# Journal Pre-proofs

Heap-based optimizer inspired by corporate rank hierarchy for global optimization

Qamar Askari, Mehreen Saeed, Irfan Younas

| PII:           | S0957-4174(20)30526-1                      |
|----------------|--------------------------------------------|
| DOI:           | https://doi.org/10.1016/j.eswa.2020.113702 |
| Reference:     | ESWA 113702                                |
| To appear in:  | Expert Systems with Applications           |
| Received Date: | 22 September 2019                          |
| Accepted Date: | 26 June 2020                               |



Please cite this article as: Askari, Q., Saeed, M., Younas, I., Heap-based optimizer inspired by corporate rank hierarchy for global optimization, *Expert Systems with Applications* (2020), doi: https://doi.org/10.1016/j.eswa. 2020.113702

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

# Heap-based optimizer inspired by corporate rank hierarchy for global optimization

Qamar Askari<sup>a,b,\*</sup>, Mehreen Saeed<sup>b</sup>, Irfan Younas<sup>b</sup>

<sup>a</sup>Department of Computer Science, GIFT University, Gujranwala, Pakistan <sup>b</sup>Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan

Abstract: In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH). This principle motivates us to map the concept of CRH to propose a new algorithm for optimization that logically arranges the search agents in a hierarchy based on their fitness. The proposed algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to map the concept of CRH. The mathematical model of HBO is built on three pillars: the interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7 highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In the first two experiments, the exploitative and explorative behavior of HBO is evaluated by using 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and Friedman mean rank test that HBO outperforms and secures 1<sup>st</sup> rank. In the third experiment, we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO attains 2<sup>nd</sup> position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR is shown to be statistically insignificant by using Bonferroni method based multiple comparison test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1<sup>st</sup> for all 97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is demonstrated by solving 3 constrained mechanical engineering optimization problems. The performance is shown to be superior or equivalent to the other algorithms, which have been used in the literature. The source code of HBO is publicly available at https://github.com/qamar-askari/HBO.

*Keywords:* Social optimization algorithm, Corporate hierarchy based optimization, Nature-inspired meta-heuristic, Global optimization algorithm

#### 1. Introduction

Optimization is a field of research, which deals with either minimizing or maximizing certain objective function(s). Real-world optimization problems are mostly classified as NP-Hard

<sup>\*</sup>Corresponding author

*Email addresses:* syedqamar@gift.edu.pk,l165502@lhr.nu.edu.pk (Qamar Askari), mehreen.saeed@nu.edu.pk (Mehreen Saeed), irfan.younas@nu.edu.pk (Irfan Younas)

problems which classical mathematical techniques can not solve adequately or accurately. A wellknown branch of approximation algorithms is nature-inspired optimization algorithms that have tremendous properties to properly solve such complex problems of optimization. A huge amount of development in the area of nature-inspired optimization algorithms has been done over the past few decades. The researchers have mapped natural processes and phenomena on optimization algorithms from every sector of life. The optimization algorithms inspired by nature are categorized into four main groups: evolution-based algorithms, swarm-based algorithms, physics-based algorithms, and human-based algorithms. A few well-known and state-of-the-art algorithms from each branch are discussed below:

