
Journal Pre-proofs

Heap-based optimizer inspired by corporate rank hierarchy for global optimi‐
zation

Qamar Askari, Mehreen Saeed, Irfan Younas

PII: S0957-4174(20)30526-1
DOI: https://doi.org/10.1016/j.eswa.2020.113702
Reference: ESWA 113702

To appear in: Expert Systems with Applications

Received Date: 22 September 2019
Accepted Date: 26 June 2020

Please cite this article as: Askari, Q., Saeed, M., Younas, I., Heap-based optimizer inspired by corporate rank
hierarchy for global optimization, Expert Systems with Applications (2020), doi: https://doi.org/10.1016/j.eswa.
2020.113702

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Heap-based optimizer inspired by corporate rank hierarchy for

global optimization

Qamar Askaria,b,∗, Mehreen Saeedb, Irfan Younasb

aDepartment of Computer Science, GIFT University, Gujranwala, Pakistan
bDepartment of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan

Abstract: In an organization, a group of people working for a common goal may not achieve

their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH).

This principle motivates us to map the concept of CRH to propose a new algorithm for optimiza-

tion that logically arranges the search agents in a hierarchy based on their fitness. The proposed

algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to

map the concept of CRH. The mathematical model of HBO is built on three pillars: the interac-

tion between the subordinates and their immediate boss, the interaction between the colleagues,

and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse

test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7

highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In

the first two experiments, the exploitative and explorative behavior of HBO is evaluated by us-

ing 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and

Friedman mean rank test that HBO outperforms and secures 1st rank. In the third experiment,

we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO at-

tains 2nd position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR

is shown to be statistically insignificant by using Bonferroni method based multiple comparison

test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1st for all

97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is

demonstrated by solving 3 constrained mechanical engineering optimization problems. The per-

formance is shown to be superior or equivalent to the other algorithms, which have been used in the

literature. The source code of HBO is publicly available at https://github.com/qamar-askari/HBO.

Keywords: Social optimization algorithm, Corporate hierarchy based optimization,

Nature-inspired meta-heuristic, Global optimization algorithm

1. Introduction

Optimization is a field of research, which deals with either minimizing or maximizing cer-

tain objective function(s). Real-world optimization problems are mostly classified as NP-Hard

∗Corresponding author

Email addresses: syedqamar@gift.edu.pk,l165502@lhr.nu.edu.pk (Qamar Askari),

mehreen.saeed@nu.edu.pk (Mehreen Saeed), irfan.younas@nu.edu.pk (Irfan Younas)

July 12, 2020

problems which classical mathematical techniques can not solve adequately or accurately. A well-

known branch of approximation algorithms is nature-inspired optimization algorithms that have

tremendous properties to properly solve such complex problems of optimization. A huge amount

of development in the area of nature-inspired optimization algorithms has been done over the past

few decades. The researchers have mapped natural processes and phenomena on optimization al-

gorithms from every sector of life. The optimization algorithms inspired by nature are categorized

into four main groups: evolution-based algorithms, swarm-based algorithms, physics-based algo-

rithms, and human-based algorithms. A few well-known and state-of-the-art algorithms from each

branch are discussed below:

1. Evolution-based algorithms: These algorithms are inspired by the process of biological

evolution. A group of individuals called population passes through biological operators,

such as selection, reproduction and mutation, and evolves through repeated applications of

these operators. One of the founding algorithms in this category is Genetic Algorithm (GA)

(Holland, 1992). GA is inspired by the concept of survival of fittest from Darwin’s theory

of evolution. One another well-known algorithm from this category is Differential Evolu-

tion (DE) (Lampinen & Storn, 2004). DE involves three fundamental operators: mutation,

recombination and selection. A few more algorithms from this category are: Evolutionary

Strategy (ES) (Huning, 1976), Genetic Programming (GP) (Koza, 1992), Fast Evolution-

ary Programming (FEP) (Yao et al., 1999), Memetic Algorithm (MA) (Moscato, 1989) and

Biogeography Based Optimization (BBO) (Simon, 2008).

2. Swarm-based algorithms: These algorithms are normally inspired by the collective intel-

ligent behavior of living organisms. Living creatures interact with each other in the real

world to achieve optimal collective behavior. One of the founding algorithms in this branch

is Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995). PSO is inspired by the

food foraging behavior of flocks of the birds. The Ant Colony Optimization (ACO) (Dorigo

& Di Caro, 1999) is another key algorithm in this category. ACO is inspired by the path

seeking behavior of ants from their colony to the food source. A few well-known algorithms

from this category are Bat Algorithm (BA) (Yang, 2010), Cuckoo Search (CS) (Yang &

Deb, 2009), Firefly Algorithm (FA) (Yang, 2009), Artificial Bee Colony (ABC) (Karaboga

& Basturk, 2007), Whale Optimization Algorithm (WOA) (Mirjalili & Lewis, 2016), Ant

Lion Optimizer (ALO) (Mirjalili, 2015a), Krill Herd (KH) (Gandomi & Alavi, 2012) and

Grey-Wolf Optimizer (GWO) (Mirjalili et al., 2014).

3. Physics-based algorithms: The researchers have also modelled the laws of physics that

work in nature behind various phenomena to address the problems of optimization. Sim-

ulated Annealing (SA) (Kirkpatrick et al., 1983) is one of the basic algorithms in this cat-

egory. SA is inspired by the metallurgical annealing process. Another very fundamental

algorithm is the Quantum-inspired Genetic Algorithm (QGA) (Narayanan & Moore, 1996),

which is a fusion of quantum computing and GA. A few more well-known examples are:

Quantum-inspired Evolutionary Algorithm (QEA) (Han & Kim, 2002), Gravitational Search

Algorithm (GSA) (Rashedi et al., 2009) , Big-Bang Crunch (BBC) (Erol & Eksin, 2006),

Hysteretic Optimization (HO) (Zaránd et al., 2002), and Gravitational Interaction Optimiza-

tion (GIO) (Flores et al., 2011).

July 12, 2020

4. Human-based algorithms: Human beings are regarded to be the smartest creature and

they always find the best methods to fix their issues. In the literature, there are so many

optimization algorithms that are influenced by human social behavior. One of the well-

referred algorithms in this category of literature is Teaching-Learning Based Optimization

(TLBO) (Rao et al., 2011). TLBO imitates student learning behavior in a classroom. A

few more algorithms are Social-Based Algorithm (SBA) (Ramezani & Lotfi, 2013), Election

Campaign Algorithm (ECA) (Lv et al., 2010), and Imperialist Competitive Algorithm (ICA)

(Atashpaz-Gargari & Lucas, 2007).

In addition to the above state-of-the-art algorithms, dozens of meta-heuristics have been proposed

in recent years. A few well-known recently proposed swarm-based meta-heuristics are Squirrel

Search Algorithm (SqSA) (Jain et al., 2019) inspired by the foraging behavior of flying squirrels,

Seagull Optimization Algorithm (SOA) (Dhiman & Kumar, 2019) inspired by migration and

attacking behavior of seagulls, Hitchcock Bird-Inspired Algorithm (HBIA) (Morais et al., 2018)

inspired by aggressive bird behavior portrayed by Hitchcock, Sea Lion Optimization (SLnO)

algorithm (Masadeh et al., 2019) inspired by hunting behavior of sea lions, Emperor Penguins

Colony (EPC) (Harifi et al., 2019) inspired by spiral-like movement of colony of penguins, Sailfish

Optimizer (SO) (Shadravan et al., 2019) inspired by hunting strategies of sailfishes, Bald Eagle

Search (BES) (Alsattar et al., 2019) inspired by hunting strategies of bald eagles, Naked-Mole

Rate (NMR) (Salgotra & Singh, 2019) inspired by matting patterns of naked-mole rats, Harris

Hawk Optimization (HHO) (Heidari et al., 2019) inspired by cooperative and chasing behavior

of Harris’ hawks, and Butterfly Optimization Algorithm (BOA) (Arora & Singh, 2018) inspired

by food searching and matting behavior of butterflies. Moreover, a few recent human-based

meta-heuristics are Team Game Algorithm (TGA) (Mahmoodabadi et al., 2018) inspired by team

game strategies used in football, basketball, and volleyball, Ludo Game-based Swarm Intelligence

(LGSI) (Singh et al., 2019) inspired by game playing rules of a board game called ludo, Poor

and Rich Optimization (PRO) (Moosavi & Bardsiri, 2019), Nomadic People Optimizer (NPO)

(Salih & Alsewari, 2019) inspired by the behavior of nomadic people, and Deer Hunting Opti-

mization Algorithm (DHOA) (Brammya et al., 2019) inspired by deer hunting strategies of human

beings. Moreover, the current development in the field of optimization algorithms includes, but

is not limited to, Slime Mould Algorithm (SMA) (Li et al., 2020) inspired by oscillation mode

of the slime in nature, Henry Gas Solubility Optimization (HGSO) (Hashim et al., 2019) inspired

by the Henry’s law, Equilibrium Optimizer (EO) (Faramarzi et al., 2020) inspired by control

volume mass balance models used to estimate both dynamic and equilibrium states, Chimp Opti-

mization Algorithm (COA) (Khishe & Mosavi, 2020) inspired by the individual intelligence and

sexual motivation of chimps in their group hunting, Political Optimizer (PO) (Askari et al., 2020)

inspired by the multi-party political system, and Artificial Electric Field Algorithm (AEFA)

(Yadav et al., 2019) inspired by Coulombs’ law of electrostatic force and Newtons’ law of motion.

The focus of this study is developing a novel meta-heuristic inspired by some social behavior

of human-beings because the outstanding results of human behavior-based algorithms have taken

the field of evolutionary and swarm intelligence to the next level. The algorithms based on human

behavior can further be categorized as sport-based algorithms, human social interaction-based

July 12, 2020

Table 1: A few human behavior-based optimization algorithms.

Algorithm Year Inspiration

Sports-based algorithms

Ludo Game-based Swarm Intelligence (LGSI) (Singh et al., 2019) 2019 Ludo playing strategies

Deer Hunting Optimization Algorithm (DHOA) (Brammya et al., 2019) 2019 Deer hunting strategy of humans

Team Game Algorithm (TGA) (Mahmoodabadi et al., 2018) 2018 Games involving teams

Football game algorithm (FGA) (Fadakar & Ebrahimi, 2016) 2016 Best position finding to score a goal

World cup optimization (WCO) (Razmjooy et al., 2016) 2016 FIFA world cup competitions

Soccer league competition (SLC) algorithm (Moosavian & Roodsari, 2014) 2014 Soccer league competitions

League championship algorithm (LCA) (Kashan, 2014) 2014 Championship environment

Colonization-based algorithms

Anarchic society optimization (ASO) (Ahmadi-Javid, 2011) 2011 Anarchic behavior in social grouping

Imperialist competitive algorithm (ICA) (Atashpaz-Gargari & Lucas, 2007) 2007 Empires formation by countries

Society and civilization optimization (SCO) (Ray & Liew, 2003a) 2003 Intra and inter-society interactions

Social-interaction based algorithms

Poor and Rich Optimization (PRO) (Moosavi & Bardsiri, 2019) 2019 Achieving wealth and improve economically

Expectation Algorithm (ExA) (Shastri et al., 2019) 2019 Society individuals ass problem variables

Social Media Inspired Algorithm (SMIA) (Crawford et al., 2019) 2019 Interaction on social media

Supply-Demand-Based Optimization (SDO) (Zhao et al., 2019b) 2019 Relation of supplier and consumer

Nomadic People Optimizer (NPO) (Salih & Alsewari, 2019) 2019 Behavior of nomadic people

Social Mimic Optimization (SMO) (Balochian & Baloochian, 2019) 2019 Assimilation to famous people

Socio-evolution and learning optimization (SELO) (Kumar et al., 2018) 2017 Families interaction

Social group optimization (SGO) (Satapathy & Naik, 2016) 2016 Complex problem solving social behavior

Social based algorithm (SBA) (Ramezani & Lotfi, 2013) 2013 Social interaction

Teaching learning based optimization (TLBO) (Rao et al., 2011) 2012 Classroom interaction

Group leader optimization algorithm (GLO) (Daskin & Kais, 2011) 2011 Influence of group leaders on group members

Social emotional optimization algorithm (SEOA) (Xu et al., 2010) 2010 Emotion guided behavior

Politics-based algorithms

Political Optimizer (PO) (Askari et al., 2020) 2020 Multi-party political system

Greedy politics optimization (GPO) (Melvix, 2014) 2014 Political strategies adopted by politicians

Election campaign algorithm (ECA) (Lv et al., 2010) 2010 Election campaign by candidates

Parliamentary optimization algorithm (POA) (Borji, 2007) 2007 Competition for parliamentary head elections

algorithms, colonization-based algorithms, and politics-based algorithms. A few well-known

and recently proposed algorithms along with their source of inspirations from each subcategory

of human behavior-based algorithms are presented in Table 1. One kind of social interaction

among the human beings can be seen in the organizations where the individuals are arranged in

a hierarchy called organizational chart or corporate rank hierarchy (CRH). An organization is a

structured group of people because a group of individuals working for a common goal can not

achieve their objective unless they organize themselves in a certain structure. This has given rise

to the organization’s hierarchical arrangements so that the individuals can become sufficiently

July 12, 2020

efficient to achieve the organizational goals. Therefore, most organizations nowadays arrange

their employees in the hierarchy of corporate officers called corporate rank hierarchy (CRH). The

hierarchy of corporate ranks is a tree-like structure. The boss is appointed at the top rank (the

root of the tree) and the staff are arranged in the tree-like parent-child nodes. Each parent node is

considered as the head/manager and the children of that node are considered as the subordinates.

It is the responsibility of each subordinate to interact and follow his/her immediate boss (the

parent node). The ultimate goal of the hierarchy is accomplishing the business-related tasks in an

optimal manner through interaction among the individuals. For illustration, an example of CRH is

presented in Figure 1 (a). In the figure, the CEO is the boss and designated as the root node. COO

and CFO are direct subordinates to the CEO: however, they are heading multiple departments.

The individuals at the same level in the tree are considered as the colleagues.

Figure 1: Partial examples of corporate rank hierarchy and 3-ary min heap.

The research and applications in expert and intelligent systems is one of the most flourishing

sub-area of Artificial Intelligence (AI), which mimics some of the intelligent behaviors of human

experts to solve real-life complex and huge problems (Zhao et al., 2019a; Nabil, 2016). In certain

cases, choices that need to be optimized are focused on multiple variables with enormous search

spaces and meta-heuristics are the intelligent and efficient strategies for solving the optimization

problems with these intractable and complex search spaces (Nabil, 2016). This motivates us to

develop a novel human-behavior based meta-heuristic, which maps the concept of corporate rank

hierarchy in a very distinctive manner to an optimization algorithm named as Heap Based Op-

timizer (HBO). In order to simulate CRH, we use the heap data structure. Heap is a non-linear

tree-based data structure, mostly used for the implementation of priority queues. An example of

3 degree (3-ary) min-heap is presented in Figure 1 (b). The utilization of the heap data struc-

ture in the mapping of CRH helps to arrange the solutions in a hierarchy based on their fitness

and use that arrangement in position-updating mechanism of the algorithm in a very unique way.

The proposed algorithm smartly models 3 types of behavior of the employees, e.g., the interac-

tion of subordinates with their immediate head, the interaction between the colleagues, and the

self-contribution of individuals. The proposed algorithm can be adapted to solve a wide-range of

engineering, industry, science and business related optimization problems arising in expert and in-

telligent systems. Many of the real-life resource scheduling, production planning, vehicle routing,

network optimization, robotics-path planning, packaging problems and many other engineering

and industry-related optimization problems of intelligent and expert systems can be solved using

the proposed HBO. Moreover, this paper also contributes in the following respects:

1. To the best of our knowledge, the concept of corporate rank hierarchy has not been mapped

yet. However, the arrangement of the individuals in an organizational chart allows the group

of individuals to accomplish their task collectively in an optimized way. The mapping of

the corporate rank hierarchy and interaction between the individuals in that hierarchy is a

unique idea. The use of the heap data structure for mapping makes the proposed algorithm

a novel approach.

