j
i,k(t − 1)|, if m∗ ≤ p j

i,k(t − 1) ≤ p j
i,k(t) or m∗ ≥ p j

i,k(t − 1) ≥ p j
i,k(t)

(9)
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Figure 4: Demonstration of all phases of PO by assuming n = 3, where n defines the number of political parties, number of members in each
party, and number of constituencies. Dotted regions denote the constituencies and members of each party are represented with different symbols.
(a) Initialization of population. (b) Party leaders and constituency winners are decided. (c - d) Position updating with reference to the party leaders.
(e - f) Position updating with reference to the constituency winners. (g - h) Party switching, where p2

2 is swapped with p1
3. (i) Election phase and

reallocation of roles of party leaders and constituency winners. (j - k) Phase of parliamentary affairs - each parliamentarian is attracted towards a
random parliamentarian and its position is updated if its fitness is improved. (l) Resultant positions after the whole process.

p j
i,k(t + 1) =



m∗ + (2r − 1)|m∗ − p j
i,k(t)|, if p j

i,k(t − 1) ≤ p j
i,k(t) ≤ m∗ or p j

i,k(t − 1) ≥ p j
i,k(t) ≥ m∗

p j
i,k(t − 1) + r(p j

i,k(t) − p j
i,k(t − 1)), if p j

i,k(t − 1) ≤ m∗ ≤ p j
i,k(t) or p j

i,k(t − 1) ≥ m∗ ≥ p j
i,k(t)

m∗ + (2r − 1)|m∗ − p j
i,k(t − 1)|, if m∗ ≤ p j

i,k(t − 1) ≤ p j
i,k(t) or m∗ ≥ p j

i,k(t − 1) ≥ p j
i,k(t)

(10)

• Case 1 of Eq. (9): In this case, the current po-
sition of the candidate lies between its previous
position and the referenced solution. This case
is diagrammed in Figure 5 (a), where the most
promising region to exploit is highlighted next to
the referenced solution and bounded by the dis-
tance ∆ =| m∗ − p j

i,k(t) |.
• Case 2 of Eq. (9): This case occurs when the ref-

erenced solution lies between the current and the
previous position of the candidate. This case is di-
agrammed in Figure 5 (b). The most promising re-
gion to exploit is highlighted around the position of
the referenced solution m∗ and the diameter of the
region is decided by the distance ∆ =| m∗ − p j

i,k(t) |.
• Case 3 of Eq. (9): In this case, the pre-

vious position of the candidate lies between
its current position and the referenced solu-
tion. This case is diagrammed in Figure 5
(c). The most promising region to exploit

is around the position of the referenced solu-
tion m∗, however, in this case the diameter is
bounded by the distance ∆ =| m∗ − p j

i,k(t − 1) | be-

cause f (pj
i
(t − 1)) > f (pj

i
(t)).

The position updating mechanism with reference to the
party leader and the constituency winner is depicted in
Figure 4 (c - d) and Figure 4 (e - f), respectively.

3.1.3. Party switching (Balancing exploration and ex-
ploitation)

In politics, this phase runs in parallel to the elec-
tion campaign but in PO we run this phase after elec-
tion campaign phase. An adaptive parameter λ called
party switching rate is defined, which starts from λmax

and linearly reduces to 0 over the course of iterations.
Each member pj

i
is selected with probability λ and

switched to some randomly selected party Pr, where it
is swapped/exchanged with the least fit member pq

r of
that party Pr. The computation of the index q of the

9
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Algorithm 2 ElectionCampaign(pj
i
, pj

i
(t − 1), p∗

i
, c∗

j
)

Result: pj
i
(t + 1) . updated position of pj

i
if f (pj

i
(t)) ≤ f (pj

i
(t − 1)) then

for k ← 1 to d do
m∗ ← p∗i,k . where p∗

i
is the leader of ith party

r ← random number from the interval [0, 1]
. Update the position with respect to the party
leader
p j

i,k ← update p j
i,k(t) by using Eq. (9)

m∗ ← c∗j,k . where c∗
j

is the winner of jth

constituency
r ← random number from the interval [0, 1]
. Update the position with respect to the con-
stituency winner
p j

i,k(t + 1)← update p j
i,k by using Eq. (9)

end
else

for k ← 1 to d do
m∗ ← p∗i,k

r ← random number from the interval [0, 1]
. Update the position w.r.t the party leader
p j

i,k ← update p j
i,k(t) by using Eq. (10)

m∗ ← c∗j,k
r ← random number from the interval [0, 1]
. Update the position w.r.t the constituency winner
p j

i,k(t + 1)← update p j
i,k by using Eq. (10)

end
end

Figure 5: Illustration of RPPUS, which demonstrates all 6 cases of
Eq. (9), and Eq. (10). Parts (a - c) depict the cases of Eq. (9) and
(d - f) illustrate the cases of Eq. (10). In each case, potential area is
highlighted, which depends on the current and previous positions of
the candidate and position of the solution being referenced.

least fit member of Pr is expressed in Eq. (11). This
phase is illustrated in Figure 4 (g) and (h), where p2

2
is

swapped with p1
3

by assuming p1
3

the least fit member of
P3 and the algorithm of this phase is presented in Algo-
rithm 3.

q = argmax
1≤ j≤n

f (pj
r) (11)

3.1.4. Election (Fitness evaluation)
The election is mimicked by evaluating the fitness

of all the candidates contesting in a constituency and
declaring the winner as given by Eq. (12). In Eq. (12)
c∗

j
denotes the winner of jth constituency (C j). As men-

tioned earlier, the party leaders are also updated after the
election by using Eq. (6). The reallocation of the roles
of constituency winners and party leaders is depicted in
Figure 4(i).

q = argmin
1≤i≤n

f (pj
i
)

c∗j = pj
q

(12)

3.1.5. Parliamentary affairs (Exploitation and conver-
gence)

After an inter-party election, the government is
formed. The party leaders and the constituency win-
ners/parliamentarians are decided by using Eq. (6) and
Eq. (12). The working of this phase is expressed in
Algorithm 4. Each parliamentarian c∗

j
(the winner of

jth constituency) updates its position with reference to
a randomly selected parliamentarian c∗r and if it causes
any improvement in fitness of c∗

j
then the status and fit-

ness of c∗
j

are updated.
I

t is worth mentioning here, each parliamentarian is a
party member as well and all the updates are actually
applied on position vectors of party members. For ex-
ample, when c∗

j
is updated then corresponding position

vector pj
i

is also updated, where i denotes the winning
party. This phase is illustrated in Figure 4 (j - k), the
winner of the constituency 2 (c∗

2
) is updated because we

are assuming its fitness has been improved and the other
two remain unchanged because we are assuming their
fitness has not been improved.

4. Comparative analysis of the behavior of PO

In the last 3 decades, the area of nature-inspired opti-
mization algorithms has emerged enormously and hun-
dreds of algorithms have been proposed in literature to
solve optimization problems. However, it is also seen
that a few well-known algorithms do not have signif-
icant difference. For instance, D. Weyland [83] has
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Algorithm 3 PartySwitching(P, λ)
foreach Pi ∈ P do

foreach pj
i
∈ Pi do

sp = random number from the interval [0, 1]
if sp < λ then

r = random integer from the range [1, n]
determine q by using Eq. (11)
swap (pq

r , pj
i
)

end
end

end

Algorithm 4 ParliamentaryAffairs(C∗, P)
for j← 1 to n do

r ← random integer in the range 1 to n, where r , j
a← random number from the interval [0, 1]
c∗new ← c∗r + (2a − 1)|c∗r − c∗

j
|

compute the fitness of c∗new
if f (c∗new) ≤ f (c∗

j
) then

c∗
j
← c∗new

f (c∗
j
)← f (c∗new)

i ← party index of the winner of jth constituency
pj

i
← c∗new

f (pj
i
)← f (c∗new)

end
end

shown that Harmony Search [84] is a special case of
Evolution Strategies [9] and C. Leonardo et al. [85]
have shown that Intelligent Water Drop (IWD) [86] is
simply a particular instantiation of Ant Colony Opti-
mization [10]. Therefore, a significant difference must
be shown between each newly proposed algorithm and
similar existing approaches. Considering the resem-
blance between the position updating mechanism of PO
and other state-of-the-art algorithms, such as PSO [11],
GWO [12], WOA [4], SCA [35], TLBO [44] etc., it is
very important to show how PO is different from them.
Although all these algorithms, including PO, use the
principle of position updating with respect to the best
or comparatively better solution, the position updating
mechanism of PO is entirely different from other algo-
rithms, which is shown in this section. Moreover, the
time complexity of PO is shown to be equal to other
well-known optimization algorithms in this section.

4.1. PO versus comparative algorithms

PO differs from the algorithms enlisted above from
the following aspects:

1. Unlike the other optimization algorithms, PO log-
ically divides the population in parties and con-
stituencies to assign a dual role to each search
agent. Such a division has the advantage of updat-
ing a search agent’s position by interacting with an
unique pair of better solutions. It is found through
experiments that it promotes exploration as well as
exploitation.

2. All comparative algorithms use the position of the
best solution (global best) to update the position of
a search agent; however, PO interacts with party
best and constituency best instead of the global
best.

3. PSO stores the best position of each search agent
(local best) which it utilizes to update their posi-
tions; however, PO stores very recent position of
each search agent which it utilizes to find the best
region to explore in search space.

4. Like TLBO, the position updating mechanism of
PO also involves two phases but their working is
entirely different. In teaching phase of TLBO,
a search agent updates its position by interacting
with the global best (teacher) and the mean posi-
tion of the whole population (class); however, in
election campaign phase of PO, the search agent
first updates its position with reference to the party
leader and then it updates the position with respect
to the constituency winner. Similarly, in learner
phase of TLBO, the search agent updates its po-
sition by interacting with two randomly selected
solutions; however, in the phase of parliamentary
affairs of PO, each constituency winner further im-
proves its position by interacting with another ran-
domly selected constituency winner. Please note
that the constituency winners are best solutions in
their constituencies.

5. Another very distinguishing and unique property
of PO is its position updating strategy, which in-
volves 6 cases. Based on the position and fitness
of the party leader or constituency winner, the cur-
rent position and fitness of the search agent, and the
very recent position and recent fitness of the search
agent, the most promising region is identified and
searched. We found tremendous improvement in
exploitative capability of PO due to this strategy.

6. Because of having multiple better solutions, PO
enables the better solutions to further improve by
interacting with each other in the phase of parlia-
mentary affairs which other algorithms can not do.
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4.2. Comparative time complexity analysis

The time complexity analysis of most algorithms in-
volves analyses of three components.

1. Time complexity of initialization of the popula-
tion, generally bounded by O(MD) where M de-
notes the population size and D denotes the dimen-
sions/design variables of the problem

2. Time complexity of initial fitness evaluation, gen-
erally bounded by O(MC0b j), where Cob j repre-
sents the cost of the objective function.

3. Time complexity of the main loop, generally
bounded by O(T MD + T MC0b j), where T denotes
the total number of iterations.

Likewise, the time complexity analysis of PO also re-
quires analyses of these three components:

1. Time complexity of initialization of the population
is bounded by O(MD), which is equivalent to other
algorithms.

2. Time complexity of initial fitness evaluation is also
equivalent to the other algorithms and is bounded
by O(MC0b j), where M = n2 in PO (n denotes the
number of parties, party members, and constituen-
cies). Please note that the computation of party
leaders Eq. (8), constituency winners Eq. (12), and
least fit member of each party Eq. (11) can be done
during the fitness evaluation of the whole popula-
tion without extra overhead on time complexity of
this component.

3. Time complexity of the main loop in Algorithm
1 is O(T MD + T M + T MC0b j + T

√
MD), where

O(MD) is the time complexity of ElectionCam-
paign() algorithm for whole population, O(M)
is the time complexity of PartySwitching() algo-
rithm, O(MC0b j) is the time complexity of the
election phase in Algorithm 1, O(

√
MD) is the

time complexity of ParliamentaryAffairs() algo-
rithm, and T with each component is for the main
loop in Algorithm 1. The time complexity of
the main loop can be expressed asymptotically as
O(T MD + T MC0b j), which is also equivalent to
the other algorithms.

We can conclude from the detailed analysis that the time
complexity of PO is asymptotically equivalent to the
other state-of-the-art algorithms.

5. Experiments

The performance of PO is evaluated on a diverse set
of benchmark functions against a good combination of
some well-known state of the art algorithms. The pro-
posed algorithm is coded in MATLAB programming
software and simulations are run on a Core i7-4650U
with 8 GB RAM. The MATLAB code will be released
at github and mathworks after acceptance of the paper.
In this section, first we present the benchmark functions
and state of the art algorithms, and then we discuss the
experimental results.

5.1. Benchmark test functions
The benchmark functions are classified based on a

few characteristics like modality, dimensionality, sep-
arability, continuity and differentiability. In order to
evaluate the versatility of PO, a comprehensive suite of
benchmark functions having a good mixture of all these
characteristics is used. The suite is divided into the fol-
lowing two groups:

1. Unimodal benchmark functions: This group con-
sists of 25 unimodal benchmark functions having
a good combination of all aforementioned charac-
teristics. The unimodal functions are preferred for
evaluating the exploitation capability of an algo-
rithm because they do not have local optima. The
details of these unimodal functions are presented
in Table 3 and their mathematical definitions are
given in Table A.17 in Appendix A.

2. Multimodal benchmark functions: In this group
25 multimodal benchmark functions are consid-
ered. The multimodal functions are used to bench-
mark the exploration capability of an algorithm be-
cause they may have many local optima and to find
the global optimum, the algorithm should have the
ability to escape from local optima. The details of
multimodal functions are presented in Table 4 and
their mathematical definitions are given in Table
A.18 in Appendix A.