- Evolution-based algorithms: These algorithms are inspired by the process of biological evolution. A group of individuals called population passes through biological operators, such as selection, reproduction and mutation, and evolves through repeated applications of these operators. One of the founding algorithms in this category is Genetic Algorithm (GA) (Holland, 1992). GA is inspired by the concept of survival of fittest from Darwin's theory of evolution. One another well-known algorithm from this category is Differential Evolution (DE) (Lampinen & Storn, 2004). DE involves three fundamental operators: mutation, recombination and selection. A few more algorithms from this category are: Evolutionary Strategy (ES) (Huning, 1976), Genetic Programming (GP) (Koza, 1992), Fast Evolutionary Programming (FEP) (Yao et al., 1999), Memetic Algorithm (MA) (Moscato, 1989) and Biogeography Based Optimization (BBO) (Simon, 2008).
- 2. Swarm-based algorithms: These algorithms are normally inspired by the collective intelligent behavior of living organisms. Living creatures interact with each other in the real world to achieve optimal collective behavior. One of the founding algorithms in this branch is Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995). PSO is inspired by the food foraging behavior of flocks of the birds. The Ant Colony Optimization (ACO) (Dorigo & Di Caro, 1999) is another key algorithm in this category. ACO is inspired by the path seeking behavior of ants from their colony to the food source. A few well-known algorithms from this category are Bat Algorithm (BA) (Yang, 2010), Cuckoo Search (CS) (Yang & Deb, 2009), Firefly Algorithm (FA) (Yang, 2009), Artificial Bee Colony (ABC) (Karaboga & Basturk, 2007), Whale Optimization Algorithm (WOA) (Mirjalili & Lewis, 2016), Ant Lion Optimizer (ALO) (Mirjalili, 2015a), Krill Herd (KH) (Gandomi & Alavi, 2012) and Grey-Wolf Optimizer (GWO) (Mirjalili et al., 2014).
- 3. **Physics-based algorithms**: The researchers have also modelled the laws of physics that work in nature behind various phenomena to address the problems of optimization. Simulated Annealing (SA) (Kirkpatrick et al., 1983) is one of the basic algorithms in this category. SA is inspired by the metallurgical annealing process. Another very fundamental algorithm is the Quantum-inspired Genetic Algorithm (QGA) (Narayanan & Moore, 1996), which is a fusion of quantum computing and GA. A few more well-known examples are: Quantum-inspired Evolutionary Algorithm (QEA) (Han & Kim, 2002), Gravitational Search Algorithm (GSA) (Rashedi et al., 2009), Big-Bang Crunch (BBC) (Erol & Eksin, 2006), Hysteretic Optimization (HO) (Zaránd et al., 2002), and Gravitational Interaction Optimization (GIO) (Flores et al., 2011).

4. Human-based algorithms: Human beings are regarded to be the smartest creature and they always find the best methods to fix their issues. In the literature, there are so many optimization algorithms that are influenced by human social behavior. One of the well-referred algorithms in this category of literature is Teaching-Learning Based Optimization (TLBO) (Rao et al., 2011). TLBO imitates student learning behavior in a classroom. A few more algorithms are Social-Based Algorithm (SBA) (Ramezani & Lotfi, 2013), Election Campaign Algorithm (ECA) (Lv et al., 2010), and Imperialist Competitive Algorithm (ICA) (Atashpaz-Gargari & Lucas, 2007).