July 12, 2020

2. The performance of the proposed algorithm is evaluated on 97 benchmark functions and 3

mechanical engineering optimization problems. The set of benchmarks includes unimodal

functions, multimodal functions, and CEC-BC-2017 (N.H. Awad, 2017) test functions. The

performance is compared with 7 well-known algorithms including the winner of CEC-BC-

2017. It is shown through experiments and Friedman mean rank statistical test that HBO se-

cures 1st rank for the unimodal functions as well as the multimodal functions. However, the

rank of HBO for CEC-BC-2017 is 2nd after EBO-CMAR (Kumar et al., 2017) (CEC-BC-

2017 winner) but multiple comparison test based on Bonferroni method (Zar, 1999) shows

the difference in ranks of HBO and EBO-CMAR is not statistically significant. Moreover,

the overall rank of HBO is 1st for all 97 functions. Such an excellent performance on a

comprehensive suite of benchmarks against well-known algorithms shows that HBO has

excellent optimization capability and is expected to perform well on real-life optimization

problems.

3. Another property of HBO is its simplicity. However, we anticipate that the variations in

terms of improvements will be made in the future. Moreover, the mapping method encour-

ages researchers to integrate other well-known data structures into existing or new optimiza-

tion algorithms.

Section 2 describes the inspiration and mathematical modeling of CRH by using heap data

structure, and Section 3 presents how the proposed algorithm can be implemented. In Section

4 the performance of proposed algorithm is evaluated by solving benchmark functions, and Sec-

tion 5 asseses the applicability of proposed algorithm on mechanical engineering problems. The

optimization capabilities, practical implications, and the future directions are briefly discussed in

Section 6. Finally, Section 7 presents the concluding remarks.

2. Heap Based Optimizer (HBO)

In this section, we discuss the inspiration and present the mathematical model of the proposed

Heap Based Optimizer (HBO).

2.1. Inspiration

The officials in a company or corporation are given corporate titles (designations). The titles

define the job descriptions and responsibilities of the employees. Although the designations vary

from corporation to corporation and from business to business, they are arranged in a hierarchy

and are given many names such as corporate rank hierarchy (CRH), organizational chart tree, or

corporate hierarchy structure, etc. A partial sample of CRH is presented in Figure 1 (a). The

organizational structure is a set of methods that split the task into particular duties and coordinate

it (Ahmady et al., 2016). The primary aim of this structure (hierarchy) is giving the formal

activities an organized shape and achieving the end goals optimally. The upper levels usually

represent the executives and members of the board, the middle levels represent the managers

and supervisors, and the lower levels represent the workers. Individuals at the upper level are

considered to be the heads/superiors for those at the lower level, individuals at the same level are

considered to be the colleagues/co-workers and those who are at the lower levels are considered to

July 12, 2020

be subordinated to the upper levels. The decision-making power is maintained at the higher levels

in the centralized organizational structure (Jones, 2019) and individuals perform a job by making

their effort, working with their colleagues, and responding to their immediate boss.

The mapping of the entire idea is split into four steps in this article: (i) Modeling the corporate

rank hierarchy (CRH), (ii) mathematically modeling the interaction between the subordinates and

the immediate boss, (iii) mathematically modeling the interaction between the colleagues, and

(iv) self contribution of an employee to accomplish a task.

2.2. Modeling the corporate rank hierarchy

Considering the nature of CRH, we chose to model CRH with the heap data structure. By

definition, the heap is a non-linear tree-shaped data structure with the following two properties: (i)

Heap is a complete tree. A tree is called a complete tree if every level of the tree, except possibly

the last level, is filled and all nodes in the last level are as far left as possible. (ii) In the case of

min-heap, the key of every parent node is either smaller than or equal to the keys of its children

and in case of max-heap, the key of every parent node is either greater than or equal to the keys of

its children.

Figure 2: An illustration of the modeling of the CRH with min-heap.

The whole CRH is considered as the population. Each formal designation is treated as the

search agent. In implementation phase, a search agent corresponds to a heap node. The fitness

of the search agent is considered as the key of the node in the heap and the index of the search

agent in population is considered as the value of the node in the heap. The process of CRH

modelling through a heap data structure is shown in Figure 2, where xi denotes ith search agent of

the population. The curve in the objective space represents the landscape of an assumed objective

function and the search agents are drawn on the fitness landscape according to their fitness. By

using the fitness of each search agent as a key, a heap is constructed. As can be seen in the Figure

2, the nodes find their positions in the heap according to their fitness. For instance, x4 is the best

solution in the population, so is the root of the heap. It should be noted that min-heap has to be

used for minimization and max-heap for maximization.

Figure 3: Illustration of the impact of C and T on values of γ . (a) depicts two scenarios for two different values of C

and (b) highlights the region where γ λ k from Eq. (1) can be positioned at any location, in both scenarios.

2.3. Mathematical modeling of the interaction with immediate boss

The rules and policies are imposed from the upper levels in a centralized organizational struc-

ture and subordinates follow their immediate boss. By assuming that each parent node is an

July 12, 2020

immediate boss to its children, this behaviour can be modelled by updating the position of each

search agent ~xi with reference to its parent node B by using the following equation:

xk
i (t +1) = Bk + γ λ k|Bk− xk

i (t)| (1)

where t denotes the current iteration, k in superscript denotes the kth component of a vector, and

| | computes the absolute value. λ k is the kth component of vector~λ , which is randomly generated

as follows:

λ k = 2 r−1 (2)

where r is a random number generated according to the uniform distribution from the range [0,1].
In Eq. (1), γ is a carefully designed parameter, which is computed as follows:

γ = |2−
(t mod T

C
)

T
4C

| (3)

where t denotes the current iteration, T represents the total number of iterations, and C is a

user-defined parameter and explained below. With the course of iterations, γ reduces linearly

from 2 to 0 and after reaching 0, it starts to increase back to 2 with iterations. However, it is

the parameter C that determines how many cycles γ will complete in T iterations. For illustra-

tion see Figure 3, where part (a) of the figure shows how γ changes with iterations. For better

illustration, two scenarios are depicted. We set C = 2 in the first scenario, and C = 5 in the

second scenario ; however, in both scenarios T is set to 200. Figure 3 (b) highlights the region

where γ λ k from Eq. (1) can be positioned at any location depending upon the value of random

parameter λ k. For example in scenario 1 (C = 2) at t = 75, γ λ k can have any value in the range

[−1, 1] depending upon the value of λ k and in scenario 2 (C = 5) at t = 75, γ λ k can have

any value in the range [−1.5, 1.5] depending upon the value of λ k. From Figure 3, we can learn

C should play a crucial role in Eq. (1) because C controls the rate of variation in the values of γ λ k.

Figure 4: Impact of the parameter C on the performance of HBO for 1 unimodal and 3 multimodal functions, where

the number of dimensions (variables) = 30. T denotes the total iterations, t denotes iterations per cycle, and C denotes

total number of cycles. Note: In this experiment T is assumed to be equal to 1300.

To see the impact of the parameter C on the performance of HBO, we solved several unimodal

and multimodal benchmark functions by varying C from the lowest value to a high value. For in-

stance, the impact of the value of C on the performance of HBO for Sphere, Generalized Penalized,

Ackley, and Griewank benchmark functions is shown in Figure 4. We can learn from the combined

impact on the curves of unimodal and multimodal functions that the strong variation or the high

value of C allows search agents to escape the local optima at the expense of weak exploitation. For

example, if the total iterations are 1300, the performance for the multimodal functions (General-

ized Penalized, Ackley, and Griewank) at small values of C is not very good because multimodal

functions have many local optima and the algorithm might not be in a position to escape them.

However, the results for the multimodal functions improve if the value of C is increased but the

July 12, 2020

performance stabilizes after C = T
42

. Based on these simulations we can fix the minimum value of

C for the set of experiments on multimodal functions. Furthermore, the unimodal functions do not

have local optima and the parameter C may behave differently for these functions. For instance,

we are presenting the curve for Sphere function in Figure 4. The performance for the Sphere (uni-

modal) function is best at T
25

and the performance starts deteriorating after that. By performing this

experiment for many other functions we decided to calculate the balanced value of C as follows:

C = ⌊T/25⌋ (4)

Figure 5: Illustration of the position updating mechanism of Eq. (1). (a) illustrates how γ λ k scales |Bk−xk
i (t)| in any

iteration and (b) highlights the regions around Bk which HBO searches in different iterations.

The position updating mechanism of Eq. (1) is depicted in Figure 5. By assuming

D = |Bk− xk
i (t)|, Figure 5(a) highlights how γ λ k scales D up or down. For instance, in 40th

iteration, γ λ k lies in the range [−2, 2], which scales D in the range [−2D, 2D]. However, in 25th

iteration γ λ k|Bk− xk
i (t)| gives value in the range [−0.5D, 0.5D] because γ λ k lies in [−0.5, 0.5].

Similarly, in any iteration, the range of γ λ k|Bk− xk
i (t)| can be determined from Figure 5(a). The

role of γ λ k|Bk−xk
i (t)| in Eq. (1) is to decide the area of the region to search around Bk. In Figure

5 (b) the regions around Bk, at different values of t, are highlighted. For instance, the size of the

region to search around Bk in 40th and 80th iterations is twice the distance |Bk− xk
i (t)|. The size

of the region to search around Bk in 10th, 30th, 50th, and 70th iterations is equal to the distance

|Bk−xk
i (t)|. However, in 15th, 25th, 55th, and 65th iterations the size of the region to search around

Bk is half the distance |Bk− xk
i (t)|. The discussion can be concluded as the γ λ k makes a search

agent capable of escaping local optima when it scales D up and exploit the region around Bk when

it scales D down.

2.4. Mathematical modeling of the interaction between colleagues

The officials with the same rank are considered to be the colleagues. They interact with each

other in order to fulfill the official tasks. In heap, we assume the nodes at the same level are

colleagues and each search agent ~xi updates it position with reference to its randomly selected

colleague ~Sr according to the equation given below:

xk
i (t +1) =

{

Sk
r + γ λ k|Sk

r − xk
i (t)|, f (~Sr)< f (~xi(t))

xk
i + γ λ k|Sk

r − xk
i (t)|, f (~Sr)≥ f (~xi(t))

(5)

where f denotes the objective function and computes the fitness of the search agent. The position

updating mechanism of Eq. (5) is very similar to Eq. (1); however, Eq. (5) enables the search

agent to explore the region around Sk
r if f (~Sr)< f (~xi(t)) and allows to explore the region around xk

i

otherwise. For illustration see Figure 6. This behavior promotes both exploration and exploitation.

The random selection of the colleagues incorporates the diversity and always searching around

good solutions promotes exploitation.

July 12, 2020

Figure 6: Illustration of the position updating mechanism of both cases of Eq. (5)

2.5. Modeling of the self contribution of an employee

This phase maps the concept of self-contribution of an employee. The mapping of this phase

is kept very simple: however, we suggest a few variations in Section 6. We are modeling this

behavior by retaining the previous position of the employee in the next iteration, as expressed

below:

xk
i (t +1) = xk

i (t) (6)

In Eq. (6), the search agent ~xi does not change its position for its kth design variable in the next

iteration. This behavior allows us to regulate the rate of change of a search agent. The next

subsection discusses how exploration can be controlled with this equation.

2.6. Putting it all together

In this subsection, we discuss how to merge the position updating equations, modelled in previ-

ous subsections, into one equation. A major challenge is determining the probabilities of selection

for all three equations as their probabilities of selection play a significant role in balancing explo-

ration and exploitation. A roulette wheel is designed to balance these probabilities, which is split

into three proportions p1, p2, and p3. The selection of the proportion p1 allows a search agent to

update its position using Eq. (6). The limit of p1 is computed as follows:

p1 = 1−
t

T
(7)

where t denotes current the iteration and T denotes maximum number of iterations. The selection

of proportion p2 allows a search agent to update its position using Eq (1). The limit of p2 is

computed as follows:

p2 = p1 +
1− p1

2
(8)

Finally, the selection of p3 represents updating position using Eq. (5) and limit of p3 is computed

as follows:

p3 = p2 +
1− p1

2
= 1 (9)

A general positions updating mechanism of HBO is presented in the following equation:

xk
i (t +1) =















xk
i (t), p≤ p1

Bk + γ λ k|Bk− xk
i (t)|, p > p1 and p≤ p2

Sk
r + γ λ k|Sk

r − xk
i (t)|, p > p2 and p≤ p3 and f (~Sr)< f (~xi(t))

xk
i + γ λ k|Sk

r − xk
i (t)|, p > p2 and p≤ p3 and f (~Sr)≥ f (~xi(t))

(10)

where p is a randomly generated number in the range [0, 1]. It is important to discuss why we are

calculating p1, p2 and p3 as mentioned above. Two well-known functions sphere and griewank are

used to analyze the impact of distinct combinations of p1 and p2 on exploration and exploitation

of these functions. See Figure 7 for illustration. Since griewank is a multimodal function with

July 12, 2020

regularly distributed and widespread local minima, the performance for this function can only

be increased if the algorithm can explore its search space. From griewank function in Figure 7,

we can learn that the performance improves if the value of p1 increases or in other words the

participation of Eq. (6) increases; however, the performance starts decreasing if p2 increases

by fixing p1 at any point. It should be noted that by increasing p2 the participation of Eq. (1)

increases but participation of Eq. 5 decreases. Conclusively, both Eq. (6) and Eq. (5) enhance

exploration. However, the role of Eq. (1) will be prominent for sphere function. Since sphere

is a unimodal function, the performance for this function can only be enhanced if the algorithm

can exploit promising areas once they are discovered. From sphere function in Figure 7, we

can learn that the performance increases if both p1 and p2 increase but after a certain limit the

performance begins to deteriorate by raising p2 any further because the participation of Eq. (5)

in the form of exploitation starts getting compromised. Conclusively, both Eq. (1) and Eq. (5)

promote exploitation and after assigning a handsome proportion to p1 for exploration the rest of

the proportion should be equally divided for Eq. (1) and Eq. (5).

Figure 7: Impact of different distinct combinations of p1 and p2 on exploration and exploitation of griewank and

sphere functions.

The whole discussion concludes the argument that Eq. (6) enhances exploration, Eq. (1) en-

hances exploitation and convergence, and Eq. (5) promotes both the exploration and exploitation.

Based on these observations, p1 is kept higher in beginning and is linearly reduced over the course

of iterations, which reduces exploration with iterations and enhances exploitation with iterations.

After computing p1, the rest of the span is divided into two equal parts, which makes attraction

towards the boss and colleagues equally probable.

3. Implementation of HBO and complexity overhead analysis

In this section, all the important steps of HBO and their implementation-related details are

discussed. Furthermore, it is justified that integrating heap into the implementation of HBO does

not affect the time and space complexity of the proposed algorithm asymptotically.

3.1. Steps of HBO

1. Definition and initialization of the parameters: Initialize general parameters, such as the

size of the population (N), number of design variables/dimensions (D), maximum number

of iteration (T), and ranges of the design variables (Li, Ui). The algorithm specific parameter

C can be computed by using Eq. (4).

2. Initialization of the population: Generate a random population P of N search agents, each

consisting of D dimensions. The representation of population P is presented below:

P =











~xT
1

~xT
2
...

~xT
N











=











x1
1 x2

1 x2
1 . . . xD

1

x1
2 x2

2 x2
2 . . . xD

2
...

...
...

...
...

x1
N x2

N x2
N . . . xD

N











July 12, 2020

Figure 8: Illustration of different functions of the heap. Number of search agents = 13, where heap.value stores the

indices of the search agents in the population and heap.key stores the fitness of the corresponding search agents.