5.2. Algorithms for comparative studies
To compare the performance of PO, a suite of 15

state-of-the-art and recently developed algorithms, in-
cluding at least 2 algorithms from each category of
meta-heuristics discussed in Section 1, is constructed.
The names of the algorithms and their parameter set-
tings are presented in Table 5. To achieve the best re-
sults the parameters of the algorithms are given the val-
ues, which their authors have mentioned in the corre-
sponding papers. Considering the importance of the role
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Table 3: Unimodal benchmark functions for exploitation analy-
sis. Range defines the boundary of search space. Dim denotes
the dimensionality of search space. Type defines the characteris-
tics of the functions (Separable (S)/Inseparable (I), Differentiable
(D)/Non-differentiable (N), Continuous (C)/Discontinuous (T), and
Fixed (F)/Variable (V) dimensional) and Fmin is the global optimum.

Function Range Dim Type Fmin

F1− Sphere [−100, 100] 50 [SDCV] 0
F2− Quartic Noise [−1.28, 1.28] 50 [SDCV] 0
F3− Powell Sum [−1, 1] 50 [SDCV] 0
F4− Schwefel’s 2.20 [−100, 100] 50 [SNCV] 0
F5− Schwefel’s 2.21 [−100, 100] 50 [SNCV] 0
F6− Step [−100, 100] 50 [SNTV] 0
F7− Stepint [−5.12, 5.12] 50 [SNTV] 25 − 6n
F8− Schwefel’s 1.20 [−100, 100] 50 [IDCV] 0
F9− Schwefel’s 2.22 [−100, 100] 50 [IDCV] 0
F10− Schwefel’s 2.23 [−10, 10] 50 [IDCV] 0
F11− Rosenbrock [−30, 30] 50 [IDCV] 0
F12− Brown [−1, 4] 50 [IDCV] 0
F13− Dixon and Price [−10, 10] 50 [IDCV] 0
F14− Powell Singular [−4, 5] 50 [IDCV] 0
F15− Zakharov [−5, 10] 50 [IDCV] 0
F16− Xin-She Yang [−20, 20] 50 [IDCV] −1
F17− Perm 0,D,Beta [−di, di] 5 [IDCF] 0
F18− Three-Hump Camel [−5, 5] 2 [IDCF] 0
F19− Beale [−4.5, 4.5] 2 [IDCF] 0
F20− Booth [−10, 10] 2 [IDCF] 0
F21− Brent [−10, 10] 2 [IDCF] 0
F22−Matyas [−10, 10] 2 [IDCF] 0
F23− Schaffer N. 4 [−100, 100] 2 [IDCF] 0.29257
F24−Wayburn Seader 3 [−500, 500] 2 [IDCF] 21.35
F25− Leon [−1.2, 1.2] 2 [IDCF] 0

Table 4: Multimodal benchmark functions for exploration analy-
sis. Range defines the boundary of search space. Dim denotes
the dimensionality of search space. Type defines the characteris-
tics of the functions (Separable (S)/Inseparable (I), Differentiable
(D)/Non-differentiable (N), Continuous (C)/Discontinuous (T), and
Fixed (F)/Variable (V) dimensional) and Fmin is the global optimum.

Function Range Dim Type Fmin

F26− Schwefel’s 2.26 [−500, 500] 50 [SDCV] 0
F27− Rastrigin [−5.12, 5.12] 50 [SDCV] 0
F28− Periodic [−10, 10] 50 [SDCV] 0.9
F29− Qing [−500, 500] 50 [SDCV] 0
F30− Alpine N. 1 [−10, 10] 50 [SNCV] 0
F31− Xin-She Yang [−5, 5] 50 [SNCV] 0
F32− Ackley [−32, 32] 50 [IDCV] 0
F33− Trignometric 2 [−500, 500] 50 [IDCV] 1
F34− Salomon [−100, 100] 50 [IDCV] 0
F35− Styblinski-Tang [−5, 5] 50 [IDCV] −39.16599 × n
F36− Griewank [−100, 100] 50 [IDCV] 0
F37− Xin-She Yang N.4 [−10, 10] 50 [INCV] −1
F38− Xin-She Yang N.2 [−2π, 2π] 50 [INCV] 0
F39− Gen. Penalized [−50, 50] 50 [INCV] 0
F40− Penalized [−50, 50] 50 [INCV] 0
F41− Egg crate [-5,5] 2 [SDCF] 0
F42− Ackley N.3 [−32, 32] 2 [IDCF] −195.629
F43− Adjiman [−1, 2] 2 [IDCF] −2.02181
F44− Bird [−2π, 2π] 2 [IDCF] −106.7645
F45− Camel Six Hump [−5, 5] 2 [IDCF] −1.0316
F46− Branin RCOS [−5, 10] 2 [IDCF] 0.3978873
F47− Hartman 3 [0, 1] 3 [IDCF] −3.862782
F48− Hartman 6 [0, 1] 6 [IDCF] −3.32237
F49− Cross-in-tray [-10,10] 2 [INCF] −2.06261218
F50− Bartels Conn [−500, 500] 2 [INCF] 1

Table 5: Algorithms used for comparative analysis and their parameter
settings. NFEs denotes the number of objective function evaluations.

Algorithm Parameters setting NFEs

HHO (2019) pS ize = 30 30, 000
BOA (2018) pS ize = 50, c = 0.01, a = 0.1→ 0.3, p = 0.8 30, 000
SSA1 (2017) pS ize = 30 30, 000
WOA (2016) p = 30, b = 1, [a,C, l] from corresponding eq. 30, 000
SCA (2016) p = 50, a = 2, [1, r2, r3, r4] from corresponding eq. 30, 000
SSA2 (2015) p = 10, ra = 1, pc = 0.7, pm = 0.1 30, 000
GWO (2014) p = 50, [a,C] from corresponding eq. 30, 000
SLCA (2014) nTeams = 5, nFixedPlayer = 11, nS ubstitute = 11 30, 000
KH (2012) p = 50, v f = 0.02,Dm = 0.005,Nm = 0.01, S r = 0 30, 000
TLBO (2011) p = 50 60, 000
GSA (2009) p = 50, α = 20,G0 = 100, k = [pS ize→ 1] 30, 000
CS (2009) nests = 20, pa = 0.25 60, 000
BBO (2008) p = 50, hmp = 1, elit = 2, stS ize = 1,

mir = 1,mer = 1,mt > 0.05 30, 000
DE (2004) p = 20,CR = 0.5, F = 0.5 30, 000
PSO (1995) p = 50, c1 = 2, c2 = 2,w = [0.9→ 0.2] 30, 000

of population size in performance of an algorithm, all al-
gorithms are run with population size recommended by
their authors. However, for a fair comparison the num-
ber of objective function evaluations is set to 30, 000
for all algorithms except TLBO [44] and CS [18]. As
TLBO and CS perform two evaluations per iteration,
they both are set to 60, 000 function evaluations per run.

5.3. Parameter settings of PO

PO needs only two main parameters, n (number of
parties/constituencies/candidates in each party) and λ
(party switching rate). It is found through experiments
that lower value of n results in premature convergence,
higher value of n improves exploration but at the cost
of late convergence, and higher initial value of λ adds
extensive shuffling of party members in early iterations
which enhances exploration capability of PO in very
early iterations. In order to balance the exploration and
exploitation, we tune these parameters on several uni-
modal and multimodal benchmark functions and come
up with the conclusion that n should be fixed at 8 and λ
should be linearly decreased from 1 to 0 with the course
of iterations. To keep NFEs equivalent to the other algo-
rithms PO executes 415 iterations for each benchmark
function, which causes 26, 560 function evaluations in
election phase and 3, 320 evaluations in the phase of
parliamentary affairs, totaling 29, 880 objective function
evaluations.

5.4. Results and discussion

A good optimization algorithm should be able to 1)
explore the search space, 2) exploit the promising ar-
eas, and 3) converge to the best position. In this sec-
tion, a comparative performance of PO, considering all
these three aspects against 15 state of the art algorithms,
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is discussed. Each algorithm including PO is indepen-
dently run 25 times for each benchmark function and
median, mean and standard deviation of the obtained
results are reported.

5.4.1. Exploitation capability of PO
To evaluate the capability of PO to exploit the promis-

ing regions, 25 unimodal benchmark functions are
solved and the results are compared with 15 well-known
algorithms in Table 6. The performance of PO for fixed-
dimensional functions (F17−F25) is comparable to the
other algorithms. PO shares 1st rank with a few other al-
gorithms for almost all fixed-dimensional functions ex-
cept F17 and F19; however; the results for these two
functions are also comparable to the others. Further-
more, PO outperforms the competitors for all variable-
dimensional functions (F1 − F16) except F2 and F16;
however, PO comes 2nd for these two functions.

We can conclude our analysis that PO either out-
performs the other algorithms or performs equivalently.
The true exploitation capability of PO is revealed when
high-dimensional functions are solved. The consistent
performance of PO for such a comprehensive suite of
unimodal benchmarks proves its superior capabilities
of exploitation. It should be noted that the good ex-
ploitative behavior of PO is due to the position updating
strategy (RPPUS) and utilization of two better solutions
(party leader and constituency winner) in position up-
dating mechanism of PO. Moreover, the interaction be-
tween the constituency winners in parliamentary affairs
also improves exploitative behavior.

5.4.2. Exploration capability of PO
To evaluate the capability of PO to explore the search

space, 25 multimodal benchmark functions with many
local optima are solved. The results are compared
with other algorithms in Table 7. Again for the fixed-
dimensional functions (F41 − F50) the performance
of the other algorithms is equivalent to PO and PO
shares 1st rank with many others for almost all fixed-
dimensional functions. However, the real strength of
PO to solve the multimodal functions is revealed for
variable-dimensional functions (F26−F40). PO outper-
forms the other algorithms for all variable-dimensional
functions except F28, F29, and F37. Although, the
performance for F28 and F37 is comparable to the
others. The consistency in performance proves versa-
tility of PO. The good exploratory behavior of PO is
also attributed to its position updating mechanism be-
cause each solution explores a different vicinity due to
position updating with reference to a unique pair of
party leader and constituency winner. Moreover, party

switching also promotes exploration by controlling the
diversity.

To show that PO has good exploration capability the
search history of the search agents is recorded for a few
unimodal and multimodal functions. The search history
is presented in Figure 6. For the sake of illustration, 2D
versions of the benchmark functions are solved by us-
ing 4 parties with 4 members each. The scatter of the
search agents in space proves that PO well explores the
search space in order to find the promising areas, which
are then exploited to converge at the global optimum.
For further investigation, the trajectories of 8 randomly
selected search agents in first two dimensions of these
benchmarks are also presented in Figure 7. The zigzag
natured paths covering different portions of the search
space also proves that PO has good exploration capabil-
ity. Please note that the polygons (trajectories) are start-
ing from random locations but are ending at the centers
(global optimum), which shows that PO is capable to
escape local optima.

5.4.3. Convergence of PO
A good optimization algorithm should not converge

prematurely to some local optimum. To converge at
the global optimum, an algorithm should be able to es-
cape local optima, which requires a good balance be-
tween exploration and exploitation. In PO, the balance
between the exploration and exploitation is attained
through party switching, which uses a parameter λ to
control the diversity. It is observed that a higher value
of λ allows exploration, so the value of λ is kept higher
in the beginning and reduces to 0 with the course of
iterations. Moreover, the interaction between the con-
stituency winners in the phase of parliamentary affairs
ensures the convergence of PO.

The convergence curves of PO for some unimodal
and multimodal benchmark functions are compared
with PSO, DE, WOA and GWO in Figure 8. The curves
are plotted against the number of function evaluations,
which is in hundreds. The figure shows that PO out-
performs the other algorithms in all cases. The curves
of unimodal functions show that PO has a remarkable
property to quickly exploit the promising areas with-
out any disruption. Similarly, the experimental results
obtained by PO for multimodal functions (F31-F41 in
Figure 8) show the ability of the algorithm to escape
local optima very quickly, which is attained by control-
ling diversity using λ. Another observation is the con-
vergence on global optimum in early iterations. PO is
capable of exploring the search space extensively and
identifying the most promising region in less iteration
because of its position-updating mechanism influenced
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Table 6: Comparison with other state of the art optimization algorithms on unimodal functions. The best results obtained for a function are
highlighted.

Fn Stats HHO BOA SSA1 WOA SCA SSA2 GWO SLC KH TLBO GSA CS BBO DE PSO PO

F1 Med 1.9E-196 1.9E-14 9.5E-08 3.7E-159 7.6E+01 8.9E-05 9.9E-30 1.0E-78 1.4E+00 1.1E-92 5.6E-04 1.1E+02 9.6E+01 2.6E-10 4.7E-03 0.0E+00
Mean 7.0E-188 1.9E-14 9.4E-08 7.4E-149 1.6E+02 9.3E-05 1.9E-29 1.4E-75 1.3E+00 1.6E-92 6.6E-02 1.0E+02 1.1E+02 3.5E-10 9.7E-03 0.0E+00
Std 0.0E+00 9.3E-16 2.6E-08 3.3E-148 1.8E+02 6.1E-05 2.8E-29 5.4E-75 6.4E-01 1.4E-92 1.7E-01 2.6E+01 3.8E+01 3.1E-10 1.3E-02 0.0E+00

F2 Med 6.1E-05 9.4E-04 2.7E-01 1.4E-03 1.2E+00 9.6E-02 1.4E-03 5.7E-04 1.2E-01 8.9E-04 7.3E-02 1.6E-01 2.4E-03 4.5E-02 1.9E+01 3.3E-04
Mean 7.8E-05 9.5E-04 3.0E-01 1.8E-03 2.0E+00 1.2E-01 1.5E-03 5.8E-04 1.3E-01 9.2E-04 8.1E-02 1.6E-01 3.9E-03 4.6E-02 2.2E+01 3.7E-04
Std 6.9E-05 4.1E-04 1.0E-01 1.6E-03 2.3E+00 9.7E-02 8.3E-04 3.7E-04 5.5E-02 2.9E-04 3.7E-02 5.2E-02 4.4E-03 1.2E-02 1.9E+01 2.3E-04