In addition to the above state-of-the-art algorithms, dozens of meta-heuristics have been proposed in recent years. A few well-known recently proposed swarm-based meta-heuristics are Squirrel Search Algorithm (SqSA) (Jain et al., 2019) inspired by the foraging behavior of flying squirrels, Seagull Optimization Algorithm (SOA) (Dhiman & Kumar, 2019) inspired by migration and attacking behavior of seagulls, Hitchcock Bird-Inspired Algorithm (HBIA) (Morais et al., 2018) inspired by aggressive bird behavior portrayed by Hitchcock, Sea Lion Optimization (SLnO) algorithm (Masadeh et al., 2019) inspired by hunting behavior of sea lions, Emperor Penguins Colony (EPC) (Harifi et al., 2019) inspired by spiral-like movement of colony of penguins, Sailfish Optimizer (SO) (Shadravan et al., 2019) inspired by hunting strategies of sailfishes, Bald Eagle Search (BES) (Alsattar et al., 2019) inspired by hunting strategies of bald eagles, Naked-Mole Rate (NMR) (Salgotra & Singh, 2019) inspired by matting patterns of naked-mole rats, Harris Hawk Optimization (HHO) (Heidari et al., 2019) inspired by cooperative and chasing behavior of Harris' hawks, and Butterfly Optimization Algorithm (BOA) (Arora & Singh, 2018) inspired by food searching and matting behavior of butterflies. Moreover, a few recent human-based meta-heuristics are Team Game Algorithm (TGA) (Mahmoodabadi et al., 2018) inspired by team game strategies used in football, basketball, and volleyball, Ludo Game-based Swarm Intelligence (LGSI) (Singh et al., 2019) inspired by game playing rules of a board game called ludo, Poor and Rich Optimization (PRO) (Moosavi & Bardsiri, 2019), Nomadic People Optimizer (NPO) (Salih & Alsewari, 2019) inspired by the behavior of nomadic people, and Deer Hunting Optimization Algorithm (DHOA) (Brammya et al., 2019) inspired by deer hunting strategies of human beings. Moreover, the current development in the field of optimization algorithms includes, but is not limited to, Slime Mould Algorithm (SMA) (Li et al., 2020) inspired by oscillation mode of the slime in nature, Henry Gas Solubility Optimization (HGSO) (Hashim et al., 2019) inspired by the Henry's law, Equilibrium Optimizer (EO) (Faramarzi et al., 2020) inspired by control volume mass balance models used to estimate both dynamic and equilibrium states, Chimp Optimization Algorithm (COA) (Khishe & Mosavi, 2020) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, Political Optimizer (PO) (Askari et al., 2020) inspired by the multi-party political system, and Artificial Electric Field Algorithm (AEFA) (Yadav et al., 2019) inspired by Coulombs' law of electrostatic force and Newtons' law of motion.

The focus of this study is developing a novel meta-heuristic inspired by some social behavior of human-beings because the outstanding results of human behavior-based algorithms have taken the field of evolutionary and swarm intelligence to the next level. The algorithms based on human behavior can further be categorized as sport-based algorithms, human social interaction-based

#### Journal Pre-proofs

| Table 1. A few human behavior-based opt                                  | IIIIZai | ion argoriumis.                              |
|--------------------------------------------------------------------------|---------|----------------------------------------------|
| Algorithm                                                                | Year    | Inspiration                                  |
| Sports-based algorithms                                                  |         |                                              |
| Ludo Game-based Swarm Intelligence (LGSI) (Singh et al., 2019)           | 2019    | Ludo playing strategies                      |
| Deer Hunting Optimization Algorithm (DHOA) (Brammya et al., 2019)        | 2019    | Deer hunting strategy of humans              |
| Team Game Algorithm (TGA) (Mahmoodabadi et al., 2018)                    | 2018    | Games involving teams                        |
| Football game algorithm (FGA) (Fadakar & Ebrahimi, 2016)                 | 2016    | Best position finding to score a goal        |
| World cup optimization (WCO) (Razmjooy et al., 2016)                     | 2016    | FIFA world cup competitions                  |
| Soccer league competition (SLC) algorithm (Moosavian & Roodsari, 2014)   | 2014    | Soccer league competitions                   |
| League championship algorithm (LCA) (Kashan, 2014)                       | 2014    | Championship environment                     |
| Colonization-based algorithms                                            |         |                                              |
| Anarchic society optimization (ASO) (Ahmadi-Javid, 2011)                 | 2011    | Anarchic behavior in social grouping         |
| Imperialist competitive algorithm (ICA) (Atashpaz-Gargari & Lucas, 2007) | 2007    | Empires formation by countries               |
| Society and civilization optimization (SCO) (Ray & Liew, 2003a)          | 2003    | Intra and inter-society interactions         |
| Social-interaction based algorithms                                      |         |                                              |
| Poor and Rich Optimization (PRO) (Moosavi & Bardsiri, 2019)              | 2019    | Achieving wealth and improve economically    |
| Expectation Algorithm (ExA) (Shastri et al., 2019)                       | 2019    | Society individuals ass problem variables    |
| Social Media Inspired Algorithm (SMIA) (Crawford et al., 2019)           | 2019    | Interaction on social media                  |
| Supply-Demand-Based Optimization (SDO) (Zhao et al., 2019b)              | 2019    | Relation of supplier and consumer            |
| Nomadic People Optimizer (NPO) (Salih & Alsewari, 2019)                  | 2019    | Behavior of nomadic people                   |
| Social Mimic Optimization (SMO) (Balochian & Baloochian, 2019)           | 2019    | Assimilation to famous people                |
| Socio-evolution and learning optimization (SELO) (Kumar et al., 2018)    | 2017    | Families interaction                         |
| Social group optimization (SGO) (Satapathy & Naik, 2016)                 | 2016    | Complex problem solving social behavior      |
| Social based algorithm (SBA) (Ramezani & Lotfi, 2013)                    | 2013    | Social interaction                           |
| Teaching learning based optimization (TLBO) (Rao et al., 2011)           | 2012    | Classroom interaction                        |
| Group leader optimization algorithm (GLO) (Daskin & Kais, 2011)          | 2011    | Influence of group leaders on group members  |
| Social emotional optimization algorithm (SEOA) (Xu et al., 2010)         | 2010    | Emotion guided behavior                      |
| Politics-based algorithms                                                |         |                                              |
| Political Optimizer (PO) (Askari et al., 2020)                           | 2020    | Multi-party political system                 |
| Greedy politics optimization (GPO) (Melvix, 2014)                        | 2014    | Political strategies adopted by politicians  |
| Election campaign algorithm (ECA) (Lv et al., 2010)                      | 2010    | Election campaign by candidates              |
| Parliamentary optimization algorithm (POA) (Borji, 2007)                 | 2007    | Competition for parliamentary head elections |