3. Building the heap: Heap can generally be a d-ary tree; however, we use 3-ary (ternary) heap

to implement CRH in this paper. Although heap is a tree-shaped data structure, it can be

implemented efficiently using an array because it has the property of completeness. The

following are some significant d-ary heap-based operations needed to implement HBO.

• parent (i): Assuming the heap is implemented as an array, this function receives the

index of a node and returns the index of the parent of that node. The formula to

compute the index of the parent of node i is given below:

parent(i) = ⌊
i+1

d
⌋ (11)

where ⌊ ⌋ denotes the floor function, which returns the greatest integer less than or

equal to the input. For example, parent(13) = ⌊14
3
⌋= 4, as depicted in Figure 8.

• child (i, j): In a 3-ary heap a node can have maximum 3 children. In our mapping we

can say, a boss may not have more than 3 direct subordinates. This function returns

the index of the jth child of a node i. A constant-time mathematical formulation of this

function is given below:

child(i, j) = d× i−d + j+1 (12)

For example, as illustrated in Figure 8, the index of the 2nd child of node 2 is computed

as:

child(2,2) = 6−3+2+1 = 6

• depth (i): Considering the depth of the last level equals to 0, the depth of any node i

can be computed in constant time by using the following formula:

depth(i) = ⌈logd(d× i− i+1)⌉−1 (13)

where ⌈ ⌉ denotes the ceil function, which returns the smallest integer greater than

or equal to the input. For example, the depth of node at index 27 in heap array is

computed as:

depth(27) = ⌈log3(81−27+1)−1⌉= ⌈2.6476⌉= 3

• colleague (i): All nodes at the level of a node i are considered the colleagues

of node i. This function returns the index of any randomly selected colleague

of node i and it can be computed by generating any random integer in the

range [d ddepth(i)−1−1
d−1

+1, d ddepth(i)−1
d−1

]. For example, the range for the colleagues of node

6 is highlighted in Figure 8 and computed as follows:

[

3×3depth(6)−1−1

3−1
+1,

3×3depth(6)−1

3−1

]

= [5,13]

July 12, 2020

• Heapify_Up (i): It searches upward in the heap and inserts the node i at its correct

location to maintain the heap property. The pseudo code for this operation is presented

in Algorithm 1.

Algorithm 1 Heapify_Up (i)

Input: i (the index of the node we are trying to heapify)

⊲ Assuming that the rest of the nodes fulfill the heap property

while i 6= root and heap[i].key < heap[parent(i)].key do
swap(heap[i], heap[parent(i)])
i← parent(i)

end

Finally, the algorithm to build the heap is presented in Algorithm 2. For a population of 13

search agents, a heap is built in Figure 8 where heap.value stores the indices of the search

agents in the population and heap.key stores the fitness of the corresponding search agents.

Please note that all the operations presented above except Heapi f y_U p() and Build_heap()

Algorithm 2 Build_Heap (P, N)

Input: P (population of search agents), N (population size)

for i← 1 to N do
heap[i].value← i

heap[i].key← f (xi)
Heapify_Up (i)

end

are constant time operations; however, the time complexity of Heapi f y_U p() is O(logdN)
and time complexity of Build_Heap() is O(N) (Zhu et al., 2019a).

4. Repeated applications of position updating mechanism: Search agents update their positions

repeatedly in accordance with earlier discussed equations and attempt to converge on the

optimum global. The main body of HBO is presented in Algorithm 3.

3.2. Complexity overhead analysis

Most optimization algorithms use O(ND) space to store population and use O(N) space to

store cost/fitness of all search agents. However, their overall space complexity can be expressed

as O(ND) where N denotes the total number of search agents in population and D denotes the

number of dimensions of the problem. The space complexity of HBO is also bounded by O(ND)
because population consumes O(ND) and heap consumes O(N) space.

The time complexity analysis of most algorithms involves analyses of three components. (i)

The time complexity of initialization of the population, generally bounded by O(ND), (ii) time

complexity of initial fitness evaluation, generally bounded by O(NC0b j), where Cob j represents

the cost of the objective function, and (iii) time complexity of the main loop, generally bounded

July 12, 2020

Algorithm 3 HBO_Main_Body ()

for t ← 1 to T do
Compute γ by using Eq. (3)

Compute p1 by using Eq. (7)

Compute p2 by using Eq. (8)

for I ← N down to 2 do
i← heap[I].value ⊲ i is the index of the search agent in population P corresponds

to Ith node in heap. The heap is constructed in Algorithm 2.

bi← heap[parent(I)].value ⊲ bi is the index of the parent of I

ci← heap[colleague(I)].value ⊲ ci is the index of a random colleague of I
~B←~xbi ⊲ ~B is the position vector of the parent of I
~S←~xci ⊲ ~S is the position vector of a random colleague of I

for k← 1 to D do
p← rand()
xk

temp ← update xk
i (t) by using Eq. (10)

end

if f (~xtemp)< f (~xi(t)) then
~xi(t +1)←~xi(t)

end

Heapify_Up (I)

end

end

return xheap[1].value

by O(T ND+ T NC0b j), where T denotes the total number of iterations. Since the cost of the

objective functions varies from function to function, the general time complexity T (N) of such

algorithms can be expressed as follows:

T (N) =

{

O(T ND), D >C0b j

O(T NC0b j), Otherwise
(14)

On the contrary, the time complexity analysis of HBO involves analyses of four components:

(i) The time complexity of initialization of the population bounded by O(ND), (ii) time complexity

of initial fitness evaluation bounded by O(NC0b j), (iii) time complexity of Build_Heap bounded

by O(N), and (iv) time complexity of the main loop bounded by O(T ND+T NC0b j +T NlogdN),
where additional T NlogdN is for calling heapify after updating each search agent. The overall

time complexity T (N) of HBO is also expressible through Eq. (14) because calling heapify for

each search agent does not add any significant overhead to the overall time complexity. It should

be noted that logdN denotes the number of levels in the heap and the heaps we use to address most

of the optimization problems only have 4 to 6 levels.

July 12, 2020

4. Experiments to evaluate the performance of HBO

A global optimization algorithm should be able to explore the search space to find promising

areas and exploit the promising areas to converge on the global optimum. An algorithm requires a

very nice equilibrium between exploration and exploitation to converge to the global optimum. In

this section, we evaluate the performance and the behaviour of HBO from these three perspectives.

Table 2: Descriptions of unimodal fixed-dimension benchmark functions.

f.no. Name Vars Range fmin f.no. Name Vars Range fmin

f1 Beale 2 [-4.5,4.5] 0 f6 Wayburn Seader 3 2 [-500,500] 19.10588

f2 Booth 2 [-10,10] 0 f7 Leon 2 [-1.2,1.2] 0

f3 Brent 2 [-10,10] 0 f8 Cube 2 [-10,10] 0

f4 Matyas 2 [-10,10] 0 f9 Zettl 2 [-5,10] -0.00379

f5 Schaffer N. 4 2 [-100,100] 0.292579

Table 3: Descriptions of unimodal variable-dimension benchmark functions.

f.no. Name Vars Range fmin f.no. Name Vars Range fmin

f10 Sphere 30 [-100,100] 0 f18 Rosenbrock 30 [-30,30] 0

f11 Powell Sum 30 [-1,1] 0 f19 Brown 30 [-1,4] 0

f12 Schwefel’s 2.20 30 [-100,100] 0 f20 Dixon and Price 30 [-10,10] 0

f13 Schwefel’s 2.21 30 [-100,100] 0 f21 Powell Singular 30 [-4,5] 0

f14 Step 30 [-100,100] 0 f22 Xin-She Yang 30 [-20,20] 0

f15 Stepint 30 [-5.12,5.12] -155 f23 Perm 0,D,Beta 5 [-Var,var] 0

f16 Schwefel’s 2.22 30 [-100,100] 0 f24 Sum Squares 30 [-10,10] 0

f17 Schwefel’s 2.23 30 [-10,10] 0

4.1. Experimental setup

To evaluate the performance of HBO, we are using 97 benchmark functions, which are clas-

sified in 5 groups: (i) Unimodal fixed-dimension benchmark functions, (ii) unimodal variable-

dimension benchmark functions, (iii) multimodal fixed-dimension benchmark functions, (iv) mul-

timodal variable-dimension benchmark functions, and (v) shifted, rotated, hybrid, and composite

benchmark functions from CEC-BC-2017 (N.H. Awad, 2017). The names of these functions and

their other related properties are presented in Tables 2, 3, 4, 5, and 6, respectively. In each table,

Vars denotes the number of dimensions (design variables) of the functions, Range defines the lower

and upper bounds of the design variables, and fmin represents the global minimum of the functions.

Moreover, Table 2 describes the fixed-dimension unimodal benchmark functions, Table 3 presents

variable-dimension unimodal benchmark functions, Table 4 describes fixed-dimension multimodal

benchmark functions, Table 5 presents variable-dimension multimodal benchmark functions, and

Table 6 presents shifted, rotated, hybrid, and composite benchmark functions from CEC-BC-2017.

The 2D landscapes of few of the functions from each category are presented in Figure 9. The re-

searchers have used a suite of 23 classical benchmark functions in many literature articles (Mirjalili

& Lewis, 2016; Mirjalili et al., 2014; Mirjalili, 2016; Rashedi et al., 2009); however, we extended

July 12, 2020

Table 4: Descriptions of multimodal fixed-dimension benchmark functions.

f.no. Name Vars Range fmin f.no. Name Vars Range fmin

f25 Egg Crate 2 [-5,5] 0 f39 Cross function 2 [-10,10] 0

f26 Ackley N.3 2 [-32,32] -195.629 f40 Cross leg table 2 [-10,10] -1

f27 Adjiman 2 [-1,2] -2.02181 f41 Crowned cross 2 [-10,10] 0.0001

f28 Bird 2 [-2pi, 2pi] -106.765 f42 Easom 2 [-100,100] -1

f29 Camel 6 Hump 2 [-5,5] -1.0316 f43 Giunta 2 [-1,1] 0.060447

f30 Branin RCOS 2 [-5,5] 0.397887 f44 Helical Valley 3 [-10,10] 0

f31 Goldstien Price 2 [-2,2] 3 f45 Himmelblau 2 [-5,5] 0

f32 Hartman 3 3 [0,1] -3.86278 f46 Holder Table 2 2 [-10,10] -19.2085

f33 Hartman 6 6 [0,1] -3.32236 f47 Pen Holder 2 [-11,11] -0.96354

f34 Cross-in-tray 2 [-10,10] -2.06261 f48 Test Tube Holder 2 [-10,10] -10.8723

f35 Bartels Conn 2 [-500,500] 1 f49 Shubert 2 [-10,10] -186.731

f36 Bukin 6 2 [(-15,-5), (-5,-3)] 180.3276 f50 Shekel 4 [0, 10] -10.5364

f37 Carrom Table 2 [-10,10] -24.1568 f51 Three-Hump Camel 2 [-5,5] 0

f38 Chichinadze 2 [-30,30] -43.3159

Table 5: Descriptions of multimodal variable-dimension benchmark functions.

f.no. Name Vars Range fmin f.no. Name Vars Range fmin

f52 Schwefel’s 2.26 30 [-500,500] -418.983 f61 Styblinski-Tang 30 [-5,5] -1174.98

f53 Rastrigin 30 [-5.12,5.12] 0 f62 Griewank 30 [-100,100] 0

f54 Periodic 30 [-10,10] 0.9 f63 Xin-She Yang N. 4 30 [-10,10] -1

f55 Qing 30 [-500,500] 0 f64 Xin-She Yang N. 2 30 [-2pi,2pi] 0

f56 Alpine N. 1 30 [-10,10] 0 f65 Gen. Penalized 30 [-50,50] 0

f57 Xin-She Yang 30 [-5,5] 0 f66 Penalized 30 [-50,50] 0

f58 Ackley 30 [-32,32] 0 f67 Michalewics 30 [0,pi] -29.6309

f59 Trignometric 2 30 [-500,500] 0 f68 Quartic Noise 30 [-1.28,1.28] 0

f60 Salomon 30 [-100,100] 0

their count to 97 in this study for a thorough assessment of the proposed algorithm. The perfor-

mance of HBO is compared with 7 highly-referred state-of-the-art algorithms in the literature. The

names of the algorithms are gravitational search algorithm (GSA) (Rashedi et al., 2009), particle

swarm optimization (PSO) (Eberhart & Kennedy, 1995), sine cosine algorithm (SCA) (Mirjalili,

2016), moth flame optimization (MFO) (Mirjalili, 2015b), multi-verse optimizer (MVO) (Mirjalili

et al., 2015), cuckoo search (CS) (Yang & Deb, 2009), and effective butterfly optimizer using co-

variance matrix adapted retreat phase (EBO-CMAR) (Kumar et al., 2017). The parameter settings

of all these algorithms are taken from their original papers and are presented in Table 7. All the

algorithms are coded in MATLAB programming software and simulations are run on a Core i7-

4650U with 8 GB RAM. The MATLAB code will be released at GitHub after acceptance of the

paper. The codes of all algorithms except PSO are published by their original authors. All results

are produced by executing each algorithm 30 times for each benchmark function with randomly

initialized populations.

Figure 9: 2D landscapes of a few benchmark functions from all 5 categories. (a) Fixed-dimension unimodal func-

tions, (b) Variable-dimension unimodal functions, (c) Fixed-dimension multimodal functions, (d) Variable-dimension

multimodal functions, and (e) Rotated-Shifted functions.

July 12, 2020

Table 6: Descriptions of the benchmark functions from CEC 2017 (N.H. Awad, 2017)

f.no. Name Vars Range fmin

Unimodal functions

f69 Shifted and Rotated Bent Cigar Function 10 [-100,100] 100

Multimodal functions

f70 Shifted and Rotated Rosenbrock’s Function 10 [-100,100] 300

f71 Shifted and Rotated Rastrigin’s Function 10 [-100,100] 400

f72 Shifted and Rotated Expanded Scaffer’s F6 Function 10 [-100,100] 500

f73 Shifted and Rotated Lunacek BiRastriginFunction 10 [-100,100] 600

f74 Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [-100,100] 700

f75 Shifted and Rotated Levy Function 10 [-100,100] 800

f76 Shifted and Rotated Schwefel’s Function 10 [-100,100] 900

Hybrid functions (N is basic number of functions)

f77 Hybrid Function 1 (N=3) 10 [-100,100] 1000

f78 Hybrid Function 2 (N=3) 10 [-100,100] 1100

f79 Hybrid Function 3 (N=3) 10 [-100,100] 1200

f80 Hybrid Function 4 (N=4) 10 [-100,100] 1300

f81 Hybrid Function 5 (N=4) 10 [-100,100] 1400

f82 Hybrid Function 6 (N=4) 10 [-100,100] 1500

f83 Hybrid Function 6 (N=5) 10 [-100,100] 1600

f84 Hybrid Function 6 (N=5) 10 [-100,100] 1700

f85 Hybrid Function 6 (N=5) 10 [-100,100] 1800

f86 Hybrid Function 6 (N=6) 10 [-100,100] 1900

Composite functions (N is basic number of functions)

f87 Composite Function 1 (N=3) 10 [-100,100] 2000

f88 Composite Function 2 (N=3) 10 [-100,100] 2100

f89 Composite Function 3 (N=4) 10 [-100,100] 2200

f90 Composite Function 4 (N=4) 10 [-100,100] 2300

f91 Composite Function 5 (N=5) 10 [-100,100] 2400

f92 Composite Function 6 (N=5) 10 [-100,100] 2500

f93 Composite Function 7 (N=6) 10 [-100,100] 2600

f94 Composite Function 8 (N=6) 10 [-100,100] 2700

f95 Composite Function 9 (N=6) 10 [-100,100] 2800

f96 Composite Function 10 (N=3) 10 [-100,100] 2900

f97 Composite Function 11 (N=3) 10 [-100,100] 3000

Table 7: Algorithms used for comparative analysis and their parameter settings. NFEs denotes the number of objective

function evaluations.