F3 Med 6.9E-247 5.3E-17 6.8E-07 5.6E-231 1.3E-03 1.9E-29 3.5E-134 2.2E-118 1.1E-07 4.2E-223 1.8E-14 4.9E-12 0.0E+00 3.0E-18 3.7E-08 0.0E+00
Mean 5.4E-240 2.0E-16 7.9E-07 5.2E-218 2.6E-03 1.4E-26 1.9E-128 2.4E-112 2.1E-07 6.8E-221 1.7E-13 8.4E-12 0.0E+00 4.9E-13 1.3E-07 0.0E+00
Std 0.0E+00 2.6E-16 4.5E-07 0.0E+00 3.7E-03 4.8E-26 5.3E-128 8.1E-112 2.8E-07 0.0E+00 6.1E-13 1.0E-11 0.0E+00 1.9E-12 3.4E-07 0.0E+00

F4 Med 6.6E-100 1.3E-11 3.1E+01 3.0E-106 1.4E+00 4.2E-03 6.8E-17 6.4E-39 2.3E+00 8.1E-46 1.2E+01 6.4E+01 4.2E+01 8.1E-06 2.3E-01 6.2E-183
Mean 4.6E-90 1.3E-11 3.8E+01 3.9E-102 2.0E+00 4.5E-03 7.1E-17 4.3E-38 5.3E+00 1.1E-45 1.5E+01 6.4E+01 4.1E+01 8.6E-06 2.5E-01 7.7E-179
Std 2.3E-89 5.5E-13 2.3E+01 1.5E-101 1.7E+00 1.5E-03 3.2E-17 9.7E-38 7.2E+00 6.2E-46 1.2E+01 6.2E+00 6.6E+00 3.6E-06 1.4E-01 0.0E+00

F5 Med 4.2E-97 1.2E-11 1.7E+01 8.5E+01 6.3E+01 3.8E+01 9.5E-07 7.0E-37 5.1E+00 2.8E-37 7.5E+00 1.5E+01 5.2E+01 1.7E+01 2.4E+00 1.2E-161
Mean 2.1E-89 1.2E-11 1.7E+01 7.5E+01 6.2E+01 3.7E+01 1.6E-06 8.6E-36 5.1E+00 3.1E-37 7.4E+00 1.6E+01 5.3E+01 1.8E+01 2.3E+00 2.7E-158
Std 1.0E-88 8.4E-13 3.6E+00 2.3E+01 8.8E+00 4.6E+00 1.6E-06 2.2E-35 1.2E+00 1.8E-37 1.2E+00 1.6E+00 8.2E+00 4.4E+00 3.2E-01 1.0E-157

F6 Med 1.2E-05 1.1E+01 7.9E-08 4.4E-01 3.1E+02 9.6E-05 1.8E+00 5.0E-02 1.4E+00 3.8E-06 1.7E-16 9.5E+01 1.0E+02 1.5E-10 4.2E-03 0.0E+00
Mean 4.5E-05 1.1E+01 8.9E-08 4.2E-01 3.6E+02 1.3E-04 1.7E+00 7.0E-02 1.4E+00 1.8E-05 8.3E-01 9.7E+01 1.0E+02 2.0E-10 9.0E-03 0.0E+00
Std 6.6E-05 8.0E-01 2.7E-08 1.3E-01 3.5E+02 1.0E-04 5.5E-01 5.7E-02 6.8E-01 5.3E-05 2.4E+00 2.3E+01 3.3E+01 1.5E-10 1.1E-02 0.0E+00

F7 Med -275.00 -54.00 -216.00 -275.00 -150.00 -48.00 -217.00 -275.00 -80.00 -273.00 -180.00 -233.00 -257.00 -275.00 -198.00 -275.00
Mean -275.00 -58.60 -212.88 -275.00 -149.80 -51.08 -219.12 -265.72 -79.52 -271.64 -180.40 -233.04 -257.64 -274.96 -199.76 -275.00
Std 0.00 15.23 17.56 0.00 8.09 12.69 9.36 14.88 9.38 4.32 5.64 5.91 3.38 0.20 20.99 0.00

F8 Med 1.2E-161 1.8E-14 5.3E+03 1.4E+05 3.7E+04 2.4E+04 5.2E-05 1.2E-74 3.4E+03 9.3E-14 1.4E+03 1.2E+04 3.6E+04 8.6E+04 7.5E+02 6.8E-291
Mean 2.6E-140 1.8E-14 5.8E+03 1.3E+05 3.9E+04 2.4E+04 3.1E-04 5.6E-72 3.7E+03 6.5E-13 1.5E+03 1.3E+04 3.6E+04 8.6E+04 7.9E+02 1.8E-274
Std 1.3E-139 1.2E-15 2.4E+03 2.9E+04 1.3E+04 5.4E+03 5.7E-04 1.6E-71 1.5E+03 2.1E-12 4.4E+02 3.2E+03 7.0E+03 8.3E+03 2.1E+02 0.0E+00

F9 Med 1.4E-99 1.7E+72 3.2E+24 1.4E-105 4.4E-01 1.4E+67 8.3E-17 4.4E-39 6.3E+44 2.5E-45 2.7E+02 1.0E+10 3.6E+01 2.2E-05 2.3E+00 2.5E-184
Mean 1.7E-95 3.0E+73 5.0E+36 1.5E-101 1.3E+00 4.1E+68 1.1E-16 1.2E-38 3.5E+59 2.7E-45 2.7E+02 1.0E+10 3.6E+01 6.7E-05 2.6E+00 1.5E-179
Std 5.2E-95 7.0E+73 2.5E+37 6.1E-101 1.5E+00 9.0E+68 6.7E-17 1.7E-38 1.8E+60 1.6E-45 3.5E+01 0.0E+00 6.6E+00 8.2E-05 2.2E+00 0.0E+00

F10 Med 0.0E+00 1.8E-21 2.7E-10 0.0E+00 1.9E+07 1.3E-12 3.1E-98 0.0E+00 2.5E-08 0.0E+00 6.0E-05 5.7E+02 0.0E+00 4.7E-05 1.3E-01 0.0E+00
Mean 0.0E+00 1.9E-21 2.7E-07 0.0E+00 1.7E+08 5.8E-12 3.9E-93 0.0E+00 5.8E-08 0.0E+00 3.5E-03 9.3E+02 1.2E-01 7.6E+03 7.8E-01 0.0E+00
Std 0.0E+00 2.0E-22 7.1E-07 0.0E+00 3.5E+08 1.1E-11 1.5E-92 0.0E+00 8.5E-08 0.0E+00 1.0E-02 1.5E+03 3.3E-01 3.8E+04 1.5E+00 0.0E+00

F11 Med 1.8E-03 4.9E+01 1.0E+02 4.8E+01 1.6E+06 1.8E+02 4.7E+01 4.6E+01 2.1E+02 4.3E+01 1.1E+02 4.3E+03 4.0E+03 4.9E+01 2.1E+02 0.0E+00
Mean 4.3E-03 4.9E+01 1.7E+02 4.8E+01 2.5E+06 1.7E+02 4.7E+01 4.6E+01 2.5E+02 4.3E+01 1.3E+02 4.5E+03 4.3E+03 7.7E+01 3.1E+02 0.0E+00
Std 4.6E-03 2.5E-02 1.8E+02 5.3E-01 3.1E+06 6.8E+01 7.3E-01 5.5E-01 9.6E+01 6.3E-01 7.8E+01 1.6E+03 2.1E+03 4.5E+01 3.1E+02 0.0E+00

F12 Med 8.2E-200 1.5E-14 2.3E-10 6.6E-161 2.4E-02 4.4E-06 3.2E-32 1.0E-82 1.9E+02 1.8E-95 4.7E+00 1.4E+00 0.0E+00 5.1E-13 1.0E+02 0.0E+00
Mean 1.4E-190 1.5E-14 2.4E-10 9.3E-147 9.7E-02 7.8E-06 4.5E-32 1.3E-78 2.0E+02 3.1E-95 5.5E+00 1.6E+00 0.0E+00 5.9E-13 1.8E+02 0.0E+00
Std 0.0E+00 1.2E-15 6.4E-11 4.7E-146 1.5E-01 1.1E-05 5.0E-32 6.2E-78 1.1E+02 3.3E-95 2.4E+00 9.8E-01 0.0E+00 4.3E-13 1.7E+02 0.0E+00

F13 Med 0.25 0.99 4.71 0.67 4914.52 8.61 0.67 0.67 9.06 0.67 3.71 67.64 271.50 0.85 19.33 0.04
Mean 0.25 0.99 8.04 0.67 16298.56 9.44 0.67 0.67 9.92 0.67 4.21 67.82 237.28 2.34 7617.05 0.05
Std 0.00 0.00 9.07 0.00 26606.53 4.13 0.00 0.00 6.04 0.00 2.86 22.28 167.45 2.54 26953.37 0.03

F14 Med 5.4E-198 1.7E-14 4.5E+00 1.2E-34 1.7E+02 7.7E-01 1.4E-05 3.7E-80 2.9E+00 6.1E-09 2.0E+00 8.4E+00 4.7E+01 2.1E-01 3.3E+03 0.0E+00
Mean 4.0E-183 1.7E-14 6.4E+00 7.1E-14 2.3E+02 1.2E+00 1.7E-05 2.2E-77 2.8E+00 7.6E-08 3.1E+00 8.6E+00 4.5E+01 5.8E-01 3.4E+03 0.0E+00
Std 0.0E+00 8.7E-16 4.1E+00 3.3E-13 2.1E+02 1.2E+00 1.8E-05 8.0E-77 9.2E-01 2.5E-07 2.8E+00 2.7E+00 1.3E+01 9.1E-01 1.8E+03 0.0E+00

F15 Med 1.7E-92 1.7E-14 1.3E+02 8.5E+02 9.8E+01 5.6E+02 4.9E-07 9.2E-58 3.6E+02 2.1E-03 1.2E+02 6.0E+02 2.8E+02 5.1E+02 6.9E+02 3.3E-212
Mean 1.7E-67 1.7E-14 1.4E+02 9.3E+02 9.3E+01 6.3E+02 2.2E-06 2.5E-54 4.0E+02 5.4E-03 1.2E+02 6.0E+02 2.9E+02 4.9E+02 6.9E+02 9.9E-188
Std 6.5E-67 1.2E-15 4.7E+01 2.6E+02 3.7E+01 2.6E+02 4.3E-06 8.7E-54 1.2E+02 8.2E-03 2.1E+01 7.4E+01 5.7E+01 6.6E+01 1.4E+02 0.0E+00

F16 Med -1.0E+00 2.6E-58 2.1E-293 0.0E+00 1.9E-305 0.0E+00 4.2E-207 0.0E+00 8.4E-75 0.0E+00 1.9E-65 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
Mean -1.0E+00 9.1E-48 6.9E-276 -3.2E-01 6.8E-290 0.0E+00 1.2E-165 0.0E+00 5.8E-61 0.0E+00 6.7E-54 0.0E+00 0.0E+00 0.0E+00 0.0E+00 -4.8E-01
Std 0.0E+00 4.5E-47 0.0E+00 4.8E-01 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.9E-60 0.0E+00 3.4E-53 0.0E+00 0.0E+00 0.0E+00 0.0E+00 5.1E-01

F17 Med 36.63 730.76 11.86 222.23 41.05 29.30 25.85 0.42 14.43 0.47 411.67 2.02 38.90 1.15 0.12 0.32
Mean 65.67 939.27 44.34 514.73 44.40 131.14 571.13 19.78 97.61 0.72 578.76 2.40 135.89 1.70 505.14 16.76
Std 87.34 800.03 152.13 585.33 29.43 269.49 1473.63 33.11 262.51 0.74 543.73 1.60 200.14 2.02 1746.47 40.38

F18 Med 1.5E-213 6.4E-18 6.6E-16 5.4E-163 2.3E-97 1.8E-99 0.0E+00 1.1E-103 1.2E-11 2.2E-217 6.0E-21 1.0E-26 0.0E+00 5.7E-205 8.1E-80 0.0E+00
Mean 3.8E-203 1.1E-17 1.5E-15 1.6E-144 2.3E-91 1.2E-02 1.8E-290 2.9E-100 1.7E-11 5.9E-214 1.0E-20 9.3E-26 0.0E+00 2.7E-197 2.7E-78 0.0E+00
Std 0.0E+00 1.2E-17 2.4E-15 8.2E-144 7.6E-91 6.0E-02 0.0E+00 9.0E-100 1.5E-11 0.0E+00 9.4E-21 2.7E-25 0.0E+00 0.0E+00 6.3E-78 0.0E+00

F19 Med 1.6E-14 8.9E-02 1.3E-15 6.0E-12 4.6E-05 3.2E-29 4.6E-08 0.0E+00 9.4E-11 0.0E+00 1.4E-20 7.9E-22 6.5E-02 0.0E+00 0.0E+00 2.8E-32
Mean 2.5E-12 2.1E-01 2.3E-15 4.4E-11 1.2E-04 5.3E-02 3.0E-02 0.0E+00 1.1E-10 0.0E+00 1.9E-20 1.4E-20 1.8E-01 0.0E+00 0.0E+00 1.7E-23
Std 6.2E-12 2.3E-01 3.0E-15 1.4E-10 1.3E-04 1.8E-01 1.5E-01 0.0E+00 9.6E-11 0.0E+00 1.7E-20 4.8E-20 2.2E-01 0.0E+00 0.0E+00 8.6E-23

F20 Med 5.4E-06 2.3E-03 1.1E-14 1.1E-04 4.2E-04 0.0E+00 1.8E-07 0.0E+00 6.5E-11 0.0E+00 1.5E-20 2.4E-27 0.0E+00 0.0E+00 0.0E+00 0.0E+00
Mean 8.5E-06 8.5E-02 1.7E-14 1.7E-04 6.0E-04 1.4E-17 1.8E-07 0.0E+00 9.9E-11 0.0E+00 3.1E-20 5.0E-26 0.0E+00 0.0E+00 0.0E+00 0.0E+00
Std 1.0E-05 2.1E-01 1.9E-14 1.5E-04 5.9E-04 7.2E-17 1.6E-07 0.0E+00 1.2E-10 0.0E+00 4.8E-20 1.3E-25 0.0E+00 0.0E+00 0.0E+00 0.0E+00