Algorithm Parameters setting NFEs

GSA (Rashedi et al., 2009) N = 50,α = 20,G0 = 100,k = [N → 1] 50,000

PSO (Eberhart & Kennedy, 1995) N = 50,c1 = 2,c2 = 2,w = [0.9→ 0.2] 50,000

SCA (Mirjalili, 2016) N = 50,a = 2, [r1,r2,r3,r4] from corresponding eq. 50,000

MFO (Mirjalili, 2015b) N = 30 50,000

MVO (Mirjalili et al., 2015) N = 60,WEPmax = 1,WEPmin = 0.2 50,000

CS (Yang & Deb, 2009) N = 20, pa = 0.25 50,000

EBO-CMAR (Kumar et al., 2017) PS1,max = 18D, PS1,min = 4D, PS2,max = 46.8D, PS2,min = 10D, H = 6 50,000

σ = 0.3, CS = 100, probls = 0.1, c f els = 0.25∗FEmax

HBO N = 40, [C, p1, p2] from corresponding equations. 50,000

July 12, 2020

4.2. Evaluation of the exploitation capability of HBO

The area around the good solutions is considered promising for the global optimum which is

why many algorithms search the area around good solutions by attracting the poor search agents

to them. HBO follows the same rule but in a different way. In HBO, a hierarchical approach is

used in which each child exploits the area around its parent, as depicted in Figure 10 (a). Two

experiments are performed to practically assess the exploitative capability of HBO. It should be

noted that the unimodal functions are used in both experiments because unimodal functions are

deemed a helpful source for assessing the algorithm’s exploitative capacity. In the first experiment,

the results for fixed-dimension unimodal benchmark functions are compared with other algorithms

in Table 8 and in the second experiment, the results for variable-dimension unimodal benchmark

functions are compared with other algorithms in Table 9. In the case of fixed-dimension functions,

HBO and a few other algorithms share 1st position for all functions except f 4 and f 7; however, the

results for f 4 and f 7 are also very good and stochastically equivalent to the other good performers.

In the case of variable-dimension functions, HBO outperforms the other algorithms by securing

1st position for all functions except f 13, f 17, f 18, f 21 and f 23; however, the performance for

these 5 functions is also comparable to the others. From the outcomes, we can conclude that HBO

has excellent exploitation capability and can deliver better outcomes in challenging environments.

There are a few reasons behind good exploitative behavior of HBO. First, the value of γ in the range

[−1,1] allows search agents to exploit area around their bosses/colleagues. Second, a gradual

increase in the selection probability of Eq. (1) and Eq. (5) allows the population to evolve towards

the better solutions. Third, a search agent is allowed to update its position only if the next position

is better than the previous position.

Figure 10: (a) Depicts the hierarchical position updating approach and (b) illustrates the search agent’s own impact

and the impact of boss and colleagues on its position updating.

4.2.1. Statistical analysis of the results for unimodal functions

To see the overall rank of each algorithm, we have performed Friedman mean rank

test. Friedman test is a non-parametric statistical test developed by Milton Friedman

(Friedman, 1937; Milton, 1939; Friedman, 1940). Friedman test involves sorting each block

of rows together, then considering the ranked column values. The mean ranks of all algorithms

given by Friedman test for unimodal functions are presented in Figure 11. Smallest bar or lowest

value on the bar in the figure indicates the best mean rank. The results show that HBO secures

1st rank and EBO-CMAR (winner of CEC-BC-2017) secures 2nd rank; however, the difference

between the ranks of HBO and EBO-CMAR is very minute and insignificant. Conclusively,

HBO has comparatively good exploitative capability, which is little better than the winner of

CEC-BC-2017 and significantly better than the others.

Table 8: Comparison of the performance of HBO with other algorithms on unimodal fixed-dimension functions.

f.no. Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

f1 Med 0 6.29E-21 0 7.23E-05 0 1.6E-08 0 0

continued . . .

July 12, 2020

. . . continued

Fn Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

Mean 0 9.48E-21 0 7.88E-05 2.35E-32 1.98E-08 0 0

Std 0 7.41E-21 0 5.6E-05 1.01E-31 1.44E-08 0 0

f2 Med 0 8.29E-21 0 0.000148 0 1.36E-07 0 0

Mean 0 1.2E-20 0 0.000313 0 1.77E-07 0 0

Std 0 1.3E-20 0 0.000331 0 1.61E-07 0 0

f3 Med 1.38E-87 1.51E-05 1.38E-87 1.38E-87 1.38E-87 1.38E-87 1.38E-87 1.38E-87

Mean 1.38E-87 4.09E-05 1.38E-87 1.38E-87 1.38E-87 1.38E-87 1.38E-87 1.38E-87

Std 6.8E-103 6.78E-05 4.6E-103 4.6E-103 4.6E-103 4.6E-103 4.6E-103 2.4E-103

f4 Med 5.1E-107 4.68E-22 1.3E-95 1.7E-132 2.6E-142 3.55E-09 1.21E-55 0

Mean 9.21E-78 6.88E-22 7.36E-93 2.1E-121 2.75E-66 5.03E-09 1.26E-52 0

Std 5.05E-77 7.43E-22 3.08E-92 9.8E-121 1.38E-65 5.21E-09 4.33E-52 0

f5 Med 0.292579 0.301431 0.292579 0.292579 0.292579 0.292579 0.292579 0.292579

Mean 0.292579 0.306436 0.292579 0.292579 0.292687 0.292579 0.292579 0.292579

Std 7.14E-17 0.014464 7.93E-17 1.76E-07 0.000288 6.19E-07 6.73E-11 9.2E-09

f6 Med 19.10588 19.10588 19.10588 19.11139 19.10588 19.10677 19.10588 19.10588

Mean 19.10588 19.10588 19.10588 19.11828 19.10588 19.10717 19.10588 19.10588

Std 1.45E-14 3.4E-15 9.17E-15 0.014647 6.76E-15 0.001452 7.47E-15 2.37E-15

f7 Med 8.53E-17 0.00257 1.5E-22 6.5E-05 0.001156 1.25E-08 0 7.36E-21
Mean 3.59E-13 0.002669 1.45E-20 0.000133 0.004254 2.48E-08 0 3.90E-12
Std 1.29E-12 0.002082 3.86E-20 0.000196 0.005276 3.4E-08 0 1.21E-08

f8 Med 0 0 0 0 0 0 0 0

Mean 0 0 0 0 0 0 0 0

Std 0 0 0 0 0 0 0 0

f9 Med -0.00379 -0.00379 -0.00379 -0.00379 -0.00379 -0.00379 -0.00379 -0.00379

Mean -0.00379 -0.00379 -0.00379 -0.00379 -0.00379 -0.00379 -0.00379 -0.00379

Std 1.76E-18 9.9E-19 1.33E-18 2.89E-10 1.33E-18 2.9E-08 1.33E-18 0

Table 9: Comparison of the performance of HBO with other algorithms on unimodal variable-dimension functions.

f.no. Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

f10 Med 4.6E-28 2.4E-17 2.1E-12 0.00029 3.1E-10 0.19031 7.8E-05 8.3E-16
Mean 8.5E-27 2.4E-17 4.8E-11 0.00737 800 0.21839 0.00011 8.99E-16
Std 3.6E-26 8.5E-18 2.1E-10 0.02329 2768.87 0.06965 0.00011 2.71E-16

f11 Med 5.3E-70 5E-18 4.9E-25 2.2E-15 3.2E-31 8.6E-08 4.4E-17 5.73E-33
Mean 1.3E-64 2.7E-17 6.6E-22 2E-10 1.2E-27 8.8E-08 1.1E-15 6.53E-32
Std 7.3E-64 6.2E-17 2.8E-21 8E-10 5E-27 5.9E-08 2.9E-15 1.72E-31

f12 Med 2E-18 2.3E-08 3.6E-06 1.5E-05 100 2.62075 0.01978 4.56E-06
Mean 2.8E-18 2.3E-08 6.8E-06 5.9E-05 76.0004 2.8031 0.02831 5.27E-06
Std 3.8E-18 3.2E-09 8.9E-06 0.00013 83.0658 0.79795 0.03062 2.23E-06

f13 Med 1.13756 3.4E-09 0.41017 11.7186 67.6111 0.62211 10.5873 0.000477
Mean 1.21633 0.01449 0.40665 13.7426 66.4658 0.65522 11.5805 0.000802

Std 0.8007 0.07246 0.11811 8.47197 8.71094 0.20993 3.53693 0.000709

f14 Med 3.1E-28 1.9E-17 2.1E-12 4.11205 3.3E-10 0.19494 0.00012 8.25E-16
Mean 1.3E-26 2E-17 1.5E-10 4.20256 3588.09 0.19032 0.00017 8.07E-16
Std 5.4E-26 6.2E-18 5.3E-10 0.4928 6365.06 0.02881 0.00018 2.04E-16

f15 Med -155 -119 -133 -107 -155 -147 -155 -122
Mean -155 -118.96 -132.16 -106.16 -155 -147.8 -154.56 -106.1
Std 0 2.93655 10.455 4.61591 0 2.39792 1.00333 3.12291

f16 Med 6.6E-19 58.5087 9.7E-06 2.5E-06 400 1.1E+19 1E+10 1.82E-05
Mean 1.5E-18 63.6029 0.0002 7.5E-05 448 1.1E+21 1E+10 3.22E-05
Std 1.7E-18 48.0521 0.00067 0.0003 204.369 3.6E+21 0 2.62E-05

continued . . .

July 12, 2020

. . . continued

Fn Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

f17 Med 2.7E-59 3.1E-88 2.1E-19 0.01581 8.6E-19 2E-15 7.6E-06 8.12E-37
Mean 2.8E-50 4.3E-88 2.8E-16 1711.85 3.2E-11 1.6E-14 0.00151 3.94E-35
Std 1.5E-49 4.6E-88 1.2E-15 8248.58 1.6E-10 4.9E-14 0.00631 1.32E-34

f18 Med 76.1145 26.0798 25.9212 31.1826 555.187 31.8312 29.517 9.933503

Mean 63.8433 28.9477 3643.9 73.3545 3209394 265.897 48.8975 9.769767

Std 33.5034 13.9235 17994.4 103.248 1.6E+07 531.457 29.1874 1.136834

f19 Med 5.3E-31 4.2E-17 31 2E-08 12 0.00053 6.9E-07 3.43E-15
Mean 2.5E-30 4.3E-17 39 7.8E-07 14.48 0.00055 1.3E-06 3.87E-15
Std 5.3E-30 1.3E-17 24.1039 2.8E-06 9.36358 0.00018 1.3E-06 1.91E-15

f20 Med 0.66667 0.66667 0.67049 0.72082 95.7188 0.85047 0.69866 0.666667

Mean 0.66673 0.67272 96.1583 2.6131 40292.9 2.075 1.01916 0.666667

Std 0.00028 0.03027 134.03 4.85844 83888.4 2.71328 0.63911 3.01E-12

f21 Med 0.00166 0.01148 390.268 0.01223 211.189 0.32012 0.0071 5.12E-09

Mean 0.00186 0.02005 690.979 2.52091 892.32 0.32042 0.0102 8.81E-09

Std 0.00074 0.02257 812.839 12.164 1296.1 0.15215 0.00737 1.34E-08

f22 Med 4E-232 3.6E-41 4E-232 6E-199 4E-232 1E-177 4E-232 4.3E-232

Mean 4E-232 1.6E-35 4E-232 5E-189 4E-232 2E-159 4E-232 4.3E-232

Std 0 5E-35 0 0 0 8E-159 0 0

f23 Med 1.13066 348.325 0.07123 19.9472 0.52853 0.22093 1.26415 2.016307
Mean 1.4738 512.377 0.18433 21.5403 7.27586 0.39812 1.48717 2.163735
Std 1.44998 469.867 0.27907 13.2359 15.7645 0.48897 1.32319 2.010001

f24 Med 6.1E-29 1.9E-16 8.1E-10 2.6E-05 300 0.15061 7.2E-06 1.03E-12
Mean 2E-28 2E-16 68 0.00023 564 0.18363 1.3E-05 1.60E-12
Std 5E-28 4.3E-17 98.8264 0.00052 670.746 0.10162 1.2E-05 1.21E-12

Figure 11: Result of Friedman Mean Rank Test for all unimodal functions. Smaller bars/outcomes on the bars denote

the higher ranks.

4.3. Evaluation of the exploration capability of HBO

By comparing the landscapes of multimodal and unimodal benchmark functions presented

in Figure 9, we can easily find that reaching the global optimum for multimodal functions is

tougher than the unimodal functions because multimodal functions have many local optima and

an optimization algorithm needs to escape them. A search agent may escape local optimum if

force is applied to the search agent from different directions to pull it out of the local optimum.

This is how HBO attains exploration. Before to discuss it in detail, let the exploration capacity of

HBO first be evaluated by optimizing multimodal benchmark functions and comparing efficiency

with other algorithms. First experiment is performed for fixed-dimension multimodal benchmark

functions. Although, these functions have fixed number of dimensions (design variables) and can

not be scaled up or down but they offer a very challenging landscapes to optimize, for illustration

see Figure 9 (c). The results of HBO and all other algorithms for the fixed-dimension multimodal

benchmarks are presented in Table 10. The findings obviously demonstrate that in most instances,

HBO reaches the global optimum. If we compare the results then HBO shares 1st position for

all functions except f 40, f 41 and f 44. Performance for such functions, however, is also similar

to the algorithms that give the best results for these functions. Second experiment is performed

July 12, 2020

for variable-dimension multimodal benchmark functions. The dimensionality, in addition to the

local optima, makes these functions more complex and more difficult to optimize. The capacity

of HBO to solve variable-dimension multimodal functions is compared with other algorithms in

Table 11. The findings indicate that HBO is able to explore the search space tremendously. In

all instances, HBO outperforms competitors except f 54, f 63 and f 68; however, the performance

for these three functions is also competitive. The sources of excellent capacity for exploration are

discussed below:

• As discussed in Section 2, Eq. (6) allows search agents to converge gradually, thus stops

them from converging to some local optimum rapidly.

• In HBO, unlike many well-known optimization algorithms, neither all search agents update

their position with reference to a common good solution (global leader) nor a search agent

updates the position with reference to only one better solution. In fact, each search agent

follows its own boss, as depicted in Figure 10 (a), which allows each search agent to explore

vicinity around a different good solution. Moreover, a search agent, for its different design

variables, might be following a different solution depending upon the position updating

equation selected probabilistically, see Figure 10 (b) for illustration. In Figure 10 (b), it is

shown that x7 is updating its one design variable with reference to its boss x3, other with

reference to its colleague x1, and one another is keeping unchanged.

• Another source of exploration in HBO is the definition of γ . Whenever it gives value in the

range [−2, −1] or [1, 2] the search agent has a chance to jump out of the vicinity bounded

by the distance between the search agent and the reference solution, which enhances the

exploration capability of HBO. It has already been depicted in Figure 5 (b). Furthermore,

the repetitions of these ranges for γ are increased if the value of C is increased.

4.3.1. Statistical analysis of the results for multimodal functions

To determine the overall rank of each algorithm for the multimodal functions, the results of

Friedman mean rank test are reported in Figure 12. Smallest bar or lowest value on the bar in

the figure indicates the best mean rank. The results show that HBO secures 1st rank and EBO-

CMAR secures 2nd rank; however, in this case, the difference between the ranks of HBO and

EBO-CMAR is not minute. The performance of HBO and most of the comparative algorithms for

fixed-dimension multimodal functions is nearly equivalent; however, the real strength of HBO can

be seen in the case of variable-dimension benchmark functions in which HBO mostly outperform

the other algorithms including EBO-CMAR. Conclusively, HBO demonstrates good exploration

capability especially in the case of variable-dimension benchmark functions.

Table 10: Comparison of the performance of HBO with other algorithms on multimodal fixed dimension functions.

f.no. Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

f25 Med 0 8.12E-20 1E-129 4.4E-158 0 2.26E-07 7.73E-52 0

Mean 0 1.09E-19 7.8E-128 3.5E-150 0 2.94E-07 1.09E-49 0

Std 0 1.16E-19 1.7E-127 1.7E-149 0 2.6E-07 1.91E-49 0

f26 Med -195.629 -195.629 -195.629 -195.629 -195.629 -195.629 -195.629 -195.629

continued . . .

July 12, 2020

. . . continued

Fn Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

Mean -195.629 -195.629 -195.629 -195.629 -195.629 -195.629 -195.629 -195.629

Std 5.78E-14 5.8E-14 5.8E-14 6.38E-05 5.8E-14 2.9E-06 5.8E-14 3E-14

f27 Med -2.02181 -2.02138 -2.02181 -2.02181 -2.02181 -2.02181 -2.02181 -2.02181

Mean -2.02181 -2.02119 -2.02181 -2.02181 -2.02181 -2.02181 -2.02181 -2.02181

Std 1.36E-15 0.000654 1.36E-15 7.6E-10 1.36E-15 3.49E-11 1.36E-15 4.68E-16

f28 Med -106.765 -106.765 -106.765 -106.753 -106.765 -106.765 -106.765 -106.765

Mean -106.765 -106.616 -106.765 -106.745 -106.765 -106.765 -106.765 -106.765

Std 2.95E-14 0.556386 8.7E-15 0.019459 2.8E-14 2.35E-06 4.1E-15 2.72E-14

f29 Med -1.03163 -1.03163 -1.03163 -1.03162 -1.03163 -1.03163 -1.03163 -1.03163

Mean -1.03163 -1.03163 -1.03163 -1.03162 -1.03163 -1.03163 -1.03163 -1.03163

Std 6.71E-16 5.55E-16 6.72E-16 1.29E-05 6.8E-16 5.75E-08 6.8E-16 7.4E-17

f30 Med 0.397887 0.397887 0.397887 0.39818 0.397887 0.397887 0.397887 0.397887

Mean 0.397887 0.397887 0.397887 0.398279 0.397887 0.397887 0.397887 0.397887

Std 0 0 0 0.000339 0 2.58E-08 0 0

f31 Med 3 3 3 3.000004 3 3 3 3

Mean 3 3 3 3.00001 3 3.000001 3 3

Std 1.04E-15 1.83E-15 9.46E-16 1.33E-05 1.68E-15 6.55E-07 9.64E-16 0

f32 Med -3.86278 -3.86278 -3.86278 -3.85468 -3.86278 -3.86278 -3.86278 -3.86278

Mean -3.86278 -3.86278 -3.86247 -3.85551 -3.86278 -3.86278 -3.86278 -3.86278

Std 2.71E-15 1.99E-15 0.001576 0.002786 2.27E-15 3.02E-07 2.27E-15 9.36E-16

f33 Med -3.322 -3.322 -3.19957 -3.0753 -3.2031 -3.32199 -3.322 -3.322

Mean -3.322 -3.322 -3.22063 -3.03156 -3.23811 -3.26481 -3.322 -3.29822
Std 1.36E-15 4.53E-16 0.113038 0.145542 0.06013 0.060747 4.53E-16 0.05013

f34 Med -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261

Mean -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 -2.06261

Std 9.03E-16 9.06E-16 9.06E-16 5.31E-06 9.06E-16 6.14E-09 9.06E-16 4.68E-16

f35 Med 1 1.000004 1 1 1 1.00274 1 1

Mean 1 1.00001 1 1 1 1.002914 1 1

Std 0 1.31E-05 0 0 0 0.001642 0 0

f36 Med 180.3276 180.3277 180.3276 180.3276 180.3276 180.3276 NA NA
Mean 180.3276 180.3278 180.3276 180.3276 180.3276 180.3276 NA NA
Std 0 0.000329 0 0 0 0 NA NA

f37 Med -24.1568 -24.1568 -24.1568 -24.1435 -24.1568 -24.1568 -24.1568 -24.1568

Mean -24.1568 -24.1373 -24.1568 -24.1383 -24.1568 -24.1568 -24.1568 -24.1568

Std 8.9E-15 0.043688 8.97E-15 0.015637 5.08E-15 1.6E-06 5.85E-15 5.92E-15

f38 Med -42.9444 -42.9386 -42.9444 -42.9433 -42.9444 -42.9444 -42.9444 -42.9444

Mean -42.9444 -42.8605 -42.8728 -42.9429 -42.9444 -42.9444 -42.9444 -42.9444

Std 3.61E-14 0.153608 0.167332 0.001715 2.9E-14 4.06E-06 2.9E-14 1.47E-14

f39 Med 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05

Mean 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05 4.85E-05

Std 1.38E-20 6.92E-21 6.92E-21 1.1E-10 6.92E-21 1.36E-13 6.92E-21 7.01E-21

f40 Med -0.08478 -0.00762 -0.08478 -0.00037 -0.08284 -0.00035 -0.00436 -0.08478

Mean -0.08472 -0.00754 -0.15413 -0.37981 -0.10401 -0.00038 -0.00648 -0.26782
Std 0.000356 0.000899 0.255101 0.482087 0.189542 0.000141 0.0054 0.378938

f41 Med 0.00118 0.013535 0.00118 0.413084 0.001207 0.227099 0.024604 0.00118

Mean 0.001179 0.013084 0.001012 0.282322 0.008629 0.22724 0.029771 0.009655
Std 6.56E-07 0.001716 0.000406 0.240743 0.015171 0.037235 0.01734 0.000448

f42 Med -1 -1 -1 -0.99958 -1 -0.99999 -1 -0.98999
Mean -1 -1 -1 -0.99952 -1 -0.99999 -1 -0.98999
Std 0 0 0 0.000378 0 8.9E-06 0 9.90E-06

f43 Med 0.06447 0.06447 0.06447 0.064476 0.06447 0.06447 0.06447 0.06447

Mean 0.06447 0.06447 0.06447 0.064478 0.06447 0.06447 0.06447 0.06447

Std 4.82E-17 4.25E-17 4.84E-17 6.06E-06 6.23E-17 7.09E-10 5.2E-17 3.91E-17

continued . . .

July 12, 2020

. . . continued

Fn Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

f44 Med 2.31E-29 0.002338 1.53E-38 0.000147 0.000153 1.75E-05 1.27E-33 2.19E-10
Mean 9.77E-26 0.007471 4.36E-34 0.001891 0.001914 5.41E-05 1.64E-27 1.89E-09
Std 2.77E-25 0.012988 2.02E-33 0.005523 0.003791 7.55E-05 8.17E-27 3.40E-09

f45 Med 0 5.05E-20 0 0.003713 0 1.44E-07 1.02E-23 0

Mean 7.89E-32 8.85E-20 2.84E-31 0.004536 2.21E-31 2.39E-07 9.24E-22 6.89E-31
Std 2.41E-31 8.59E-20 3.86E-31 0.004803 3.62E-31 2.74E-07 2.66E-21 3.39E-31

f46 Med -19.2085 -19.2085 -19.2085 -19.2011 -19.2085 -19.2085 -19.2085 -19.2085

Mean -19.2085 -19.1934 -19.161 -19.1994 -19.2085 -19.2085 -19.2085 -19.2085

Std 8.47E-15 0.02884 0.237557 0.00849 1.1E-14 3.32E-07 6.99E-15 3.35E-15

f47 Med -0.96353 -0.96341 -0.96353 -0.96352 -0.96353 -0.96353 -0.96353 -0.96353

Mean -0.96353 -0.96336 -0.96353 -0.96352 -0.96353 -0.96353 -0.96353 -0.96353

Std 0 0.000164 0 1.85E-05 0 6.19E-10 0 1.17E-16

f48 Med -10.8723 -10.8612 -10.8723 -10.8723 -10.8723 -10.8723 -10.8723 -10.8723

Mean -10.8723 -10.8601 -10.8723 -10.8723 -10.8562 -10.8652 -10.8723 -10.8723

Std 3.61E-15 0.012144 3.63E-15 4.13E-07 0.023801 0.009704 3.63E-15 1.87E-15

f49 Med -186.731 -185.585 -186.731 -186.618 -186.731 -186.731 -186.731 -186.731

Mean -186.731 -184.279 -186.731 -186.549 -186.731 -186.731 -186.731 -186.731

Std 2.64E-14 3.674921 4.26E-14 0.167024 3.12E-14 7.45E-05 2.62E-10 2.02E-08

f50 Med -10.5364 -10.5364 -10.5364 -4.91002 -10.5364 -10.5363 -10.5364 -10.5364

Mean -10.5364 -10.5364 -10.1038 -5.05406 -9.17268 -9.89116 -10.5364 -10.5365
Std 1.81E-15 2.08E-15 1.497388 1.893045 2.810418 1.783183 8.22E-14 1.87E-15

f51 Med 0 7.03E-21 9.2E-129 9.8E-154 0 7.66E-09 6.28E-54 1.24E-59
Mean 0 9.84E-21 1.4E-126 2.2E-146 0 1.22E-08 2.02E-50 3.94E-57
Std 0 9.87E-21 4.5E-126 9.7E-146 0 1.05E-08 9.77E-50 3.33E-58

Table 11: Comparison of the performance of HBO with other algorithms on multimodal variable dimension functions.

f.no. Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

f52 Med 1.27E-05 327.8278 199.3841 280.8342 134.4251 152.8595 124.8529 173.779
Mean 2.368779 325.6861 197.0912 280.2942 133.0182 153.686 121.3023 197.8038
Std 3.680208 14.32713 34.56364 9.926151 22.691 19.59828 15.69451 24.93263

f53 Med 1.492439 16.41682 80.59118 3.602768 157.2026 92.58562 66.32891 11.93951
Mean 1.757761 17.41178 79.8289 10.18856 157.5637 96.53296 66.89123 23.25561
Std 1.244442 4.114998 21.80321 14.53029 33.24362 27.12155 11.0364 5.031696

f54 Med 1.242823 1 2.775754 4.20689 4.255549 1.002174 1.170081 1

Mean 1.225406 1 2.775754 4.531994 4.113488 1.002159 1.16335 1

Std 0.109622 1.02E-16 0.955203 1.744219 1.097844 0.000456 0.025051 1.24E-13

f55 Med 7.98E-11 1592117 6.29E-11 5111.529 3.03E-06 346.6131 1E+10 4.85E-07
Mean 4.96E-09 2193799 1.33E-09 44938.17 1.29E-05 348.8602 1E+10 0.000414
Std 1.35E-07 2192991 5.36E-09 165063.9 2.73E-05 107.5889 0 0.001591

f56 Med 1.87E-12 2.33E-09 5.97E-06 0.005094 4.440211 3.68881 4.801046 3.52E-06
Mean 7.03E-09 2.38E-09 0.355371 0.019103 7.646744 3.758177 5.486771 9.63E-06
Std 2.04E-08 4.63E-10 1.229393 0.047921 7.69664 1.351876 1.712033 1.44E-05

f57 Med 5.28E-22 2.86E-06 50742.82 1.28E-05 367131.9 0.033149 0.775464 3.1E-11
Mean 1.67E-19 0.001128 1928062 0.000228 4481183 2.602246 8.208223 5.63E-11
Std 4.77E-19 0.003176 6519140 0.000456 10848431 10.10839 19.11906 8.56E-11

f58 Med 2.22E-14 3.48E-09 1.4E-06 18.60399 18.98799 0.650862 1.935688 1.08E-05
Mean 2.73E-14 3.43E-09 3.95E-06 13.92582 14.11539 0.735326 1.701354 1.10E-05
Std 1.47E-14 6.89E-10 6.03E-06 7.874642 8.439071 0.619771 1.005471 4.05E-08

f59 Med 1 5152.369 5.933111 103.8615 121.266 182.0208 129.2541 5.485088
Mean 1 6565.999 8.117298 107.4402 60130.07 182.1578 131.8499 8.300152

continued . . .

July 12, 2020

. . . continued

Fn Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

Std 2.14E-16 4248.258 4.972892 20.73517 130692.8 27.56456 27.77208 4.818281

f60 Med 0.199873 1.308996 0.299873 0.199985 4.099873 0.499874 1.399901 0.199873

Mean 0.229873 1.248939 0.347873 0.256104 6.071873 0.547873 1.378919 0.179873

Std 0.046609 0.233003 0.06532 0.096212 3.701522 0.096264 0.268042 0.041404

f61 Med -1174.98 -1097.23 -1076.03 -612.026 -1019.48 -1005.34 -1106.92 -1174.98

Mean -1174.98 -1107.13 -1085.08 -613.355 -1015.61 -1011.56 -1100.76 -1174.98

Std 4.22E-14 22.28142 31.57904 31.91868 47.41921 38.73212 22.74872 0.027262

f62 Med 0 0 0.012316 0.00159 0.039202 0.034666 0.001853 1.96E-13
Mean 7.4E-18 0.000493 0.011133 0.115381 0.758264 0.034398 0.005808 2.09E-13
Std 2.82E-17 0.002206 0.00644 0.211554 1.383064 0.009681 0.009444 1.19E-13

f63 Med 8.45E-22 6.67E-30 9.39E-25 1.59E-10 1.20E-13 6.45E-16 6.71E-14 4.8E-13
Mean 7.23E-20 6.9E-30 1.88E-14 1.69E-10 1.07E-13 6.52E-16 7.01E-14 4.26E-13
Std 2.05E-19 1.9E-30 6.5E-14 8.18E-11 1.13E-13 1.68E-16 3.24E-14 1.82E-13

f64 Med 5.29E-12 3.51E-12 3.06E-11 3.47E-10 2.71E-11 1.79E-11 1.59E-11 1.9E-11
Mean 5.31E-12 3.53E-12 3.06E-11 3.82E-10 2.61E-11 2.33E-11 1.54E-11 9.87E-11
Std 7.41E-13 5.33E-14 1.34E-12 1.95E-10 3.03E-12 1.51E-11 3.68E-12 3.96E-12

f65 Med 1.25E-28 2.35E-18 4.92E-12 2.378227 0.010987 0.034323 3.919759 5.66E-15
Mean 1.17E-27 0.000549 0.004395 3.027752 16402510 0.039241 5.786021 2.18E-14
Std 3.63E-27 0.002457 0.005494 1.743096 82012548 0.019365 5.487841 3.43E-14

f66 Med 5.43E-30 1.56E-19 1.99E-14 0.655037 0.103669 1.234599 2.128034 1.35E-14
Mean 6.13E-29 0.063639 0.004147 1.219443 0.37375 1.296764 2.120552 5.38E-14
Std 2.2E-28 0.133857 0.020734 1.671748 0.535287 1.22462 0.85441 1.24E-13

f67 Med -27.895 -27.6524 -17.8654 -7.93566 -25.3297 -15.1814 -18.0941 -24.4579
Mean -27.8159 -27.451 -17.9252 -7.93718 -25.1561 -14.8792 -18.1274 -24.4436
Std 0.90429 0.827775 1.839035 0.83881 1.862249 1.662599 0.960404 1.055604

f68 Med 0.010402 0.018265 2.720734 0.016155 1.637257 0.010857 0.077495 0.004267

Mean 0.010944 0.020008 4.873331 0.02002 5.650202 0.012286 0.0904 0.004466

Std 0.003052 0.007638 6.195275 0.012613 9.489989 0.004913 0.039609 0.001445

Figure 12: Result of Friedman Mean Rank Test for all multimodal functions. Smaller bars/outcomes on the bars

denote the higher ranks.