F21 Med 1.4E-87 8.3E+00 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.9E-05 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87
Mean 1.4E-87 1.6E+01 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.3E-04 1.4E-87 1.4E-87 1.4E-87 1.4E-87 1.4E-87
Std 4.6E-103 1.8E+01 4.6E-103 4.6E-103 4.6E-103 4.6E-103 4.6E-103 4.6E-103 4.6E-103 4.6E-103 2.7E-04 4.6E-103 4.6E-103 4.6E-103 4.6E-103 4.6E-103

F22 Med 3.8E-277 1.4E-15 1.4E-16 0.0E+00 1.4E-83 1.5E-30 1.7E-177 1.3E-106 4.1E-12 5.2E-157 1.0E-21 5.5E-29 0.0E+00 7.7E-122 1.1E-59 0.0E+00
Mean 3.5E-245 1.2E-15 5.8E-16 0.0E+00 3.3E-78 2.8E-08 6.7E-162 2.4E-98 7.3E-12 7.2E-155 1.2E-21 2.8E-28 0.0E+00 2.8E-117 3.0E-58 0.0E+00
Std 0.0E+00 5.1E-16 1.7E-15 0.0E+00 1.6E-77 1.0E-07 3.4E-161 1.2E-97 8.0E-12 2.1E-154 9.6E-22 4.6E-28 0.0E+00 8.5E-117 1.2E-57 0.0E+00

F23 Med 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.29 0.31 0.29 0.29 0.29
Mean 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.31 0.29 0.30 0.29 0.29 0.29
Std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

F24 Med 19.11 19.15 19.11 19.11 19.13 19.11 19.11 19.11 19.11 19.11 19.11 19.11 19.33 19.11 19.11 19.11
Mean 19.11 19.48 19.11 19.11 19.13 19.11 19.11 19.11 19.11 19.11 19.11 19.11 20.44 19.11 19.11 19.11
Std 0.00 0.92 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.45 0.00 0.00 0.00

F25 Med 3.0E-07 3.4E-03 1.2E-15 6.1E-06 1.8E-04 4.8E-02 3.0E-07 0.0E+00 5.0E-03 1.2E-22 3.4E-03 1.5E-24 0.0E+00 0.0E+00 1.6E-16 0.0E+00
Mean 5.4E-06 1.5E-02 1.7E-15 1.3E-05 2.1E-04 5.4E-02 4.8E-07 1.4E-32 8.5E-03 4.4E-22 5.1E-03 6.1E-23 0.0E+00 0.0E+00 2.4E-15 0.0E+00
Std 1.1E-05 2.5E-02 2.3E-15 1.9E-05 1.8E-04 5.3E-02 5.8E-07 4.2E-32 9.5E-03 8.7E-22 6.0E-03 2.9E-22 0.0E+00 0.0E+00 4.8E-15 0.0E+00
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Table 7: Comparison with other state of the art optimization algorithms on multimodal functions. The best results obtained for a function are
highlighted.

Fn Stats HHO BOA SSA1 WOA SCA SSA2 GWO SLC KH TLBO GSA CS BBO DE PSO PO

F26 Med 1.3E-03 3.1E+02 1.7E+02 1.2E+02 3.2E+02 3.1E+02 2.3E+02 1.9E+02 2.2E+02 1.8E+02 3.5E+02 1.7E+02 4.0E+00 2.0E+02 2.0E+02 1.3E-05
Mean 5.5E-03 3.1E+02 1.8E+02 9.4E+01 3.2E+02 3.5E+02 2.2E+02 2.0E+02 2.2E+02 1.9E+02 3.5E+02 1.7E+02 4.2E+00 2.0E+02 2.2E+02 1.3E-05
Std 8.7E-03 9.7E+00 1.8E+01 5.4E+01 7.4E+00 1.7E+02 1.7E+01 4.0E+01 2.4E+01 3.8E+01 1.1E+01 5.5E+00 1.2E+00 2.1E+01 4.4E+01 0.0E+00

F27 Med 0.0E+00 0.0E+00 9.7E+01 0.0E+00 6.4E+01 6.4E+01 2.8E-13 0.0E+00 2.3E+01 9.0E+00 3.3E+01 2.1E+02 0.0E+00 3.0E+02 2.5E+02 0.0E+00
Mean 0.0E+00 2.9E+01 9.6E+01 0.0E+00 7.8E+01 6.5E+01 2.0E+00 0.0E+00 2.5E+01 9.8E+00 3.6E+01 2.1E+02 0.0E+00 3.0E+02 2.5E+02 0.0E+00
Std 0.0E+00 1.0E+02 1.7E+01 0.0E+00 4.8E+01 9.1E+00 3.1E+00 0.0E+00 1.2E+01 1.0E+01 8.5E+00 1.7E+01 0.0E+00 1.6E+01 4.6E+01 0.0E+00

F28 Med 9.0E-01 1.5E+01 1.0E+00 9.0E-01 1.2E+01 3.4E+00 1.5E+00 1.5E+00 3.9E+00 5.1E+00 1.0E+00 2.5E+00 9.0E-01 9.5E+00 5.7E+00 9.0E-01
Mean 9.0E-01 1.5E+01 1.0E+00 1.0E+00 1.1E+01 3.5E+00 1.6E+00 1.7E+00 5.3E+00 5.6E+00 1.0E+00 2.5E+00 9.0E-01 9.4E+00 5.7E+00 9.3E-01
Std 3.4E-16 9.1E-01 2.7E-10 2.4E-01 2.2E+00 4.1E-01 3.4E-01 6.0E-01 4.6E+00 3.7E+00 5.4E-16 1.2E-01 2.0E-02 5.2E-01 1.9E+00 4.6E-02

F29 Med 2.9E+03 1.4E+04 4.2E+01 5.2E+03 9.4E+08 3.1E+01 8.2E+03 2.4E+02 2.1E+03 6.1E-03 2.5E+08 1.0E+10 7.5E+05 1.2E+03 5.3E-01 2.7E+01
Mean 3.1E+03 1.4E+04 8.1E+01 5.3E+03 2.1E+09 5.0E+01 8.4E+03 3.0E+02 2.2E+03 2.8E+00 2.7E+08 1.0E+10 9.0E+05 1.5E+03 8.1E-01 7.7E+01
Std 5.3E+02 1.1E+03 9.0E+01 2.3E+03 2.4E+09 5.8E+01 2.3E+03 2.3E+02 9.3E+02 1.4E+01 1.2E+08 0.0E+00 5.0E+05 1.2E+03 1.2E+00 1.5E+02

F30 Med 3.3E-102 1.4E-14 7.6E+00 5.3E-108 3.2E+00 3.1E-01 9.2E-05 1.0E-40 5.9E-02 2.1E-47 6.6E-03 2.5E+01 0.0E+00 3.3E-02 1.1E-01 0.0E+00
Mean 1.7E-91 2.2E-14 7.5E+00 2.0E-103 5.4E+00 3.3E-01 5.1E-04 4.5E-40 2.0E-01 2.5E-47 8.6E-03 2.5E+01 1.6E-02 3.3E-02 1.3E+00 3.4E-182
Std 8.5E-91 1.8E-14 2.4E+00 9.8E-103 5.4E+00 2.3E-01 9.4E-04 7.4E-40 4.4E-01 1.3E-47 1.0E-02 2.2E+00 5.4E-02 8.6E-03 2.3E+00 0.0E+00

F31 Med 5.9E-64 4.3E+24 9.2E+01 3.9E-10 2.0E+03 1.2E+21 1.9E-44 3.9E-44 9.3E+09 1.6E-22 4.3E-02 1.0E+10 1.1E+09 4.4E-02 8.1E+12 1.4E-199
Mean 6.2E-27 3.9E+25 1.2E+06 1.0E+04 4.2E+07 9.4E+21 6.6E-23 8.0E-25 3.0E+13 1.7E-15 1.2E-01 1.0E+10 1.4E+15 2.3E+02 5.2E+15 7.2E-196
Std 3.1E-26 1.1E+26 5.9E+06 5.2E+04 2.1E+08 1.9E+22 3.3E-22 2.8E-24 1.2E+14 7.8E-15 1.8E-01 0.0E+00 6.9E+15 8.3E+02 1.7E+16 0.0E+00

F32 Med -8.9E-16 1.2E-11 3.1E+00 2.7E-15 2.0E+01 1.8E-03 8.4E-14 -8.9E-16 2.8E+00 2.7E-15 6.0E-09 1.0E+01 1.9E+00 3.3E-06 7.8E-01 -8.9E-16
Mean -8.9E-16 1.2E-11 3.4E+00 2.0E-15 1.8E+01 2.3E-01 8.6E-14 -7.5E-16 2.8E+00 4.2E-15 3.0E-02 1.0E+01 1.9E+00 3.8E-06 7.9E-01 -8.9E-16
Std 0.0E+00 4.7E-13 9.8E-01 2.1E-15 5.2E+00 4.2E-01 1.3E-14 7.1E-16 7.1E-01 1.8E-15 1.0E-01 1.9E+00 2.8E-01 1.7E-06 6.7E-01 0.0E+00

F33 Med 1.0E+00 1.7E+02 4.1E+02 1.2E+02 6.4E+03 2.1E+01 5.7E+01 1.0E+02 1.3E+02 3.0E+01 7.0E+04 3.1E+03 2.7E+03 5.7E+00 4.9E+01 1.0E+00
Mean 1.0E+00 1.7E+02 4.2E+02 1.3E+02 1.0E+04 2.4E+01 5.7E+01 9.8E+01 1.4E+02 3.0E+01 7.4E+04 3.3E+03 2.8E+03 1.5E+01 5.1E+01 1.0E+00
Std 7.3E-04 9.9E+00 7.8E+01 3.4E+01 1.2E+04 1.8E+01 1.0E+01 2.6E+01 4.1E+01 5.6E+00 1.0E+04 8.4E+02 7.4E+02 1.7E+01 1.4E+01 0.0E+00

F34 Med 1.4E-97 3.0E-01 2.5E+00 1.0E-01 2.2E+00 1.4E+00 2.0E-01 1.0E-01 2.7E+00 2.0E-01 4.4E+00 4.6E+00 3.6E+00 5.0E-01 7.0E-01 0.0E+00
Mean 6.8E-94 3.1E-01 2.6E+00 1.4E-01 2.5E+00 1.6E+00 2.1E-01 1.0E-01 2.7E+00 1.6E-01 4.4E+00 4.7E+00 3.6E+00 5.2E-01 6.6E-01 0.0E+00
Std 3.3E-93 1.9E-02 4.7E-01 5.7E-02 1.4E+00 4.0E-01 2.8E-02 1.3E-07 4.5E-01 4.9E-02 5.2E-01 4.2E-01 4.2E-01 4.6E-02 5.8E-02 0.0E+00

F35 Med -2.0E+03 NA -1.6E+03 -2.0E+03 -8.9E+02 -8.5E+02 -1.4E+03 -1.7E+03 -1.6E+03 -1.7E+03 -1.8E+03 -1.6E+03 -2.0E+03 -1.9E+03 -1.7E+03 -2.0E+03
Mean -2.0E+03 NA -1.6E+03 -1.9E+03 -8.9E+02 -9.0E+02 -1.4E+03 -1.7E+03 -1.6E+03 -1.7E+03 -1.8E+03 -1.6E+03 -2.0E+03 -1.9E+03 -1.7E+03 -2.0E+03
Std 5.1E-03 3.3E+03 4.4E+01 1.1E+02 7.4E+01 1.7E+02 8.7E+01 4.5E+01 5.6E+01 5.7E+01 2.9E+01 2.2E+01 2.7E-01 2.1E+01 5.6E+01 4.6E-13

F36 Med 0.0E+00 6.8E-15 7.6E-03 0.0E+00 9.9E-01 1.9E-04 0.0E+00 0.0E+00 1.7E-01 0.0E+00 3.0E-02 9.8E-01 1.0E+00 8.0E-12 6.1E-04 0.0E+00
Mean 0.0E+00 4.9E-15 7.6E-03 8.8E-03 9.4E-01 1.3E-03 1.6E-03 0.0E+00 1.8E-01 0.0E+00 5.3E-02 9.8E-01 1.0E+00 5.9E-04 5.2E-03 0.0E+00
Std 0.0E+00 3.5E-15 8.7E-03 3.0E-02 2.3E-01 3.8E-03 4.7E-03 0.0E+00 8.0E-02 0.0E+00 7.3E-02 4.4E-02 4.0E-02 2.0E-03 5.6E-03 0.0E+00

F37 Med -1.0E+00 1.8E-18 1.4E-30 3.9E-21 4.7E-16 1.7E-21 1.1E-23 1.8E-21 6.0E-21 2.0E-23 1.0E-21 4.1E-21 6.9E-22 1.7E-20 2.1E-22 -1.0E+00
Mean -1.0E+00 2.2E-18 2.3E-30 -2.4E-01 7.3E-16 1.7E-21 2.2E-23 1.7E-21 8.4E-20 3.7E-23 8.9E-22 4.1E-21 6.9E-22 2.7E-20 7.2E-22 -6.8E-01
Std 0.0E+00 1.5E-18 1.9E-30 4.4E-01 8.0E-16 2.0E-22 3.2E-23 4.5E-22 3.1E-19 4.7E-23 4.3E-22 4.5E-22 4.6E-24 3.2E-20 1.1E-21 4.8E-01

F38 Med 1.2E-20 1.4E-13 3.2E-19 1.2E-20 2.3E-16 4.5E-18 4.3E-15 1.3E-19 2.3E-09 1.7E-19 1.3E-20 1.1E-19 1.0E-19 1.3E-19 1.6E-19 1.2E-20
Mean 1.2E-20 9.8E-13 7.1E-19 1.4E-20 7.6E-16 7.3E-18 2.7E-12 1.4E-19 4.6E-08 1.7E-19 2.7E-20 1.1E-19 9.9E-20 1.4E-19 1.6E-19 1.2E-20
Std 1.0E-23 2.7E-12 8.7E-19 4.2E-21 1.4E-15 8.5E-18 7.2E-12 1.5E-20 1.3E-07 4.2E-21 2.8E-20 3.0E-20 1.1E-20 2.6E-20 5.3E-21 3.4E-35