4.4. Evaluation of convergence capability

Convergence is the state which reaches when the entire population is settled at a single point

and/or stops improving. If an algorithm lacks the ability for exploration, it can converge prema-

turely to some local optimum; however, by lacking exploitative capability an algorithm might not

even converge at a single point. An excellent balance between exploration and exploitation is

needed to prevent premature convergence and reach the global optimum. In HBO, that balance is

attained through the parameters p1, and p2. The definition of p1 allows HBO to avoid premature

convergence by starting from the highest probability and linearly decreasing to 0 with the course

of iterations. The high value of p1 stops search agent to quickly converge but as the proportion for

p1 decreases and the proportions for p2 and p3 increase the attraction towards the better solutions

also increases, which finally results in convergence.

July 12, 2020

Figure 13: Comparison of convergence curves of HBO with other algorithms for a few variable-dimension unimodal

benchmark functions.

Figure 14: Comparison of convergence curves of HBO with other algorithms for a few variable-dimension multimodal

benchmark functions.

To practically examine the convergence capability of HBO, its convergence curves for 8 uni-

modal variable-dimension functions are plotted and compared with PSO, SCA, MFO and MVO

in Figure 13. HBO, as compared to the others, is little steady in the beginning because of the

higher value of p1 but it keeps improving smoothly with the iterations and becomes better than

the others after 5 to 10 thousand function evaluations, which roughly implies p1 < 0.85. To see

the impact of local optima on the convergence of HBO, its convergence curves for 9 multimodal

variable-dimension functions are compared in Figure 14. For multimodal functions the behavior

of HBO can be categorised in 3 types, which are discussed below:

• For f 56, f 57, f 65 and f 66, the behavior of HBO is well-balanced. HBO keeps improving

linearly from the very beginning without getting trapped in any local optimum and outper-

forms the others.

• In the cases of f 58 and f 62, HBO progresses steadily for first 10 to 15 thousand function

evaluations because of being in the exploration phase and improves quickly afterwards as

the rate of exploitation starts increasing significantly.

• Finally, for the functions f 52, f 53 and f 68, HBO makes a curve showing the rapid con-

vergence in the first half of the iterations. If the landscapes of these functions are analyzed,

with so many local optima, they have very challenging surfaces. For these functions, a rapid

convergence requires a strong ability to explore the search space that HBO demonstrates.

4.5. Performance evaluation of HBO on CEC-BC-2017 test functions

The suite of benchmark functions designed for CEC-BC-2017 includes 30 unimodal, multi-

modal, composite, and hybrid functions; however the second function has been removed due to

the unstable behavior. These functions have very challenging landscapes and in this section, we

evaluate the performance of HBO on these functions against the same algorithms, which we have

used in previous experiments. It is important to mention here that the set of comparative algo-

rithms also includes the winner of CEC-BC-2017 called EBO-CMAR. The details of the functions

including their names, number of design variables, range of the variables, and global optimum

are presented in Table 6. The average and standard deviation of 30 runs of the algorithms for all

functions of CEC-BC-2017 are presented in Table 12.

Table 12: Comparison of the statistical results obtained for CEC-BC-2017 benchmark test functions.

f.no. Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

f69 Avg 535.7896 296.00 3959.60 8E+08 1.67E+08 8643.646 3.23E+08 100

continued . . .

July 12, 2020

. . . continued

Fn Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

Std 543.1567 275.10 4456.60 1.84E+08 5.06E+08 5831.444 4.17E+08 0

f70 Avg 300.0249 10829.20 300.00 1543.853 11597.22 300.0254 301.2 300

Std 0.116151 1620.74 0.00 1046.025 10006.07 0.10903 6.4E-06 0

f71 Avg 404.7788 406.60 405.94 437.8285 424.7637 405.7562 405.1247 400

Std 0.428089 2.92 3.28 16.71067 34.25905 1.413572 0.086962 1.89E-14

f72 Avg 510.549 556.70 513.06 550.7501 529.4872 519.5746 518.3719 500.3672

Std 3.634439 8.40 6.54 7.982532 11.92222 5.986546 5.916674 0.657057

f73 Avg 600 621.60 600.24 618.8765 602.241 600.7418 600.8636 600

Std 4.8E-14 9.02 0.98 3.947706 1.977177 0.849693 0.651739 6.56E-14

f74 Avg 713.052 714.60 718.98 771.5427 735.5393 727.2502 730.2516 710.8196

Std 4.027615 1.55 5.10 8.233241 8.114764 4.702083 4.755411 0.28215

f75 Avg 808.7198 820.50 811.39 839.3499 837.0564 820.2996 820.6072 800.2247

Std 3.934154 4.69 5.47 6.499727 13.03039 8.663515 4.640893 0.413797

f76 Avg 900 900.00 900.00 996.687 1007.864 900.2162 902.9494 900

Std 0 0.00 0.00 41.0157 176.4655 0.566283 3.35952 0

f77 Avg 1552.687 2694.60 1473.30 2259.251 1814.364 1744.32 1640.57 1099.353

Std 156.713 297.62 214.97 166.7697 282.0393 263.1552 147.4421 85.70686

f78 Avg 1102.227 1134.70 1110.50 1200.436 1156.355 1130.25 1103.58 1100

Std 1.231383 10.45 6.28 83.65854 78.4699 24.21214 1.241033 2.74E-11

f79 Avg 81747.03 702723.00 14532.00 11910003 1344229 616701.9 1413.652 1287.319

Std 91097.37 42075.40 11260.00 11005843 2863313 473060.5 64.29277 100.1878

f80 Avg 2961.075 11053.00 8601.10 31047.57 14740.09 12208.16 1309.985 1303.104

Std 2557.818 2110.55 5123.60 18855.22 12992.74 6129.402 2.498851 2.691863

f81 Avg 1453.975 7147.50 1482.10 1638.34 4613.985 1459.757 1413.601 1400.035

Std 74.8672 1489.52 42.46 99.61163 2946.199 24.65836 6.198319 0.061189

f82 Avg 1604.459 18001.00 1714.30 2177.631 14499.43 1610.813 1501.966 1500.149

Std 202.2075 5498.67 282.89 229.2363 11276.97 145.9304 0.658341 0.199345

f83 Avg 1602.001 2149.70 1860.00 1741.876 1799.57 1768.661 1610.443 1600.643

Std 2.739227 105.80 127.65 80.46611 146.3447 142.4687 10.97171 0.322247

f84 Avg 1702.797 1857.70 1761.60 1785.585 1777.122 1789.585 1730.826 1700.411

Std 4.303241 108.32 47.50 28.72761 45.19119 61.28143 7.935544 0.384295

f85 Avg 3771.107 8720.50 14599.00 178737.5 19869.11 21441.57 1807.308 1802.265

Std 1154.932 5060.10 11852.20 149895.5 11934.01 13764.76 3.7134 6.24546

f86 Avg 1977.153 13670.00 2602.80 3376.863 10397.75 1929.977 1902.082 1900.043

Std 157.9963 19168.00 2185.02 2901.632 12201.66 19.16336 0.351679 0.03392

f87 Avg 2000.021 2272.30 2085.10 2087.696 2074.901 2044.661 2028.09 2000.156

Std 0.079201 81.72 62.25 22.736 46.66931 34.67326 6.540017 0.16453

f88 Avg 2250.372 2357.70 2281.70 2236.762 2319.647 2286.316 2256.678 2230.587

Std 49.59053 28.20 54.02 53.59605 37.17628 59.06308 57.30963 49.24987

f89 Avg 2299.039 2300.00 2314.80 2368.054 2304.205 2347.236 2301.879 2300

Std 4.916489 0.07 66.10 19.87323 4.59443 138.0584 15.86097 1.05E-11

f90 Avg 2613.876 2736.50 2620.80 2659.471 2630.681 2616.139 2619.442 2601.974

Std 4.341088 39.14 9.23 8.751258 8.697182 5.697303 3.511326 1.764107

f91 Avg 2633.722 2742.20 2692.20 2760.82 2762.662 2727.99 2567.618 2578.898

Std 95.03502 5.52 108.20 68.05451 10.18015 80.7585 78.64748 108.3447

f92 Avg 2912.622 2937.50 2924.00 2963.651 2950.647 2951.075 2917.312 2920.656

continued . . .

July 12, 2020

. . . continued

Fn Stats HBO GSA PSO SCA MFO MVO CS EBO-CMAR

Std 19.81313 15.36 25.02 17.28965 31.27117 42.92945 19.69569 24.0413

f93 Avg 2885.041 34407.50 2952.10 3073.043 3022.139 2900.134 2842.893 2890

Std 62.5852 628.73 249.66 25.57284 92.7532 0.037098 94.2884 42.1637

f94 Avg 3090.815 3259.50 3116.20 3103.917 3095.412 3099.225 3091.353 3091.296

Std 1.619507 41.66 24.99 2.122732 2.880396 20.45328 1.276217 2.486536

f95 Avg 3174.83 3459.40 3315.90 3294.704 3387.949 3301.581 3100.129 3111.573

Std 73.69574 33.84 121.83 72.75564 58.63187 132.742 0.278911 36.59639

f96 Avg 3177.423 3449.50 3203.80 3247.233 3224.653 3178.9 3191.396 3138.36

Std 13.69572 171.33 52.26 15.19993 64.38182 39.23594 32.11374 3.858333

f97 Avg 25686.73 1303361.00 350650.00 1024036 832852.4 304191.9 4071.321 3403.194

Std 14554.84 363843.00 504857.00 928491.9 712542.7 616893.3 266.4059 14.72898

The good performance of HBO is evident from the results. Although, HBO could not beat

EBO-CMAR but HBO is better than the other algorithms and has comparable results to EBO-

CMAR in many cases. For instance, HBO achieves 1st rank for f 73, f 76, f 87, f 89, f 92, and f 94.

Furthermore, HBO performs better than EBO-CMAR for f 93. Moreover, the results of HBO does

not have any significant difference from the results of EBO-CMAR for f 70, f 71, f 74, f 78, f 83,

and f 84. To have better insights, Friedman mean rank test is performed and the results are reported

in Figure 15. The results of Friedman test shows that HBO attains 2nd rank after EBO-CMAR.

Figure 15: Result of Friedman Mean Rank Test for all CEC-BC-2017 functions. Smaller bars/outcomes on the bars

denote the higher ranks.

The Friedman rank test gives the average ranking of the algorithms; however, it is important

to see the statistical significance of the difference between the ranks of the algorithms. Using

the statistics provided by the Friedman rank test, we perform multiple comparison test based on

Bonferroni method (Zar, 1999) to find the statistical significance of the difference in the results.

According to the Bonferroni method, the difference between two algorithms is statistically sig-

nificant if the difference in average ranking of the algorithms is larger than comparison interval

defined by the significance level (α) of the test. Two pair-wise comparison tests are performed.

The first test is performed by considering HBO as a reference/control algorithm at the significance

level of 0.05 and second test is performed by considering EBO-CMAR as the reference/control

algorithm at the significance level of 0.15. The results of the first and second tests are depicted in

Figure 16 and Figure 17, respectively. In both figures, the mean ranks of the algorithms are high-

lighted by the circles and comparison intervals are highlighted through the bars. The dotted red

circle and bar denote the mean rank and comparison interval of the control algorithm, respectively.

The bars in plain black are of the algorithms having a statistically significant difference from the

control algorithm and the bars in plain grey are of the algorithms having a statistically insignificant

difference from the control algorithm. The comparison in Figure 16 shows that the rank of HBO

is statistically equivalent to CS and EBO-CMAR at the significance level of 0.05; however, the

comparison in Figure 17 shows that the rank of EBO-CMAR is statistically equivalent to HBO

July 12, 2020

at the significance level of 0.15. It is worth mentioning here that if the significance level is set

to 0.05 the rank of EBO-CMAR becomes statistically equivalent to CS as well but for any of the

considered significance levels, the difference in ranks of HBO and EBO-CMAR is insignificant.

Conclusively, according to Friedman mean rank test HBO attains 2nd best rank; however, the dif-

ference in ranks of HBO and EBO-CMAR is not statistically significant from the perspective of

HBO as well as EBO-CMAR.

Figure 16: Considering HBO as the reference/control algorithm, the multiple comparison test based on Bonferroni

method at significance level of 0.05.

Figure 17: Considering EBO-CMAR as the reference/control algorithm, the multiple comparison test based on Bon-

ferroni method at significance level of 0.15.

4.6. Overall mean ranks of the algorithms

In this subsection, the Friedman test is performed to find the overall mean rank of the algo-

rithms for all 97 benchmark functions including unimodal, multimodal, and CEC-BC-2017 bench-

mark functions. The results of Friedman test are plotted in Figure 18. As we can see, the mean

rank value of HBO is minimum, which indicates that HBO attains 1st rank.

Figure 18: Result of Friedman Mean Rank Test for all 97 functions. Smaller bars/outcomes on the bars denote the

higher ranks.

5. Demonstration of applicability on mechanical engineering problems

In order to demonstrate the applicability of the proposed algorithm on real world problems,

we picked 3 well-known engineering problems: Speed reducer design problem, multiple disc

clutch brake design problem, and rolling element bearing design problem. In the literature, these

problems have extensively been used to evaluate the performance of optimization algorithms on

real world problems. As the engineering problems are constrained optimization problems, a simple

constraint handling technique called death penalty (scalar penalty function) (Coello, 2002) is used.

In this approach, solutions are penalized on violating a constraint.

5.1. Speed reducer design problem

This problem was presented by Golinski in 1970 (Golinski, 1970). The problem of speed

reducer design deals with designing a simple gear box that is used between the engine and the

propeller in light aircraft. The goal is to minimize the weight of a speed reducer so that the engine

and propeller can rotate efficiently. The problem involves constraints on stresses in the shafts,

transverse deflection of the shafts, surface stress and bending stress of the gear teeth. Schematic

July 12, 2020

Figure 19: Schematic views of speed reducer design.

view of the problem is depicted in Figure 19 and the mathematical definition of the problem is

presented below:

minimize
x

f (x) = 0.7854x1x2
2

(

3.3333x2
3 +14.9334x3−43.0934

)

−1.508x1

(

x2
6 + x2

7

)

+7.4777
(

x3
6 + x3

7

)

+0.7854
(

x4x2
6 + x5x2

7

)

subject to g1(x) =
27

x1x2
2x3

−1 6 0, g2(x) =
397.5

x1x2
2x2

2

−1 6 0

g3(x) =
1.93x3

4

x2x4
6x3

−1 6 0, g4(x) =
1.93x3

5

x2x4
7x3

−1 6 0

g5(x) =

[

(745x4/x2x3)
2 +16.9×106

]1/2

110x3
−1 6 0

g6(x) =

[

(745x5/x2x3)
2 +157.5×106

]1/2

85x3
7

−1 6 0

g7(x) =
x2x3

40
−1 6 0, g8(x) =

5x2

x1
−1 6 0

g9(x) =
x1

12x2
−1 6 0, g10(x) =

1.5x6 +1.9

x4
−1 6 0

g11(x) =
1.1x7 +1.9

x5

−1 6 0

where 2.6 6 x1 6 3.6, 0.7 6 x2 6 0.8, 17 6 x3 6 28,

7.3 6 x4 6 8.3, 7.3 6 x5 6 8.3, 2.9 6 x6 6 3.9,

5.0 6 x7 6 5.5

(15)

By executing the proposed algorithm 30 times in a row, the statistical results are produced. In

Table 13, the results are compared with some well-known algorithms used to solve the problem of

speed reducer design. The names of these algorithms are: Society and civilization (SC) algorithm

(Ray & Liew, 2003b), hybrid PSO and DE (PSO-DE) (Liu et al., 2010), differential evolution with

level comparison (DELC) (Wang & po Li, 2009), differential evolution with dynamic stochastic

selection (DEDS) (Zhang et al., 2008), hybrid evolutionary algorithm and adaptive constraint-

handling (HEAA) (Wang et al., 2008), modified differential evolution (MDE) (Mezura-Montes

et al., 2006), artificial bee colony (ABC) (Karaboga & Basturk, 2007), and water cycle algorithm

(WCA) (Eskandar et al., 2012). The results demonstrate that HBO shares 1st position with DELC

and DEDS; however, HBO evaluates the objective function 9,010 times which is much lesser than

the function evaluations of DEDS and DELC. In order to regenerate the results, it is recommended

to use population of size = 40, iterations = 230 and a search agent should be penalized by a fitness

value 1E +16 on violating a constraint.

The values of the design variables (DV) of the best solutions obtained by all algorithms are

presented in Table 14. Speed reducer design problem involves 11 constraints and HBO satisfies all

of them with values g = (−0.0739, −0.1979, −0.4991, −0.9046, −9.089E−12, −2.459E−
12, −0.7025, −6.08E−13, −0.7958, −0.0513, −1.3095E−11).

July 12, 2020

Table 13: Comparison of statistical results obtained from various algorithms for the speed reducer design problem.

Statistical results

Algo Worst Mean Best Std NFEs

SC 3009.964736 3001.758264 2994.744241 4.000000 54,456

PSO–DE 2996.348204 2996.348174 2996.348167 0.000006 54,350

DELC 2994.471066 2994.471066 2994.471066 0.000000 30,000

DEDS 2994.471066 2994.471066 2994.471066 0.000000 30,000

HEAA 2994.752311 2994.613368 2994.499107 0.070000 40,000

MDE NA 2996.367220 2996.356689 0.008200 24,000

ABC NA 2997.058000 2997.058000 0.000000 30,000

WCA 2994.505578 2994.474392 2994.471066 0.007400 15,150

HBO 2994.471066 2994.471066 2994.471066 0.000000 9,010

Table 14: Comparison of the best solution obtained by all algorithms for speed reducer design problem.

DV DEDS DELC HEAA MDE PSO-DE WCA HBO

X1 3.50000 3.50000 3.50002 3.50001 3.50000 3.50000 3.50000

X2 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000 0.70000

X3 17.00000 17.00000 17.00001 17.00000 17.00000 17.00000 17.00000

X4 7.3+9 7.3+9 7.30043 7.30016 7.30000 7.30000 7.30000

X5 7.71532 7.71532 7.71538 7.80003 7.80000 7.71532 7.71532

X6 3.35021 3.35021 3.35023 3.35022 3.35021 3.35021 3.35021

X7 5.28665 5.28665 5.28666 5.28669 5.28668 5.28665 5.28665

f(X) 2994.471066 2994.471066 2994.499107 2996.356689 2996.348167 2994.471066 2994.471066

Figure 20: Schematic views of multiple disc clutch brake design problem .

5.2. Multiple disc clutch brake design problem

This problem deals with minimizing the mass of a multiple disc clutch brake. The prob-

lem belongs to the category of discrete optimization, which involves 5 discrete design variables:

inner radius ri ∈ {60, 61, . . . , 80}, outer radius ro ∈ {90, 91, . . . , 110}, thickness of the disc

t ∈ {1, 1.5, . . . , 3}, actuating force F ∈ {6000, 610, . . . , 1000} and number of friction surfaces

Z ∈ {2, 3, . . . , 9}. The schematic view of the problem is illustrated in Figure 20 and the mathe-

matical definition of the problem is given below:

July 12, 2020

minimize
x

f (~z) = π(r2
0− r2

i)t(Z +1)p

subject to g1(~z) = r0− ri−∆r ≥ 0, g2(~z) = lmax− (Z +1)(t +δ)≥ 0

g3(~z) = pmax− prz ≥ 0, g4(~z) = pmaxvst max− przvst ≥ 0

g5(~z) = vst max− vst ≥ 0, g6(~z) = Tmax−T ≥ 0

g7(~z) = Mh− sMs ≥ 0, g8(~z) = T ≥ 0

where µ = 0.5, lz = 55kgmm2,n = 250rpm,∆r = 20mm,Ms = 40Nm, pmax = 1MPa,

Tmax15s,Fmax = 1000N,s = 1.5,M f = 3Nm,vsr max = 10, Imax = 30mm,

ri min = 60
m

s
,r0 min = 90,r0 max = 110,ri max = 80, tmax = 3,Fmin = 600,

Zmin = 2,Zmax = 9, tmin = 1.5

(16)

In literature, this problem has been solved by using ABC (Karaboga & Basturk, 2007), TLBO

(Rao et al., 2011), non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2000) and

adaptive particle swarm optimization (APSO) (Zhan et al., 2009). By considering the importance

of the number of function evaluations (NFEs) in solving real world problems, two sets of statistical

results are obtained. First set of results, labeled as HBO1, is obtained for iterations = 25 and

population size = 20, which is to prove the superiority of HBO over the competitors and second

set of results is obtained for iterations = 50, which demonstrates the capability of HBO to always

converge at the best location. The statistical results are presented and compared in Table 15, which

demonstrate the superiority of HBO over the other algorithms. The results of HBO1 shows that

our proposed algorithm gives better results using fewest objective function evaluations; however,

HBO2 shows that the proposed algorithm can always converge at the best position by evaluating

the objective function 970 times.

Table 15: Comparison of statistical results obtained from various algorithms for the multiple disc clutch brake design

problem.

Statistical results

Algo Worst Mean Best Std NFEs

ABC 0.3528640 0.3247510 0.3136570 5.40E-01 >900

TLBO 0.3920710 0.3271660 0.3136570 6.70E-01 >900

NSGA-II N/A N/A 0.4704000 N/A N/A

APSO 0.7163130 0.5068290 0.3371810 9.67E-02 2000

HBO1 0.3396313 0.3164207 0.3136566 7.36E-03 495

HBO2 0.3136566 0.3136566 0.3136566 5.85E-17 970

For the sake of illustration the values of design variables obtained by all algorithms

are compared in Table 16. Moreover, HBO fulfills all the constraints with values g =
(0, 24, 0.900528161, 9.790581597, 7.89469659, 3.352706711, 60.625, 11.64729329). In or-

der to regenerate the results, it is recommended to use penalty = 1.00E + 07 for both HBO1 and

HBO2.

Figure 21: Schematic views of Rolling element bearing design problem.

July 12, 2020

Table 16: Comparison of the best solution obtained by all algorithms for multiple disc clutch brake design problem.

Best solution DV

DV X1 X2 X3 X4 X5 f(X)

NSGA-II 70 90 1.5 1000 3 0.4704

TLBO 70 90 1 810 3 0.313656

NSGA-II 70 90 1.5 1000 3 0.4704

APSO 76 96 1 840 3 0.3371821

HBO1 70 90 1 1000 3 0.3136566

HBO2 70 90 1 1000 3 0.3136566

5.3. Rolling element bearing design problem

This problem deals with maximizing the dynamic load bearing capacity of rotating machin-

ery. The design of rolling element bearing involves ten variables. Five of them are used in the

objective function, known as the diameter of the balls Db, mean diameter Dm, number of balls Z

(a discrete variable), curvature radius coefficient of inner raceway groove f i = ri

Db
and curvature

radius coefficient of outer raceway groove f o = ro

Db
, where ri and ro represent the inner and outer

ring groove curvature radii, respectively. Rest of the five parameters (KDmin
,KDmax

,ε,e,η) are used

in constraints. The schematic diagram of rolling element bearing design is given in Figure 21 and

its mathematical definition is presented below:

maximize
x

f (~x) =Cd =

{

fcZ2/3D1.8
b i f Db,≤ 25.4mm

3.467 fcZ2/3D1.4
b , otherwise

subject to g1(~x) =
φ0

2Sin−1(Db/Dm)
−Z +1≥ 0, g2(~x) = 2Db−KDmin

(D−d)≥ 0

g3(~x) = KDmin
(D−d)−2Db ≥ 0, g4(~x) = ηBw−Db ≤ 0

g5(~x) = Dm−0.5(D+d)≥ 0, g6(~x) = (0.5+ e)(D+d)≥ 0

g7(~x) = 0.5(D−Dm−Db)− εDb ≥ 0

g8(~x) = fi−0.515≥ 0,g9(~x) = f0−0.515≥ 0

where fc = 37.91{1+[1.04(
1− γ

1+ γ
)1.72(

fi(2 f0−1)

f0(2 fi−1)
)0.41]10/3}−0.3[

γ0.3(1− γ)1.39

(1+ γ)1/3
](

2 fi

2 fi−1
)0.41

φ0 = 2π−2cos−1(
[(D−d)/2−3T/4]2 +(D/2−T/4−Db)

2− (d/2+T/4)2

2[(D−d)/2−3T/4](D/2−T/4−Db)
),

γ = Db/Dm, fi = ri/Db, f0 = r0/Db, T = D−d−2Db,D = 160, d = 90, Bw = 30,

0.4≤ KDmin
≤ 0.5, 0.6≤ KDmax ≤ 0.7, 0.3≤ ε ≤ 0.4, 0.02≤ e≤ 0.1, 0.6≤ η ≤ 0.85,

0.5(D+d)≤ Dm ≤ 0.6(D+d), 0.15(D−d)≤ Db ≤ 0.45(D−d)

(17)

This problem has been solved in the literature by using GA4 (Gupta et al., 2007), ABC

(Karaboga & Basturk, 2007), TLBO (Rao et al., 2011), WCA (Eskandar et al., 2012), MBA

(Sadollah et al., 2013), PSO-TVAC (Muneender & Vinodkumar, 2012) and DAPSO-GA (Zhu

et al., 2019b). The performance of HBO is compared with these algorithms in Table 17. Two

sets of outcomes are produced, one showing the superiority over the competitors and the other

showing the capacity to converge in the best position. First set of outcomes (HBO1) is generated

by setting population size = 20 and iterations = 100; however, for second set of results (HBO2)

the iterations are increased to 400 to achieve best results. The results demonstrate that HBO1

July 12, 2020

gives best statistics by evaluating the objective function fewer times than the others. In order to

further improve the results and always converge at the same best position, the number of functions

evaluations are increased to 7620. It is important to highlight here, the best objective value found

by WCA is infeasible because Z denoted as x3 is a discrete variable and represents the number

of balls; however; WCA treats it as a continuous variable and finds its value as 11.00103, which

is not possible. The values of design variables found by all algorithms and their comparison is

presented in Table 18.

Table 17: Comparison of statistical results obtained from various algorithms for the rolling element bearing design

problem.

Statistical results

Algo Worst Mean Best Std NFEs

MBA NA NA 81843.68625 2.12E+02 15100

PSO-TVAC 41,130.57 76,442.50 81,859.74 1.19E+04 3750

DAPSO-GA 79,834.78 81,066.43 81,859.81 7.43E+02 3650

GA4 NA NA 81843.3 NA 225,000

ABC 78897.81 81496 81859.74 6.90E-01 10,000

TLBO 80807.85 81438.98 81859.74 6.60E-01 10,000

WCA 83942.71 83847.16 85538.48 4.88E+02 3,950

HBO1 84433.04 85197.34 85532.57 4.02E+02 1,920

HBO2 85533.18 85533.18 85533.18 2.15E-06 7,620

Both sets of results fully satisfy the constraints. The values of constraints

for the best solution obtained by HBO1 is as g = (0.000921088, 8.682122802,

4.709300943, − 3.17371473, 0.719391861, 16.53579039, 0.001450935, 0, 8.00457E −
07, 3.93907E − 05, 2.22423E − 05) and for the best solution obtained by HBO2 is as g =
(0.001159423, 12.1532798, 6.153256824, −3.390871387, 0.722718447, 11.16033474, 1.3E−
14, 0, 0, 0, 0). Please note the value of the 4th constraint is negative because it has to be lesser or

equal to 0. In order to regenerate the results, it is recommended to use penalty 1E +12 for HBO1

and 1E +21 for HBO2 (if the problem is transformed into a minimization problem).

Table 18: Comparison of the best solution obtained by all algorithms for rolling element bearing design problem.

Best solution DV

Algo X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 f(x)

MBA 125.7153 21.4233 11 0.515 0.515 0.488805 0.627829 0.300149 0.097305 0.64095 81,843.69

PSO-TVAC 125.7191 21.4256 11 0.515 0.515 0.4169 0.7 0.3 0.1 0.6001 81,859.74

DAPSO-GA 125.7191 21.4256 11 0.515 0.515 0.4 0.7 0.3 0.0474 0.6 81,859.81

GA4 125.7171 21.4230 11 0.5150 0.5150 0.4159 0.6510 0.3000 0.0223 0.7510 81843.3

TLBO 125.7191 21.4256 11 0.5150 0.5150 0.4243 0.6339 0.3000 0.0689 0.7995 81859.74

WCA 125.7212 21.4233 11.0010 0.5150 0.5150 0.4015 0.6590 0.3000 0.0400 0.6000 85538.48

HBO1 125.7193919 21.42322 11 0.515 0.515001 0.488062 0.679368 0.300013 0.069021 0.608317 85532.57

HBO2 125.7227184 21.4233 11 0.515 0.515 0.438476 0.699998 0.3 0.047532 0.601081 85533.18

6. Optimization capabilities, practical implications, and research directions

In this study, a novel meta-heuristic inspired by corporate rank hierarchy and the interaction

between the individuals in that hierarchy is proposed. Unlike many other meta-heuristics, the

July 12, 2020

relative difference in the fitness of the search agents is utilized to arrange them in a hierarchy and

the concept of min/max heap is utilized to make interaction possible between them and preserve

their relative difference. Moreover, a parameter called Gamma (γ) is designed, which helps to

avoid premature convergence by enabling the algorithm to escape local optima. The proposed

algorithm has demonstrated very good optimization capabilities, such as:

• High exploration in early iterations: It is due to the higher probability of selection of the

self-contribution equation (Eq. 6) and diversity incorporation by updating the position of a

search agent with respect to a randomly selected colleague (node at the same level in heap)

through the Eq. (5).

• Emergence of exploitation capability: HBO emerges exploitative behavior with the course

of iterations due to the linear increase in the probability of selection of Eq. (8) designed for

interaction with immediate boss/parent node (node in the upper level in heap).

• Mechanism to balance the exploration and exploitation: The balance between explo-

ration and exploitation is attained by decreasing the probability of selection (Eq. 7) of the

self-contribution equation and increasing the probability of selection (Eq. 8) of the equation

for interaction with the parent node.

• Convergence assurance: The convergence is assured by leading all solutions directly or

indirectly towards the root node of the heap. Moreover, the step towards a random colleague

is only accepted if it improves the current position of the search agent.

• Escaping local optima and premature convergence avoidance: In addition to the con-

trolled applicability of equations, the parameter gamma (Eq. 3) helps search agents to es-

cape local optima and avoid premature convergence by cyclically rotating in the range [0, 2]

because when its value ranges in [1, 2] the search agent may jump out of the local vicinity.

In addition to above good optimization capabilities, we find through experiments that the conver-

gence speed of HBO compromises for some functions, which is due to the nature of the parameter

γ and looking for a good balance between the exploration and exploitation. As a part of our future

work, we plan to work on the improvement of the convergence speed without compromising the

above-stated qualities of the proposed algorithm. However, a few suggestions for the researchers

to come up with an improved variant are presented below:

• The range of the parameter γ can be squeezed to [0,1] with the course of iterations. This may

increase the convergence speed but at the expense of poor premature convergence avoidance

capability in the later iterations.

• In HBO, the self-contribution phase is kept very simple in which the current position of the

search agent is retained; however, one may improve it by giving random walk to the search

agent or incorporating the concept of levy flight etc. It is also possible to model the concept

of self-contribution differently.

July 12, 2020

• Every search agent updates its position in each iteration except the search agent associated

with the root node called the boss. The convergence speed or even the overall performance

may be improved by giving some kind of movement to the root node as well.

• The probabilities of selection of different equations may be calculated in some other way

giving better convergence speed.

The meta-heuristics have demonstrated excellent performance on complex optimization problems.