F39 Med 1.6E-05 5.0E+00 6.0E+01 8.2E-01 8.8E+06 1.6E-04 1.5E+00 1.5E+00 1.9E+01 5.5E-02 2.0E+01 3.0E+01 3.6E+00 1.7E-07 1.4E-02 1.3E-32
Mean 2.9E-05 5.0E+00 6.2E+01 7.8E-01 1.6E+07 4.7E-02 1.5E+00 1.9E+00 2.1E+01 9.0E-02 2.2E+01 3.1E+01 3.7E+00 1.7E-01 1.8E-02 1.3E-32
Std 3.3E-05 8.2E-02 1.8E+01 3.7E-01 2.3E+07 2.2E-01 4.0E-01 1.4E+00 1.3E+01 9.7E-02 5.8E+00 6.1E+00 9.1E-01 7.3E-01 1.6E-02 5.6E-48

F40 Med 8.4E-07 8.3E-01 9.3E+00 8.9E-03 6.8E+05 5.7E-05 5.8E-02 1.3E-03 2.0E+00 2.9E-08 1.5E+00 5.0E+00 5.1E-01 7.8E-09 7.1E-05 9.4E-33
Mean 1.8E-06 8.6E-01 9.7E+00 1.1E-02 4.3E+06 3.6E-02 5.9E-02 1.6E-03 2.0E+00 1.4E-07 1.5E+00 5.0E+00 5.4E-01 1.1E-03 7.6E-03 9.4E-33
Std 2.4E-06 1.7E-01 3.7E+00 6.4E-03 7.1E+06 6.9E-02 2.0E-02 1.4E-03 8.1E-01 2.1E-07 5.4E-01 7.6E-01 1.7E-01 5.3E-03 2.1E-02 1.4E-48

F41 Med 2.0E-226 3.7E-22 9.2E-15 4.2E-239 1.8E-96 2.0E-118 0.0E+00 1.1E-101 5.1E-11 4.3E-218 7.3E-20 1.3E-24 0.0E+00 3.3E-234 1.0E-80 0.0E+00
Mean 3.4E-215 9.6E-22 2.8E-14 3.7E-218 1.2E-89 1.2E-117 0.0E+00 1.2E-97 1.1E-10 6.6E-217 1.4E-19 1.1E-23 0.0E+00 6.1E-228 1.2E-78 0.0E+00
Std 0.0E+00 1.6E-21 5.7E-14 0.0E+00 6.0E-89 2.2E-117 0.0E+00 4.1E-97 1.7E-10 0.0E+00 1.4E-19 2.2E-23 0.0E+00 0.0E+00 4.5E-78 0.0E+00

F42 Med -195.63 NA -195.63 -195.63 -195.63 -194.36 -195.63 -195.63 -195.63 -195.63 -195.63 -195.63 -194.42 -195.63 -195.63 -195.63
Mean -195.63 NA -195.63 -195.63 -195.63 -192.62 -195.63 -195.63 -195.63 -195.63 -195.63 -195.63 -194.57 -195.63 -195.63 -195.63
Std 0.00 NA 0.00 0.00 0.00 5.45 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00

F43 Med -2.02 NA -2.02 -2.02 -2.02 -2.00 -2.02 -2.02 -2.02 -2.02 -2.02 -2.02 -2.01 -2.02 -2.02 -2.02
Mean -2.02 NA -2.02 -2.02 -2.02 -2.19 -2.02 -2.02 -2.02 -2.02 -2.02 -2.02 -2.01 -2.02 -2.02 -2.02
Std 0.00 NA 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

F44 Med -106.76 NA -106.76 -106.76 -106.73 -90.18 -106.76 -106.76 -106.76 -106.76 -106.76 -106.76 -101.68 -106.76 -106.76 -106.76
Mean -106.76 NA -106.76 -106.76 -106.71 -80.59 -105.99 -106.76 -105.99 -106.76 -106.47 -106.76 -100.41 -106.76 -106.76 -106.76
Std 0.00 NA 0.00 0.00 0.05 21.42 3.89 0.00 3.89 0.00 0.61 0.00 4.95 0.00 0.00 0.00

F45 Med -1.03 NA -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -0.96 -1.03 -1.03 -1.03
Mean -1.03 NA -1.03 -1.03 -1.03 -1.01 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -0.90 -1.03 -1.03 -1.03
Std 0.00 NA 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00

F46 Med 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.47 0.40 0.40 0.40
Mean 0.40 0.90 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.47 0.40 0.40 0.40
Std 0.00 1.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00

F47 Med -3.86 NA -3.86 -3.86 -3.85 -3.06 -3.86 -3.86 -3.86 -3.86 -3.86 -3.86 -3.84 -3.86 -3.86 -3.86
Mean -3.86 NA -3.86 -3.86 -3.86 -3.10 -3.86 -3.86 -3.86 -3.86 -3.86 -3.86 -3.82 -3.86 -3.86 -3.86
Std 0.00 NA 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

F48 Med -3.19 NA -3.20 -3.32 -3.01 -1.70 -3.32 -3.32 -3.32 -3.32 -3.32 -3.32 -3.10 -3.32 -3.32 -3.32
Mean -3.17 NA -3.22 -3.27 -2.95 -1.66 -3.28 -3.28 -3.28 -3.32 -3.32 -3.32 -3.08 -3.28 -3.25 -3.30
Std 0.08 NA 0.05 0.07 0.28 0.60 0.07 0.06 0.06 0.00 0.00 0.00 0.18 0.06 0.08 0.04

F49 Med -2.06 NA -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06
Mean -2.06 NA -2.06 -2.06 -2.06 -2.85 -2.06 -2.06 -2.06 -2.06 -2.06 -2.06 -2.05 -2.06 -2.06 -2.06
Std 0.00 NA 0.00 0.00 0.00 3.12 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

F50 Med 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.19 1.00 1.00 1.00
Std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00
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Figure 6: Demonstration of the search history of the search agents. For illustration, 2D version of the benchmark functions is considered and
solved by smaller population consisting of 4 parties with 4 members each. Different symbols are used for each party members.

F1 - Sphere

x
1

-100 -50 0 50 100

x
2

-100

-50

0

50

100

F4 - Schwefel's .20

x
1

-100 -50 0 50 100

x
2

-100

-50

0

50

100

F8 - Schwefel's 1.2

x
1

-100 -50 0 50 100

x
2

-100

-50

0

50

100

F9 - Schwefel's 2.22

x
1

-100 -50 0 50 100

x
2

-100

-50

0

50

100

F11 - Rosenbrock

x
1

-20 0 20

x
2

-30

-20

-10

0

10

20

30

F30 - Apline N.1

x
1

-10 -5 0 5 10

x
2

-10

-5

0

5

10

F32 - Ackley

x
1

-20 0 20

x
2

-30

-20

-10

0

10

20

30

F34 - Salomon

x
1

-100 -50 0 50 100

x
2

-100

-50

0

50

100

F36 - Griewank

x
1

-100 -50 0 50 100

x
2

-100

-50

0

50

100

F38 - Xin-She Yang N2

x
1

-5 0 5

x
2

-6

-4

-2

0

2

4

6

Figure 7: Trajectories of randomly selected 8 search agents in first two dimensions of the respective function. Different color represents the
trajectory of different search agent.

by three solutions, higher shuffling of solutions in early
iterations, and sufficient size of population. Moreover,
PO has capability to converge quickly by exploiting
the most promising region discovered at any time be-
cause of interaction between the constituency winners
in parliamentary affairs, utilization of recent position in
position-updating mechanism, and linear reduction in
party switching rate with the course of iterations. The
convergence at the right location is also evident by the
search history of the search agents and trajectories of
the randomly selected search agents presented in Figure
6 and 7, respectively. The thicker portion of the contour
plots of the functions in the search histories shows the
convergence of the search agents in that portion. Since
the global optimum is situated in that portion, we can
conclude that PO is not converging prematurely. Sim-
ilarly, the termination of the trajectories in the vicinity

of the global optimum also witnesses the convergence
at the global optimum.

5.5. Statistical significance analysis
In order to evaluate the statistical significance of the

comparative results of two or more algorithms, many
non-parametric statistical tests have been proposed in
the literature [87]. One of the frequently used tests is
Wilcoxon rank-sum test, which we use in this paper to
statistically evaluate the performance of PO. The results
of pair-wise comparison of PO and all other algorithms
are presented in Table 8 at 0.05 significance level. At
the bottom of the Table 8, “+” indicates the number of
functions PO is significantly superior to an algorithm,
“≈” denotes the number of functions PO is statistically
equivalent to an algorithm, and “−” represents the num-
ber of functions PO is statistically inferior to an algo-
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Figure 8: Comparison of convergence curves of PO and few well-known algorithms.

rithm. The larger numbers in “+” row and fewer num-
bers in “−” row proves that PO demonstrates statisti-
cally significant and comparatively better performance
over the other algorithms.

5.6. Comparison with other politics based algorithms

The performance of PO is also compared with POA
[57], GPO [56] and ECO [58]. In their original papers,
POA and GPO were tested on 6 benchmark functions,
while ECO was tested on 4 of these functions in [88].
The performance of PO for the same benchmark func-
tions is compared with these algorithms and the results
are presented in Table 9. The results show that PO out-
performs all other politics-based algorithms.

5.7. Impact of high-dimensionality

One very important characteristic of PO is to solve
very high dimensional problems efficiently. To show
this capability the performance of PO is evaluated by
increasing the number of dimensions of all the scal-
able benchmark functions to 1000. The results are com-
pared with the results obtained against 50-dimensional
versions in Table 10. The results show that the perfor-
mance remains consistent for all functions except F29.
The experimental results illustrate the scalability of the
proposed algorithm in terms of the number of variables
of the optimization problem.

Figure 9: Schematic views of engineering problems. (a) Welded
beam design. (b) Speed reducer design. (d) Pressure-vessel design.
(d) Tension-compression spring design.

5.8. Invariance to function shifting

The performance of meta-heuristics is supposed to be
dependent on the shape and form of the landscape of an
optimization function but it should not be dependent on
the location of the landscape in the search space. In
other words, the performance should remain consistent
even if the function is shifted in the search space without
changing its shape. PO is executed on shifted versions
of 16 benchmark functions from the suite of 50 and the
results are compared with the results obtained for orig-
inal (non-shifted) versions. The mathematical formula-
tion of the shifted functions is given in Table A.19 in
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Table 8: p-values of Wilcoxon rank-sum test at 0.05 significance level for PO against other 15 algorithms for each benchmark function with 25
independent runs. The results having p-values ≥ 0.05 are displayed in bold face and NaN means “Not a Number” returned by the significant test.
The symbols “+”, “−”, and “≈” respectively are the number of PO is significantly better, significantly worse, and statistically similar to that of
other compared algorithms.