Based on the balanced optimization capabilities, we suggest research community to use HBO

for the feature selection to remove redundancy and useless information from the datasets, error

minimization in regression problems, optimizing the architecture of a neural network, training of

the neural network, maximizing the margin in support vector machines, tuning the parameters

for several machine learning algorithms, solving the engineering optimization problems such as

welded beam design problem, reinforced concrete beam problem, pressure vessel design prob-

lem, tension-compression spring problem, three-bar truss design problem, speed-reducer design

problem, and stepped cantilever beam problem etc. However, the practical implications would

include the slower convergence speed which might not be afforded in real-time optimization or

time-constrained optimization problems.

The mapping of HBO is kept very simple in this paper. However, there are a lot of potential

areas, which should be worked on to come up with a variant of the proposed algorithm. A few

directions are given below:

• It is possible to try binary or higher degree heaps.

• One can investigate the interaction with random officials or interaction between the subor-

dinates of the same boss rather than the colleagues.

• The heap can be reconstructed after updating the entire population instead of calling heapify

right after updating each search agent.

Hybridization of HBO with other well-known existing optimization algorithms and development

of a multi-objective version of HBO would also be the good directions for the researchers. Finding

real-world applications where the advantages of applying HBO are evident and taking into account

their strengths and limitations can also be a significant future direction.

7. Conclusion

This paper proposes a novel human-behaviour based metaheuristic, which utilizes a heap data

structure to map the concept of corporate rank hierarchy (CRH) to solve optimization problems.

In the area of nature-inspired optimization algorithms, the use of heap data structure to map an

inspiration is a unique idea in itself. To promote and maintain an appropriate balance between

exploration and exploitation, the mathematical equations are carefully derived from three major

CRH activities. Moreover, to escape local optima and avoid premature convergence without

compromising the exploitation capability of the proposed algorithm, a self-adaptive parameter

July 12, 2020

is designed, which periodically incorporates the exploration and exploitation capabilities. To

verify the effectiveness of the proposed algorithm, we have compared it with 7 state-of-the-art

and high-performance optimization algorithms including the winner of CEC-BC-2017 for solving

a wide set of diverse benchmark functions including unimodal, multimodal, and CEC-BC-2017

benchmark functions. The experimental results for the unimodal and multimodal functions show

that HBO outperforms the comparative algorithms in most cases and attains 1st rank according

to Friedman mean rank test. Moreover, the performance of HBO for CEC-BC-2017 is shown to

be comparable to EBO-CMAR and better than the other algorithms. Although, HBO attains 2nd

rank for CEC-BC-2017 functions it is shown by using the Bonferroni method that the rank of

HBO is not significantly different from EBO-CMAR. Furthermore, the overall rank of HBO for

all 97 benchmark functions is shown to be 1st according to the Friedman mean rank test. Finally,

the ability to solve real-world problems is demonstrated by solving three mechanical constrained

engineering problems. The results provide some evidence that HBO can be used effectively to

solve real-world optimization problems. Given the preliminary nature of the proposed algorithm,

we firmly believe that many extensions, improvements and evaluations are anticipated in the

future. The superiority of HBO nominates it for solving real-world optimization problems with

challenging landscapes arising in intelligent and expert systems.

Ahmadi-Javid, A. (2011). Anarchic society optimization: A human-inspired method. In 2011 IEEE Congress of

Evolutionary Computation (CEC). IEEE IEEE.

Ahmady, G. A., Mehrpour, M., & Nikooravesh, A. (2016). Organizational structure. Procedia - Social and Behavioral

Sciences, 230, 455–462.

Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2019). Novel meta-heuristic bald eagle search optimisation algorithm.

Artificial Intelligence Review, .

Arora, S., & Singh, S. (2018). Butterfly optimization algorithm: a novel approach for global optimization. Soft

Computing, 23(3), 715–734.

Askari, Q., Younas, I., & Saeed, M. (2020). Political optimizer: A novel socio-inspired meta-heuristic for global

optimization. Knowledge-Based Systems, (p. 105709).

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired

by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation. IEEE.

Balochian, S., & Baloochian, H. (2019). Social mimic optimization algorithm and engineering applications. Expert

Systems with Applications, 134, 178–191.

Borji, A. (2007). A new global optimization algorithm inspired by parliamentary political competitions. In Mexican

International Conference on Artificial Intelligence (pp. 61–71). Springer Berlin Heidelberg.

Brammya, G., Praveena, S., Preetha, N. S. N., Ramya, R., Rajakumar, B. R., & Binu, D. (2019). Deer hunting

optimization algorithm: A new nature-inspired meta-heuristic paradigm. The Computer Journal, .

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:

a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12), 1245–1287.

Crawford, B., Soto, R., Cabrera, G., Salas-Fernández, A., & Paredes, F. (2019). Using a social media inspired opti-

mization algorithm to solve the set covering problem. In International Conference on Human-Computer Interaction

(pp. 43–52). Springer.

Daskin, A., & Kais, S. (2011). Group leaders optimization algorithm. Molecular Physics, 109(5), 761–772.

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm

for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI (pp. 849–858).

Springer Berlin Heidelberg.

Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale indus-

trial engineering problems. Knowledge-Based Systems, 165, 169–196.

July 12, 2020

Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999

congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (pp. 1470–1477). IEEE volume 2.

Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference

on neural networks (pp. 1942–1948). IEEE volume 4.

Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang–big crunch. Advances in Engineering Software,

37(2), 106–111.

Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm – a novel metaheuristic

optimization method for solving constrained engineering optimization problems. Computers & Structures, 110-

111, 151–166.

Fadakar, E., & Ebrahimi, M. (2016). A new metaheuristic football game inspired algorithm. In 2016 1st Conference

on Swarm Intelligence and Evolutionary Computation (CSIEC). IEEE.

Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization

algorithm. Knowledge-Based Systems, 191, 105190.

Flores, J. J., López, R., & Barrera, J. (2011). Gravitational interactions optimization. In Lecture Notes in Computer

Science (pp. 226–237). Springer Berlin Heidelberg.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance.

Journal of the american statistical association, 32(200), 675–701.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. The Annals of

Mathematical Statistics, 11(1), 86–92.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in

Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.

Golinski, J. (1970). Optimal synthesis problems solved by means of nonlinear programming and random methods.

Journal of Mechanisms, 5(3), 287–309.

Gupta, S., Tiwari, R., & Nair, S. B. (2007). Multi-objective design optimisation of rolling bearings using genetic

algorithms. Mechanism and Machine Theory, 42(10), 1418–1443.

Han, K.-H., & Kim, J.-H. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization.

IEEE Transactions on Evolutionary Computation, 6(6), 580–593.

Harifi, S., Khalilian, M., Mohammadzadeh, J., & Ebrahimnejad, S. (2019). Emperor penguins colony: a new meta-

heuristic algorithm for optimization. Evolutionary Intelligence, 12(2), 211–226.

Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility

optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646–667.

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization:

Algorithm and applications. Future Generation Computer Systems, 97, 849–872.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.

Huning, A. (1976). ARSP: Archiv für Rechts- und Sozialphilosophie / Archives for Philosophy of Law and Social

Philosophy, 62(2), 298–300.

Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm.

Swarm and Evolutionary Computation, 44, 148–175.

Jones, G. R. (2019). Organizational Theory, Design, and Change. Upper Saddle River, NJ: Pearson,.

Karaboga, D., & Basturk, B. (2007). Artificial bee colony (ABC) optimization algorithm for solving constrained

optimization problems. In Lecture Notes in Computer Science (pp. 789–798). Springer Berlin Heidelberg.

Kashan, A. H. (2014). League championship algorithm (LCA): An algorithm for global optimization inspired by sport

championships. Applied Soft Computing, 16, 171–200.

Khishe, M., & Mosavi, M. (2020). Chimp optimization algorithm. Expert Systems with Applications, (p. 113338).

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598),

671–680.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection (Com-

plex Adaptive Systems). A Bradford Book.

Kumar, A., Misra, R. K., & Singh, D. (2017). Improving the local search capability of effective butterfly optimizer

using covariance matrix adapted retreat phase. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp.

1835–1842). IEEE.

July 12, 2020

Kumar, M., Kulkarni, A. J., & Satapathy, S. C. (2018). Socio evolution & learning optimization algorithm: A socio-

inspired optimization methodology. Future Generation Computer Systems, 81, 252–272.

Lampinen, J., & Storn, R. (2004). Differential evolution. In New Optimization Techniques in Engineering (pp. 123–

166). Springer Berlin Heidelberg.

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for

stochastic optimization. Future Generation Computer Systems, .

Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for con-

strained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.

Lv, W., Xie, Q., Liu, Z., Zhang, X., Luo, S., & Cheng, S. (2010). Election campaign algorithm. In 2010 2nd

International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). IEEE.

Mahmoodabadi, M., Rasekh, M., & Zohari, T. (2018). Tga: Team game algorithm. Future Computing and Informatics

Journal, 3(2), 191–199.

Masadeh, R., A., B., & Sharieh, A. (2019). Sea lion optimization algorithm. International Journal of Advanced

Computer Science and Applications, 10(5).

Melvix, J. L. (2014). Greedy politics optimization: Metaheuristic inspired by political strategies adopted during state

assembly elections. In 2014 IEEE International Advance Computing Conference (IACC). IEEE.

Mezura-Montes, E., Velázquez-Reyes, J., & Coello, C. C. (2006). Modified differential evolution for constrained

optimization. In 2006 IEEE International Conference on Evolutionary Computation (pp. 25–32). IEEE.

Milton, F. (1939). A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of

variance. Journal of the American Statistical Association. American Statistical Association, 34(205), 109.

Mirjalili, S. (2015a). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

Mirjalili, S. (2015b). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-

Based Systems, 89, 228–249.

Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96,

120–133.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2015). Multi-verse optimizer: a nature-inspired algorithm for global

optimization. Neural Computing and Applications, 27(2), 495–513.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

Moosavi, S. H. S., & Bardsiri, V. K. (2019). Poor and rich optimization algorithm: A new human-based and multi

populations algorithm. Engineering Applications of Artificial Intelligence, 86, 165–181.

Moosavian, N., & Roodsari, B. K. (2014). Soccer league competition algorithm: A novel meta-heuristic algorithm

for optimal design of water distribution networks. Swarm and Evolutionary Computation, 17, 14–24.

Morais, R. G., Mourelle, L. M., & Nedjah, N. (2018). Hitchcock birds inspired algorithm. In Computational Collective

Intelligence (pp. 169–180). Springer International Publishing.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algo-

rithms.

Muneender, E., & Vinodkumar, D. M. (2012). Particle swarm optimization with time varying acceleration coefficients

for congestion management. In 2012 IEEE Conference on Sustainable Utilization and Development in Engineering

and Technology (STUDENT). IEEE.

Nabil, E. (2016). A modified flower pollination algorithm for global optimization. Expert Systems with Applications,

57, 192–203.

Narayanan, A., & Moore, M. (1996). Quantum-inspired genetic algorithms. In Proceedings of IEEE International

Conference on Evolutionary Computation. IEEE.

N.H. Awad, P. S. J. L. B. Q., M.Z. Ali (2017). Problem definitions and evaluation criteria for the cec 2017 special

session and competition on single objective real-parameter numerical optimization. In 2017 IEEE Congress on

Evolutionary Computation (CEC). IEEE Congr. Evol. Comput.

Ramezani, F., & Lotfi, S. (2013). Social-based algorithm (SBA). Applied Soft Computing, 13(5), 2837–2856.

Rao, R., Savsani, V., & Vakharia, D. (2011). Teaching–learning-based optimization: A novel method for constrained

mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information

July 12, 2020

Sciences, 179(13), 2232–2248.

Ray, T., & Liew, K. (2003a). Society and civilization: an optimization algorithm based on the simulation of social

behavior. IEEE Transactions on Evolutionary Computation, 7(4), 386–396.

Ray, T., & Liew, K. (2003b). Society and civilization: an optimization algorithm based on the simulation of social

behavior. IEEE Transactions on Evolutionary Computation, 7(4), 386–396.

Razmjooy, N., Khalilpour, M., & Ramezani, M. (2016). A new meta-heuristic optimization algorithm inspired by

FIFA world cup competitions: Theory and its application in PID designing for AVR system. Journal of Control,

Automation and Electrical Systems, 27(4), 419–440.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based

algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.

Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. Neural Computing and Applications, 31(12), 8837–

8857.

Salih, S. Q., & Alsewari, A. A. (2019). A new algorithm for normal and large-scale optimization problems: Nomadic

people optimizer. Neural Computing and Applications, .

Satapathy, S., & Naik, A. (2016). Social group optimization (SGO): a new population evolutionary optimization

technique. Complex & Intelligent Systems, 2(3), 173–203.

Shadravan, S., Naji, H., & Bardsiri, V. K. (2019). The sailfish optimizer: A novel nature-inspired metaheuristic

algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intel-

ligence, 80, 20–34.

Shastri, A. S., Jagetia, A., Sehgal, A., Patel, M., & Kulkarni, A. J. (2019). Expectation algorithm (exa): A socio-

inspired optimization methodology. In Socio-cultural Inspired Metaheuristics (pp. 193–214). Springer.

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–

713.

Singh, P. R., Elaziz, M. A., & Xiong, S. (2019). Ludo game-based metaheuristics for global and engineering opti-

mization. Applied Soft Computing, 84, 105723.

Wang, L., & po Li, L. (2009). An effective differential evolution with level comparison for constrained engineering

design. Structural and Multidisciplinary Optimization, 41(6), 947–963.

Wang, Y., Cai, Z., Zhou, Y., & Fan, Z. (2008). Constrained optimization based on hybrid evolutionary algorithm and

adaptive constraint-handling technique. Structural and Multidisciplinary Optimization, 37(4), 395–413.

Xu, Y., Cui, Z., & Zeng, J. (2010). Social emotional optimization algorithm for nonlinear constrained optimization

problems. In Swarm, Evolutionary, and Memetic Computing (pp. 583–590). Springer Berlin Heidelberg.

Yadav, A. et al. (2019). Aefa: Artificial electric field algorithm for global optimization. Swarm and Evolutionary

Computation, 48, 93–108.

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and

Applications (pp. 169–178). Springer Berlin Heidelberg.

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010) (pp. 65–74). Springer Berlin Heidelberg.

Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In 2009 World Congress on Nature & Biologically

Inspired Computing (NaBIC) (pp. 210–214). IEEE.

Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary

Computation, 3(2), 82–102.

Zar, J. H. (1999). Biostatistical analysis. Pearson Education India.

Zaránd, G., Pázmándi, F., Pál, K. F., & Zimányi, G. T. (2002). Using hysteresis for optimization. Physical Review

Letters, 89(15).

Zhan, Z.-H., Zhang, J., Li, Y., & Chung, H.-H. (2009). Adaptive particle swarm optimization. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6), 1362–1381.

Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained

optimization. Information Sciences, 178(15), 3043–3074.

Zhao, F., Qin, S., Zhang, Y., Ma, W., Zhang, C., & Song, H. (2019a). A two-stage differential biogeography-based

optimization algorithm and its performance analysis. Expert Systems with Applications, 115, 329–345.

Zhao, W., Wang, L., & Zhang, Z. (2019b). Supply-demand-based optimization: a novel economics-inspired algorithm

July 12, 2020

for global optimization. IEEE Access, 7, 73182–73206.

Zhu, H., Hu, Y., & Zhu, W. (2019a). A dynamic adaptive particle swarm optimization and genetic algorithm for

different constrained engineering design optimization problems. Advances in Mechanical Engineering, 11(3),

168781401882493.

Zhu, H., Hu, Y., & Zhu, W. (2019b). A dynamic adaptive particle swarm optimization and genetic algorithm for

different constrained engineering design optimization problems. Advances in Mechanical Engineering, 11(3),

168781401882493.

July 12, 2020