Fn HHO BOA SSA1 WOA SCA SSA2 GWO SLC KH TLBO GSA CS BBO DE PSO

F1 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F2 1.2E-07 8.3E-07 1.4E-09 1.8E-05 1.4E-09 1.4E-09 1.6E-08 6.3E-02 1.4E-09 2.9E-08 1.4E-09 1.4E-09 9.5E-08 1.4E-09 1.4E-09
F3 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 NaN 9.7E-11 9.7E-11
F4 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09
F5 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09
F6 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F7 NaN 9.7E-11 9.6E-11 NaN 9.6E-11 9.5E-11 9.6E-11 5.4E-04 9.6E-11 1.4E-08 9.5E-11 9.6E-11 9.3E-11 3.4E-01 8.9E-11
F8 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09
F9 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 9.7E-11 1.4E-09 1.4E-09 1.4E-09
F10 NaN 9.7E-11 9.7E-11 1.6E-01 9.7E-11 9.7E-11 9.7E-11 8.1E-02 9.7E-11 NaN 9.7E-11 9.7E-11 2.5E-03 9.7E-11 9.7E-11
F11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F12 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 NaN 9.7E-11 9.7E-11
F13 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09
F14 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F15 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09
F16 3.5E-05 7.7E-10 7.7E-10 1.3E-01 2.2E-07 8.8E-05 7.7E-10 8.8E-05 7.7E-10 8.8E-05 7.7E-10 8.8E-05 8.8E-05 8.8E-05 8.8E-05
F17 8.9E-06 3.3E-09 1.4E-03 3.6E-08 2.0E-05 1.7E-05 7.4E-06 9.8E-01 3.3E-04 6.6E-01 1.0E-08 3.0E-03 1.4E-01 2.6E-01 1.4E-01
F18 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 4.6E-08 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 NaN 9.7E-11 9.7E-11
F19 1.2E-08 1.1E-09 1.1E-09 1.1E-09 1.1E-09 9.4E-03 1.1E-09 1.9E-05 1.1E-09 1.9E-05 1.5E-09 4.3E-09 1.1E-09 1.9E-05 1.9E-05
F20 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 8.1E-02 9.7E-11 NaN 9.7E-11 NaN 9.7E-11 9.7E-11 NaN NaN NaN
F21 NaN 9.7E-11 NaN NaN NaN NaN NaN NaN NaN NaN 9.7E-11 NaN NaN NaN NaN
F22 9.7E-11 9.7E-11 9.7E-11 3.4E-01 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 NaN 9.7E-11 9.7E-11
F23 4.6E-09 4.1E-09 4.6E-09 4.6E-09 4.6E-09 3.7E-09 4.6E-09 6.1E-07 4.6E-09 6.5E-01 1.9E-10 4.6E-09 4.9E-11 1.8E-03 1.2E-01
F24 9.7E-10 9.7E-10 9.7E-10 9.7E-10 9.7E-10 2.7E-03 9.7E-10 6.4E-02 9.7E-10 3.8E-07 2.2E-01 2.8E-02 2.5E-10 1.5E-08 5.1E-03
F25 3.7E-10 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 4.1E-02 9.7E-11 9.7E-11 9.7E-11 9.7E-11 NaN NaN 9.7E-11
F26 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F27 NaN 1.0E-02 9.7E-11 NaN 9.7E-11 9.7E-11 4.5E-08 NaN 9.7E-11 7.6E-06 9.7E-11 9.7E-11 NaN 9.7E-11 9.7E-11
F28 5.0E-03 5.4E-10 5.4E-10 2.4E-01 5.4E-10 5.4E-10 5.4E-10 5.4E-10 5.4E-10 5.4E-10 3.4E-10 5.4E-10 3.0E-02 5.4E-10 5.4E-10
F29 1.4E-09 1.4E-09 4.8E-01 1.4E-09 1.4E-09 4.4E-01 1.4E-09 9.2E-07 1.8E-09 1.8E-08 1.4E-09 9.7E-11 1.4E-09 3.7E-07 1.4E-09
F30 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 9.3E-10 1.2E-01 9.3E-10 9.3E-10
F31 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 9.7E-11 1.4E-09 1.4E-09 1.4E-09
F32 NaN 9.7E-11 9.7E-11 2.1E-07 9.7E-11 9.7E-11 8.5E-11 3.4E-01 9.7E-11 4.3E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F33 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F34 9.7E-11 9.7E-11 9.7E-11 9.0E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F35 9.7E-11 2.6E-09 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.4E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F36 NaN 9.7E-11 9.7E-11 1.6E-01 9.7E-11 9.7E-11 8.1E-02 NaN 9.7E-11 NaN 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F37 2.4E-03 6.1E-10 6.1E-10 6.7E-06 6.1E-10 6.1E-10 6.1E-10 6.1E-10 6.1E-10 6.1E-10 6.1E-10 6.1E-10 4.9E-10 6.1E-10 6.1E-10
F38 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09 1.4E-09
F39 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F40 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11
F41 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 1.1E-04 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 NaN 9.7E-11 9.7E-11
F42 3.3E-10 2.8E-12 9.7E-11 9.7E-11 9.7E-11 9.7E-11 9.7E-11 NaN 9.7E-11 NaN 3.4E-01 NaN 7.5E-11 NaN NaN
F43 1.6E-07 7.8E-04 2.8E-12 2.8E-12 9.7E-11 4.4E-01 9.7E-11 NaN 9.7E-11 NaN 9.7E-11 NaN 9.1E-11 NaN NaN
F44 7.2E-10 7.2E-10 7.2E-10 7.2E-10 7.2E-10 7.2E-10 7.2E-10 2.0E-02 7.2E-10 2.3E-04 1.2E-02 2.3E-02 7.2E-10 8.9E-10 2.1E-04
F45 9.4E-10 3.8E-10 3.8E-10 3.8E-10 3.8E-10 3.8E-10 3.8E-10 2.1E-02 3.8E-10 2.1E-02 9.2E-05 7.4E-02 3.8E-10 2.1E-02 2.3E-01
F46 9.7E-11 9.7E-11 9.9E-07 9.7E-11 9.7E-11 NaN 9.7E-11 NaN 9.7E-11 NaN NaN 1.0E+00 9.7E-11 NaN NaN
F47 2.5E-10 5.8E-09 2.5E-10 2.5E-10 2.5E-10 2.5E-10 2.5E-10 8.1E-02 2.5E-10 8.1E-02 1.9E-06 8.1E-02 2.5E-10 8.1E-02 8.1E-02
F48 2.6E-08 6.3E-02 2.4E-09 8.6E-07 5.2E-10 3.1E-10 8.6E-07 3.2E-01 8.6E-07 9.6E-01 5.6E-01 1.9E-05 1.0E-08 1.9E-01 8.6E-03
F49 9.7E-11 9.7E-11 9.1E-11 9.7E-11 9.7E-11 5.5E-08 9.7E-11 NaN 9.7E-11 NaN NaN 3.4E-01 9.7E-11 NaN NaN
F50 NaN NaN 9.7E-11 NaN NaN NaN NaN NaN 9.7E-11 NaN 9.7E-11 1.8E-05 4.1E-02 NaN NaN

+ 39 46 46 42 48 43 47 35 49 36 45 41 38 38 38
≈ 7 2 2 8 2 6 3 15 1 13 5 7 11 12 11
- 4 2 2 0 0 1 0 0 0 1 0 2 1 0 1

Appendix A. and the results are presented in Table 11.
The results show that the performance of PO remains
unaffected even if the functions are shifted 10 or 100
units in each direction of the search space.

6. Classical engineering problems

The proposed algorithm (PO) is also tested on
four well-known constrained engineering design prob-

lems: Welded beam design (WBD), speed reducer de-
sign (SRD), pressure vessel design (PVD) and ten-
sion/compression spring design (TCSD). The mathe-
matical formulations of the problems are presented in
Appendix A. The schematic views of the problems are
depicted in Figure 9 [89] and the variables involved in
these problems are presented in Table 12. The table also
presents the settings used for the parameters of PO to
solve the problems. As the engineering problems are
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Table 9: Comparison of PO with other politics inspired algorithms by
using same functions which have been used by those algorithms.

Algo Sphere Rosenbrock Ackley Griewank Rastrigin Schwefel
POA Avg. 21.0104 51.3701 2.4587 0.8011 3.6 2.11E+03

Std. 78.6304 1.21E+02 0.0027 0.0576 0.8 6.65E-02
GPO Avg. 0.3688 0.8564 0.0073 0.0246 3.51E-06 2.05E+03

Std. 16.6683 0.0841 0.9525 0.0403 7.15E-12 1.03E+02
ECO Avg. N/A 4.58E-08 3.32E-03 1.50E-03 1.00E-07 N/A

Std. N/A 5.56E-08 4.16E-03 1.68E-03 1.89E-07 N/A
PO Avg. 0 0 -8.88E-16 0 0 1.27E-05

Std. 0 0 0 0 0 0

Table 10: Impact of high-dimensionality on the performance of PO.

Dimensions = 50 Dimensions = 1000
Fn Med Avg Std Med Avg Std
F1 0 0 0 0 0 0
F2 0.000229 0.000242 0.000155 0.00023 0.000238 0.000167
F3 0 0 0 0 0 0
F4 6.2E-183 7.7E-179 0 6.7E-182 1.5E-177 0
F5 1.2E-161 2.7E-158 0 6.5E-160 1.3E-157 0
F6 0 0 0 0 0 0
F7 -275 -275 0 -5975 -5975 0
F8 6.8E-291 1.8E-274 0 3.2E-221 5.6E-208 0
F9 2.5E-184 1.5E-179 0 2.3E-180 2.1E-179 0
F10 0 0 0 0 0 0
F11 0 0 0 0 0 0
F12 0 0 0 0 0 0
F13 0.03066 0.035802 0.019449 0.235565 0.47818 0.359758
F14 0 0 0 0 0 0
F15 3.3E-212 9.9E-188 0 6.2E-124 9.9E-114 3.1E-113
F26 1.27E-05 1.27E-05 0 1.27E-05 1.27E-05 0
F27 0 0 0 0 0 0
F28 0.9 0.929167 0.046431 1 0.98 0.042164
F29 17.4695 18.42905 10.8334 66145934 65405523 2032182
F30 1.4E-203 2.8E-196 0 2.4E-202 3.1E-198 0
F31 1.9E-218 6.7E-214 0 2.9E-215 1.9E-209 0
F32 -8.9E-16 -8.9E-16 0 -8.9E-16 -8.9E-16 0
F33 1 1 0 1 1 0
F34 0 0 0 0 0 0
F35 -1958.31 -1958.31 4.65E-13 -39166.2 -39166.2 0
F36 0 0 0 0 0 0
F37 -1 -0.83333 0.380693 -1 -1 0
F38 1.21E-20 1.27E-20 3.05E-21 0 0 0
F39 1.35E-32 1.35E-32 5.59E-48 1.35E-32 1.35E-32 2.88E-48
F40 9.42E-33 9.42E-33 0 4.71E-34 4.71E-34 9.02E-50

Table 11: Exhibition of invariance to function shifting on 16 shiftable
benchmark functions, where m is the shift length, which defines how
much a function is shifted in all directions of the search space.

m=0 m=10 m=100

Avg Std Avg Std Avg Std

F1 0 0 0 0 0 0
F3 0 0 0 0 0 0
F4 7.9E-180 0 0 0 0 0
F7 -275 0 -275 0 -275 0
F9 5.9E-181 0 0 0 0 0
F10 0 0 0 0 0 0
F12 0 0 0 0 0 0
F14 0 0 0 0 0 0
F18 0 0 0 0 0 0
F21 1.38E-87 2.4E-103 1.38E-87 2.4E-103 1.38E-87 2.4E-103
F22 0 0 0 0 0 0
F27 0 0 0 0 0 0
F30 2.9E-180 0 1.04E-16 1.68E-16 4.55E-15 4.8E-15
F32 -8.9E-16 0 -8.9E-16 0 -8.9E-16 0
F36 0 0 0 0 0 0
F38 1.21E-20 4.75E-35 1.21E-20 8.1E-36 1.21E-20 5.66E-35

constrained optimization problems, a simple constraint
handling technique called death penalty (scalar penalty
function) [90] is used. In this approach, solutions which

Table 12: Variables of engineering optimization problems and param-
eter settings of PO for these problems. n denotes the number of par-
ties, members in each party and constituencies. λ is the party switch-
ing rate.

Problem Parameters PO parameters
WBD Weld thickness (x1) n = 12

Weld/bar length (x2) λ = 0.05 to 0
Beam height (x3) Tmax = 100
Beam thickness (x4)

SRD Face width (x1) n = 8
Teeth module (x2) λ = 0.1 to 0
Number of teeth (x3) Tmax = 75
First shaft length (x4)
Second shaft length (x5)
First shaft diameter (x6)
Second shaft diameter (x7)

PVD Head thickness (x1) n = 18
Shell thickness (x2) λ = 0.1 to 0
Inner radius (x3) Tmax = 60
Cylindrical section length (x4)

TCSD Wire diameter (x1) n = 14
Mean coil Diameter (x2) λ = 0.1 to 0
Active coils (x3) Tmax = 50

violate any of the constraints are penalized by a large
fitness value (in case of minimization).

6.1. Welded beam design problem (WBD)
In this problem, the optimal cost of welding a beam

with a strong member is determined. The statistical re-
sults generated from 25 randomly started independent
executions of PO are compared with some good algo-
rithms in the literature and reported in Table 13. The
table shows that PO finds the best statistical results in a
fewer number of objective function evaluations (NFEs)
as compared to the others. The values of the constraints
and the design variables obtained for the best solution
are presented and compared with the literature in Table
A.20 in Appendix A. The results show that PO per-
forms better than the others except NMPSO [91]. How-
ever, NMPSO does not fulfill the third constraint g3(x)
as precisely as PO does.

6.2. Speed reducer design problem (SRD)
In SRD, the objective is to minimize the weight of a

speed reducer subject to the constraints on stresses in
the shafts, transverse deflection of the shafts, surface
stress and bending stress of the gear teeth. The pro-
posed algorithm is statistically compared with a wide
range of other algorithms in the literature and the re-
sults are presented in Table 14. The results show the
superiority of PO over the others, while using a fewer
number of function evaluations. The values of the vari-
ables obtained for the best solution are compared with
other algorithms in Table A.21 in Appendix A. The
results show that PO performs as good as the best algo-
rithms from the literature do.
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Table 13: Comparison of the statistical results of PO with a wide range
of other algorithms in the literature for the welded beam design prob-
lem. NFEs denotes the number of objective function evaluations.

Algorithm Worst Mean Best SD NFEs

PO 1.724852 1.724851 1.724851 2.53E-07 15,600
PSO-DE [92] 1.724852 1.724852 1.724852 6.7E-16 66,600
COMDE [93] 1.724852 1.724852 1.724852 1.6E-12 20,000
DELC [94] 1.724852 1.724852 1.724852 4.1E-13 20,000
MADE [95] 1.724852 1.724852 1.724852 9.6E-16 18,000
AMDE [96] 1.724852 1.724852 1.724852 1.1E-15 18,000
MDDE [97] 1.725000 1.725000 1.725000 1.0E-15 24,000
NM–PSO [91] 1.733393 1.726373 1.724717 0.003500 80,000
WCA [37] 1.744697 1.726427 1.724856 0.004290 46,450
WOA [4] NA 1.732000 NA 0.022600 9,900
PSO [11] NA 1.742200 NA 0.012750 13,770
CPSO [98] 1.782143 1.748831 1.728024 0.012900 240,000
HPSO [99] 1.814295 1.749040 1.724852 0.040100 81,000
CDE [100] N.A. 1.768150 1.733460 N.A. NA
DE [7] 1.824105 1.768158 1.733461 0.022100 204,800
GA2 [101] 1.785835 1.771973 1.748309 0.011200 900,000
GA3 [102] 1.993408 1.792654 1.728226 0.074700 80,000
GA4 [103] 1.993408 1.792654 1.728226 0.074700 NA
CAEP [104] 3.179709 1.971809 1.724852 0.443000 50,020
CS [18] NA 2.014400 0.081300 1.946000 NA
BA [105] NA 2.142200 0.051200 2.084000 NA
CGWO [106] 2.435700 2.428900 1.725450 1.357800 NA
UPSO [107] N.A. 2.837210 1.921990 0.683000 NA
GWO [12] 2.913600 2.859400 1.942100 2.690800 NA
GSA [33] NA 3.576100 NA 1.287400 10,750

Table 14: Comparison of the statistical results of PO with a wide range
of other algorithms in the literature for the speed reducer design prob-
lem. NFEs denotes the number of objective function evaluations.

Algorithm Worst Mean Best SD NFEs

PO 2994.471057 2994.471051 2994.471047 0.000003 5,400
WCA [37] 2994.505578 2994.474392 2994.471066 0.007400 15,150
MDE [108] NA 2996.367220 2996.356689 0.008200 24,000
DELC [94] 2994.471066 2994.471066 2994.471066 0.000000 30,000
DEDS [109] 2994.471066 2994.471066 2994.471066 0.000000 30,000
ABC [110] NA 2997.058000 2997.058000 0.000000 30,000
HEAA [111] 2994.752311 2994.613368 2994.499107 0.070000 40,000
PSO–DE [92] 2996.348204 2996.348174 2996.348167 0.000006 54,350
SC [59] 3009.964736 3001.758264 2994.744241 4.000000 54,456

6.3. Pressure vessel design problem (PVD)

The objective in this problem is to optimize the to-
tal cost to design a pressure vessel, which includes ma-
terial, formation and welding of a cylindrical pressure
vessel. The statistical performance of PO is compared
with other well-known algorithms and results are pre-
sented in Table 15. The results show that PO outper-
forms the others in all three cases (worst, mean and
best), while the number of function evaluations (NFEs)
are significantly less than the others. The values of the
design variables obtained for the best solution and the
constraints are presented and compared in Table A.22
in Appendix A. The results show that PO performs bet-
ter than the others and finds the best optimal solution by
satisfying all constraints.

Table 15: Comparison of the statistical results of PO with a wide range
of other algorithms in the literature for the pressure vessel design
problem. NFEs denotes the number of objective function evaluations.

Algorithm Worst Mean Best SD NFEs

PO 5908.0250 5891.8068 5885.3997 8.4746 20,520
NMPSO [91] 5960.0557 5946.7901 5930.3137 9.1610 80,000
PSO-DE [92] NA 6059.7140 6059.7140 NA NA
TLBO [44] NA 6059.7140 6059.7140 NA NA
WOA [4] NA 6068.0500 NA 65.6519 6,300
CDE [100] 6371.0455 6085.2303 6059.7340 43.0130 204,800
HPSO [99] 6288.6770 6099.9323 6059.7143 86.2000 81,000
CPSO [98] 6363.8041 6147.1332 6061.0777 86.4500 240,000
GWO [12] 6395.3600 6159.3200 6051.5630 379.6740 NA
GA4 [103] 6469.3220 6177.2530 6059.9460 130.9290 NA
GA3 [102] 6469.3220 6177.2533 6059.9463 130.9297 80,000
G-QPSO [112] 7544.4925 6440.3786 6059.7208 448.4711 8,000
QPSO [112] 8017.2816 6440.3786 6059.7209 479.2671 8,000
PSO [11] NA 6531.1000 NA 154.3716 14,790
UPSO [107] 9387.7700 8016.3700 6154.7000 745.8690 NA
PSO [11] 14076.3240 8756.6803 6693.7212 1492.5670 8,000
GSA [33] NA 8932.9500 NA 683.5475 7,110

6.4. Tension/compression spring design problem

This is the problem of optimally designing a ten-
sion/compression spring having minimum weight. The
statistical results are compared with some good algo-
rithms in the literature and reported in Table 16. The
statistics show that NMPSO [91] outperforms PO and
other algorithms. However, it is shown in Table A.23 in
Appendix A that NMPSO does not fulfill the first and
second constraints as precisely as PO and other equiv-
alent algorithms do. Hence, we can conclude that PO
satisfies all the constraints of the problem and finds the
comparable results in significantly less iterations than
the other algorithms.

Table 16: Comparison of the statistical results of PO with a wide range
of other algorithms in the literature for the tension/compression spring
design problem. NFEs denotes the number of objective function eval-
uations.

Algorithm Worst Mean Best SD NFEs
NM–PSO [91] 0.0126 0.0126 0.0126 0.0000 80,000
PO 0.0128 0.0127 0.0127 0.0000 10,500
DELC [94] 0.0127 0.0127 0.0127 0.0000 20,000
HEAA [111] 0.0127 0.0127 0.0127 0.0000 24,000
PSO–DE [92] 0.0127 0.0127 0.0127 0.0000 24,950
MADE [95] 0.0127 0.0127 0.0127 0.0000 20,000
AMDE [96] 0.0127 0.0127 0.0127 0.0000 20,000
DELC [94] 0.0127 0.0127 0.0127 0.0000 20,000
DEDS [109] 0.0127 0.0127 0.0127 0.0000 24,000
DE [7] 0.0128 0.0127 0.0127 0.0000 204,800
HPSO [99] 0.0127 0.0127 0.0127 0.0000 81,000
ABC [110] NA 0.0127 0.0127 0.0128 30,000
CPSO [98] 0.0129 0.0127 0.0127 0.0005 240,000
GA3 [102] 0.0130 0.0127 0.0127 0.0001 80,000
WCA [37] 0.0130 0.0127 0.0127 0.0001 11,750
G-QPSO [112] 0.0178 0.0135 0.0127 0.0013 2,000
CAEP [104] 0.0151 0.0136 0.0127 0.0008 50,020
GSA [33] NA 0.0136 NA 0.0026 4,980
QPSO [112] 0.0181 0.0139 0.0127 0.0013 2,000
PSO [11] 0.0718 0.0196 0.0129 0.0117 2,000
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7. Managerial implications

The main objective of this paper is to propose a novel
nature-inspired meta-heuristic for global optimization.
The outstanding performance of the proposed algorithm
on a comprehensive suite of benchmarks against well-
known state-of-the-art algorithms proves that PO has all
those properties which are required in a good optimiza-
tion algorithm. For example, the heuristics practitioners
may incorporate RPPUS in their algorithms to improve
their exploitative skill and convergence speed. The con-
cept of logical division of population to assign a dual
role to each individual solution would also give a new
direction to algorithm designers to map their inspiration
in this way. Furthermore, the interaction between better
solutions (constituency winners in this paper) can also
be incorporated in algorithms which subdivide the pop-
ulation.

Moreover, the applicability of the proposed algorithm
is demonstrated on three well-known engineering op-
timization problems. The outstanding performance of
the proposed algorithm against very well-known other
meta-heuristics would encourage managers to apply PO
to solve other industrial and real-world optimization
problems, such as identification of key determinants for
sustainable transportation planning [113], optimizing
the design of virtual factory systems [114], optimizing
the lot-sizing [115–117], supply-chain network design-
ing, optimizing, and coordinating [118–122], optimiza-
tion of multi-product constrained and integrated eco-
nomic production quantity (EPQ) [123], maintenance
scheduling [124], sustainable transport policy evalua-
tion [125, 126], and solving joint replenishment prob-
lems [127–131].

8. Conclusion

This study presents a novel socio-inspired meta-
heuristic called Political Optimizer (PO) by mapping
different phases of the political process, such as party
formation and constituency allocation, election cam-
paign, party switching, inter-party election, and parlia-
mentary affairs. PO logically divides the population into
the political parties and constituencies, which enables
a candidate solution to update its position with respect
to two good solutions: the party leader and the con-
stituency winner. The exclusivity of this position up-
dating strategy is that each solution updates its position
with respect to a unique pair consisting of a party leader
and a constituency winner, which enhances exploration
if the solutions are distant and exploitation when so-
lutions start converging. Moreover, to further enhance

exploitation, this paper proposes a new position updat-
ing strategy called recent past-based position updating
strategy (RPPUS). The concept of party switching is
also incorporated, which helps to control the diversity of
the solutions. Finally, the interaction between the con-
stituency winners aids to further improve their position
and promotes convergence.

To evaluate the performance of PO, a comprehensive
suite of 50 benchmark functions and 15 state of the art
algorithms are used. The empirical investigation and
statistical results show that PO either outperforms the
others or performs equivalently. Moreover, the appli-
cability of PO on real world problems is also tested
by solving 4 constrained engineering design problems
and the results show the versatility of PO. Furthermore,
the impact of high-dimensionality on the performance
of PO is investigated by optimizing 30 scalable bench-
mark functions and it is shown that the performance of
PO remains consistent even if the dimensions of func-
tions are increased to 1000. Finally, it is shown that PO
is invariant to function shifting and its performance re-
mains consistent if the function landscape is shifted in
the search space.

Besides the above-mentioned qualities, PO has some
weak points which should be highlighted. First,PO adds
a little time complexity overhead due to party switching
and parliamentary affairs phases but that overhead does
not increase the cost of PO asymptotically. Second, we
presume in this paper that total number of parties, num-
ber of party members and total number of constituen-
cies are equal. This assumption makes the mapping very
simple and also reduces the overhead of tunable param-
eters. Nonetheless, we believe that PO’s overall perfor-
mance can be improved by easing this assumption but
at the cost of additional parameters and proposition of a
different constituency allocation scheme which we leave
as a future direction. Third, to achieve best results it is
necessary to well-tune the upper limit of party switching
rate (λmax) and the population size (n2).

This study opens up a wide range of possibilities for
future research. The concept of logical division of the
population and assigning dual role to candidate solu-
tions may be applied in other algorithms. RPPUS can
be incorporated in other existing or new optimization
algorithms to improve their behavior, especially their
exploitation capability. Many options can be tried to
come up with a variant of PO like investigating differ-
ent logical divisions of the population and incorporation
of independent candidates. An independent candidate
is the one who does not belong to any political party.
In future, we would like to merge this strategy with
PSO. The consistent performance of PO for the high-
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dimensional functions opens a door for the researchers
to investigate the applicability of PO to large-scale opti-
mization problems. Moreover, based on the good per-
formance for the engineering problems the capability
of PO to solve highly-constrained problems should also
be investigated. Furthermore, in politics each political
party has an agenda and an agenda can be mapped by an
objective function, which may allow each political party
to optimize different objective function(s). It would be
interesting to extend PO to solve multi-objective opti-
mization problems. Moreover, we would also apply our
proposed algorithm to complex real-life applications to
check its effectiveness.

Appendix A. Supplementary data

Appendix A.1. Mathematical formulation of WBD

minimize
x

f (x) = 1.10471x2
1 x2 + 0.04811x3 x4 (14 + x2)

subject to g1(x) = τ(x) − τmax 6 0
g2(x) = σ(x) − σmax 6 0
g3(x) = x1 − x4 6 0

g4(x) = 0.10471x2
1+

0.04811x3 x4 (14 + x2) − 5 6 0
g5(x) = 0.125 − x1 6 0
g6(x) = δ(x) − δmax 6 0
g7(x) = P − Pc(x) 6 0

range 0.1 6 xi 6 2 i = 1, 4
0.1 6 xi 6 10 i = 2, 3

where τ(x) =

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′)2

τ′ =
P√

2x1 x2

, τ′′ =
MR
J

M = P
(
L +

x2

2

)
,

R =

√
x2

2

4
+

( x1 + x3

2

)2

J = 2
{√

2x1 x2

[
x2

2

12
+

( x1 + x3

2

)2
]}

σ(x) =
6PL
x4χ

2
3

, δ(x) =
4PL3

Ex3
3 x4

Pc(x) =
4.013E

√
x2 x5

36

L2

1 −
x3

2L

√
E

4G



P = 6000lb, L = 14in, E = 30 × 106psi,

G = 12 × 106psi, τmax = 13, 600psi
σmax = 30, 000psi, δmax = 0.25in

(A.1)

Appendix A.2. Mathematical formulation of SRD

minimize
x

f (x) = 0.7854x1 x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1

(
x2

6 + x2
7

)
+ 7.4777

(
x3

6 + x3
7

)

+ 0.7854
(
x4 x2

6 + x5 x2
7

)

subject to g1(x) =
27

x1 x2
2 x3
− 1 6 0

g2(x) =
397.5
x1 x2

2 x2
2

− 1 6 0

g3(x) =
1.93x3

4

x2 x4
6 x3
− 1 6 0

g4(x) =
1.93x3

5

x2 x4
7 x3
− 1 6 0

g5(x) =

[
(745x4/x2 x3)2 + 16.9 × 106

]1/2

110x3 − 1 6 0

g6(x) =

[
(745x5/x2 x3)2 + 157.5 × 106

]1/2

85x3
7

− 1 6 0

g7(x) =
x2 x3

40
− 1 6 0

g8(x) =
5x2

x1
− 1 6 0

g9(x) =
x1

12x2
− 1 6 0

g10(x) =
1.5x6 + 1.9

x4
− 1 6 0

g11(x) =
1.1x7 + 1.9

x5
− 1 6 0

where 2.6 6 x1 6 3.6, 0.7 6 x2 6 0.8, 17 6 x3 6 28,
7.3 6 x4 6 8.3, 7.3 6 x5 6 8.3, 2.9 6 x6 6 3.9,
5.0 6 x7 6 5.5

(A.2)

Appendix A.3. Mathematical formulation of PVD

minimize
x

f (x) = 0.6224x1 x3 x4 + 1.7781x2 x2
3 + 3.1661x2

1 x4

+ 19.84x2
1 x3

subject to g1(x) = −x1 + 0.0193x
g2(x) = −x2 + 0.00954x3 6 0

g3(x) = −πx2
3 x4 − 4/3πx3

3 + 1296, 000 6 0
g4(x) = x4 − 240 6 0

where 0 6 xi 6 100 i = 1, 2
10 6 xi 6 200 i = 3, 4

(A.3)
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Appendix A.4. Mathematical formulation of TCSD

minimize
x

f (x) = (x3 + 2) x2x2
1

subject to g1(x) = 1 − x3
2x3/71, 785x4

1x4
1 6 0

g2(x) = 4x2
2 − x1x2/12, 566

(
x2x3

1 − x4
1

)

+ 1/5108x2
1 − 1 6 0

g3(x) = 1 − 140.45x1/x2
2x3 6 0

g4(x) = x2 + x1/1.5 − 1 6 0
where 0.05 6 x1 6 2.00

0.25 6 x2 6 1.30
2.00 6 x3 6 15.00

(A.4)

Table A.17: Mathematical definitions of unimodal benchmark func-
tions.

Function definitions

F1 = Σn
i=1x2

i

F2 = Σn
i=1ix4

i + random[0, 1]

F3 = ΣD
i=1|xi|i+1

F4 = Σn
i=1|xi|

F5 = maxi(|xi|, 1 ≤ i ≤ n)

F6 = Σn
i=1([xi + 0.5])2

F7 = 25 + Σn
i=1(bxic)

F8 = Σn
i=1(Σi

j=1x j)2

F9 = Σn
i=1|xi| + Πn

i=1|xi|
F10 = Σn

i=1x10
i

F11 = Σn−1
i=1 [100(xi+1 − x2

i )2 + (xi − 1)2]

F12 = Σn−1
i=1 (x2

i )(x2
i+1+1) + (x2

i+1)x2
i +1

F13 = (x1 − 1)2 + ΣD
i=2i(2x2

i − xi−1)2

F14 = Σ
D/4
i=1 (x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)2 + (x4i−2 − x4i−1)4

+ 10(x4i−3 − x4i)4

F15 = Σn
i=1x2

i + (Σn
i=10.5ixi)2 + (Σn

i=10.5ixi)4

F16 = exp(−Σn
i=1(xi/β)2m) − 2exp(−Σn

i=1x2
i )Πn

i=1cos2(xi)

F17 = Σd
i=1[Σd

j=1( j + β)(xi
j − 1

ji )]
2

F18 = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2

F19 = (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x2
2)2 + (2.625 − x1 + x1x3

2)2

F20 = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

F21 = (x1 + 10)2 + (x2 + 10)2 + e−x2
1−x2

2

F22 = 0.26(x2
1 + x2

2) − 0.48x1x2

F23 = 0.5 +
cos2(sin(|x2−y2 |))−0.5

(1+0.001(x2+y2))2

F24 = 2 x3
1

3 − 8x2
1 + 33x1 − x1x2 + 5 + [(x1 − 4)2 + (x2 − 5)2 − 4]2

F25 = 100(x2 − x2
1)2 + (1 − x1)2

Table A.18: Mathematical definitions of Multimodal benchmark func-
tions.

Function definitions

F26 = 418.9829n − Σn
i=1 − xisin(

√|xi|)

F27 = Σn
i=1[x2

i − 10cos(2πxi) + 10]

F28 = 1 + Σn
i=1sin2(xi) − 0.1e(Σn

i=1 x2
i )

F29 = Σn
i=1(x2 − i)2

F30 = Σn
i=1|xisin(xi) + 0.1xi|

F31 = Σn
i=1εi|xi|i

F32 = −20exp(−0.2
√

1/nΣn
i=1x2

i ) − exp(1/nΣn
i=1cos(2πxi)) + 20 + e

F33 = Σn
i=18 sin2[7(xi − 0.9)2] + 6 sin2[14(x1 − 0.9)2] + (xi − 0.9)2

F34 = 1 − cos(2π
√

Σn
i=1x2

i ) + 0.1
√

Σn
i=1x2

i

F35 = 1
2 Σn

i=1(x4
i − 16x2

i + 5xi)

F36 = 1/4000Σn
i=1x2

i − Πn
i=1cos(xi/

√
i) + 1

F37 =
(
Σn

i=1sin2(xi) − e−Σn
i=1 x2

i

)
e−Σn

i=1 sin2 √|xi |

F38 = (Σn
i=1|xi|)exp(−Σn

i=1sin(x2
i ))

F39 = 0.1{sin2(3πx1) + Σn
i=1(xi − 1)2[1 + sin2(3πxi + 1)]

+ (xn − 1)2[1 + sin2(2πxn)]} + Σn
i=1u(xi, 5, 100, 4)

F40 = π/n{10sin(πyi) + Σn−1
i=1 [(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2}

+ Σn
i=1u(xi, 10, 100, 4)

F41 = x2 + y2 + 25(sin2(x) + sin2(y))

F42 = −200e−0.2
√

x2+y2
+ 5ecos(3x)+sin(3y)

F43 = cos(x)sin(y) − x
y2+1

F44 = sin(x)e(1−cos(y))2
+ cos(y)e(1−sin(x))2

+ (x − y)2

F45 = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1X2 − 4x2
2 + 4x4

2

F46 = (x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6)2 + 10(1 − 1
8π )cosx1 + 10

F47 = −Σ4
i=1ciexp(−Σ3

j=1ai j(x j − pi j)2)

F48 = −Σ4
i=1ciexp(−Σ6

j=1ai j(x j − pi j)2)

F49 = −0.0001(|sin(x)sin(y)exp(|100 −
√

x2+y2

π
|)| + 1)0.1

F50 = |x2 + y2 + xy| + |sin(x)| + |cos(y)|
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Table A.19: Mathematical definitions of shifted versions of 16 benchmark test functions selected from the suite of 50 unimodal and multimodal
functions. Shifted means the landscapes are shifted m units in all directions of the search space, where m denotes the shift length.

Function Mathematical formulation Range Fmin

F1− Shifted Sphere Σn
i=1(xi − m)2 [−100 + m, 100 + m] 0

F3− Shifted Powell Sum Σn
i=1|(xi − m)|i+1 [−1 + m, 1 + m] 0

F4− Shifted Schwefel’s 2.20 Σn
i=1|(xi − m)| [−100 + m, 100 + m] 0

F7− Shifted Stepint 25 + Σn
i=S hi f ted1(b(xi − m)c) [−5.12 + m, 5.12 + m] 25 − 6n

F9− Shifted Schwefel’s 2.22 Σn
i=1|(xi − m)| + Πn

i=1|(xi − m)| [−100 + m, 100 + m] 0

F10− Shifted Schwefel’s 2.23 Σn
i=1(xi − m)10 [−10 + m, 10 + m] 0

F12− Shifted Brown Σn−1
i=1 ((xi − m)2)((xi+1−m)2+1) + ((xi+1 − m)2)(xi−m)2+1 [−1 + m, 4 + m] 0

F14− Shifted Powell Singular Σ
n/4
i=1((x4i−3 − m) + 10(x4i−2 − m))2 + 5((x4i−1 − m) − (x4i − m))2 [−4 + m, 5 + m] 0

+((x4i−2 − m) − (x4i−1 − m))4 + 10((x4i−3 − m) − (x4i − m))4

F18− Shifted Three-Hump Camel 2(x1 − m)2 − 1.05(x1 − m)4 +
(x1−m)6

6 + (x1 − m)(x2 − m) + (x2 − m)2 [−5 + m, 5 + m] 0

F21− Shifted Brent ((x1 − m) + 10)2 + ((x2 − m) + 10)2 + e−(x1−m)2−(x2−m)2
[−10 + m, 10 + m] 0

F22− Shifted Matyas 0.26((x1 − m)2 + (x2 − m)2) − 0.48(x1 − m)(x2 − m) [−10 + m, 10 + m] 0

F27− Shifted Rastrigin Σn
i=1[(xi − m)2 − 10cos(2π(xi − m)) + 10] [−5.12 + m, 5.12 + m] 0

F30− Shifted Alpine N. 1 Σn
i=1|(xi − m)sin((xi − m)) + 0.1(xi − m)| [−10 + m, 10 + m] 0

F32− Shifted Ackley −20exp(−0.2
√

1/nΣn
i=1(xi − m)2) − exp(1/nΣn

i=1cos(2π(xi − m))) + 20 + e [−32 + m, 32 + m] 0

F36− Shifted Griewank 1/4000Σn
i=1(xi − m)2 − Πn

i=1cos((xi − m)/
√

i) + 1 [−100 + m, 100 + m] 0

F38− Shifted Xin-She Yang N. 2 (Σn
i=1|(xi − m)|)exp(−Σn

i=1sin((xi − m)2)) [−2π + m, 2π + m] 0

Table A.20: Comparison of the best solution obtained from the previous algorithms for the welded beam design problem.

Algorithm X1(h) X2(l) X3(t) X4(b) g1(X) g2(X) g3(X) g4(X) g5(X) g6(X) g7(X) f(X)

NM–PSO [91] 0.205830 3.468338 9.036624 0.205730 -0.025250 -0.053122 0.000100 -3.433169 -0.080830 -0.235540 -0.031555 1.724717

PO 0.205730 3.470472 9.036624 0.205730 -0.000560 -0.003697 0.000000 -3.432985 -0.080730 -0.235540 -0.002159 1.724851

CAEP [104] 0.205700 3.470500 9.036600 0.205700 1.988676 4.481548 0.000000 -3.433213 -0.080700 -0.235538 2.603347 1.724852

HGA [132] 0.205700 3.470500 9.036600 0.205700 1.988676 4.481548 0.000000 -3.433213 -0.080700 -0.235538 2.603347 1.724852

MADE 0.205730 3.470489 9.036624 0.205730 -1.81E-12 0.000000 0.000000 -3.432984 -0.080730 -0.235540 -2.72E-12 1.724852

WCA [37] 0.205728 3.470522 9.036620 0.205729 -0.034128 -0.000035 -0.000001 -3.432980 -0.080728 -0.235540 -0.013503 1.724856

CGWO [106] 0.343891 1.883570 9.031330 0.212121 NA NA NA NA NA NA NA 1.725450

GWO [12] 0.205676 3.478377 9.036810 0.205778 NA NA NA NA NA NA NA 1.726240

CPSO [98] 0.202369 3.544214 9.048210 0.205723 -13.655547 -78.814077 -0.003350 -3.424572 -0.077369 -0.235595 -4.472858 1.728024

GA3 [102] 0.205986 3.471328 9.020224 0.206480 -0.103049 -0.231747 -0.000500 -3.430044 -0.080986 -0.235514 -58.646888 1.728226

WOA [4] 0.205396 3.484293 9.037426 0.206276 NA NA NA NA NA NA NA 1.730499

GSA [33] 0.182129 3.856979 10.000000 0.202376 NA NA NA NA NA NA NA 1.879952

CS [18] 0.182200 3.795100 9.998100 0.211100 NA NA NA NA NA NA NA 1.946000

BA [105] 0.154300 5.736100 8.862700 0.229700 NA NA NA NA NA NA NA 2.084000

PSO [11] 0.183200 4.717100 10.000000 0.218900 NA NA NA NA NA NA NA 2.146100

HS [84] 0.244200 6.223100 8.291500 0.244300 NA NA NA NA NA NA NA 2.380700
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Table A.21: Comparison of the best solution obtained from the previous algorithms for the speed reducer design problem.

Algorithm X1 X2 X3 X4 X5 X6 X7 f(X)

PO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.471
DEDS [109] 3.5+9 0.7+9 17.0000 7.3+9 7.7153 3.3502 5.2867 2994.471
DELC [94] 3.5+9 0.7+9 17.0000 7.3+9 7.7153 3.3502 5.2867 2994.471
WCA [37] 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.471
HEAA [111] 3.5000 0.7000 17.0000 7.3004 7.7154 3.3502 5.2867 2994.499
PSO-DE [92] 3.5000 0.7000 17.0000 7.3000 7.8000 3.3502 5.2867 2996.348
MDE [108] 3.5000 0.7000 17.0000 7.3002 7.8000 3.3502 5.2867 2996.357

Table A.22: Comparison of the best solution obtained from the previous algorithms for the pressure vessel design problem.

Algorithm X1 X2 X3 X4 g1(X) g2(X) g3(X) g4(X) f(X)

PO 0.7782 0.3847 40.3215 199.9733 0.0000 0.0000 -0.2602 -40.0267 5885.3997

NMPSO [91] 0.8036 0.3972 41.6392 182.4120 0.0000 0.0000 -1.5914 -57.5879 5930.3137

GWO [12] 0.8125 0.4345 42.0892 176.7587 NA NA NA NA 6051.5639

ACO [10] 0.8125 0.4375 42.1036 176.5727 NA NA NA NA 6059.0888

HPSO [99] 0.8125 0.4375 42.0984 176.6366 0.0000 -0.0358 3.1226 -63.3634 6059.7143

G-QPSO [112] 0.8125 0.4375 42.0984 176.6372 0.0000 -0.0358 -0.2179 -63.3628 6059.7208

CDE [100] 0.8125 0.4375 42.0984 176.6376 0.0000 -0.0358 -3.7051 -63.3623 6059.7340

DE [7] 0.8125 0.4375 42.0984 176.6377 NA NA NA NA 6059.7340

WOA [4] 0.8125 0.4375 42.0983 176.6390 NA NA NA NA 6059.7410

ES [9] 0.8125 0.4375 42.0981 176.6405 NA NA NA NA 6059.7456

GA3 [102] 0.8125 0.4375 42.0974 176.6540 -0.0020 -0.0358 -24.7593 -63.3460 6059.9463

GA [5] 0.8125 0.4375 42.0974 176.6541 NA NA NA NA 6059.9463

CPSO [98] 0.8125 0.4375 42.0913 176.7465 0.0000 -0.0004 -118.7687 -63.2535 6061.0777

PSO [11] 0.8125 0.4375 42.0913 176.7465 NA NA NA NA 6061.0777

GSA [33] 1.1250 0.6250 55.9887 84.4542 NA NA NA NA 8538.8359

Table A.23: Comparison of the best solution obtained from the previous algorithms for the tension/compression spring design problem.

Algorithm X1 X2 X3 g1(X) g2(X) g3(X) g4(X) f(X)

NM–PSO [91] 0.05162 0.35550 11.33327 0.00101 0.00099 -4.06186 -0.72859 0.01263
PO 0.05248 0.37594 10.24509 -0.00002 0.00000 -4.09004 -0.71439 0.01267
DEDS [109] 0.05169 0.35672 11.28897 0.00000 0.00000 -4.05379 -0.72773 0.01267
HEAA [111] 0.05169 0.35673 11.28829 0.00000 0.00000 -4.05381 -0.72772 0.01267
DELC [94] 0.05169 0.35672 11.28897 0.00000 0.00000 -4.05379 -0.72773 0.01267
WCA [37] 0.05168 0.35652 11.30041 0.00000 0.00000 -4.05340 -0.72786 0.01267
MADE [95] 0.05169 0.35672 11.28897 0.00000 0.00000 -4.05379 -0.72773 0.01267
GWO [12] 0.05169 0.35674 11.28885 NA NA NA NA 0.01267
DE [7] 0.05161 0.35471 11.41083 NA NA NA NA 0.01267
HS [84] 0.05115 0.34987 12.07643 NA NA NA NA 0.01267
CPSO [98] 0.05173 0.35764 11.24454 -0.00083 -0.00003 -4.05131 -0.72709 0.01267
PSO [11] 0.05173 0.35764 11.24454 NA NA NA NA 0.01267
WOA [4] 0.05121 0.34522 12.00403 NA NA NA NA 0.01268
GA3 [102] 0.05199 0.36397 10.89052 -0.00126 -0.00003 -4.06134 -0.72270 0.01268
ES [9] 0.05199 0.36397 10.89052 NA NA NA NA 0.01268
GSA [33] 0.05028 0.32368 13.52541 NA NA NA NA 0.01270
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