#### Table 1: A few human behavior-based optimization algorithms.

algorithms, colonization-based algorithms, and politics-based algorithms. A few well-known and recently proposed algorithms along with their source of inspirations from each subcategory of human behavior-based algorithms are presented in Table 1. One kind of social interaction among the human beings can be seen in the organizations where the individuals are arranged in a hierarchy called organizational chart or corporate rank hierarchy (CRH). An organization is a structured group of people because a group of individuals working for a common goal can not achieve their objective unless they organize themselves in a certain structure. This has given rise to the organization's hierarchical arrangements so that the individuals can become sufficiently

#### Journal Pre-proofs

efficient to achieve the organizational goals. Therefore, most organizations nowadays arrange their employees in the hierarchy of corporate officers called corporate rank hierarchy (CRH). The hierarchy of corporate ranks is a tree-like structure. The boss is appointed at the top rank (the root of the tree) and the staff are arranged in the tree-like parent-child nodes. Each parent node is considered as the head/manager and the children of that node are considered as the subordinates. It is the responsibility of each subordinate to interact and follow his/her immediate boss (the parent node). The ultimate goal of the hierarchy is accomplishing the business-related tasks in an optimal manner through interaction among the individuals. For illustration, an example of CRH is presented in Figure 1 (a). In the figure, the CEO is the boss and designated as the root node. COO and CFO are direct subordinates to the CEO: however, they are heading multiple departments. The individuals at the same level in the tree are considered as the colleagues.

#### Figure 1: Partial examples of corporate rank hierarchy and 3-ary min heap.

The research and applications in expert and intelligent systems is one of the most flourishing sub-area of Artificial Intelligence (AI), which mimics some of the intelligent behaviors of human experts to solve real-life complex and huge problems (Zhao et al., 2019a; Nabil, 2016). In certain cases, choices that need to be optimized are focused on multiple variables with enormous search spaces and meta-heuristics are the intelligent and efficient strategies for solving the optimization problems with these intractable and complex search spaces (Nabil, 2016). This motivates us to develop a novel human-behavior based meta-heuristic, which maps the concept of corporate rank hierarchy in a very distinctive manner to an optimization algorithm named as Heap Based Optimizer (HBO). In order to simulate CRH, we use the heap data structure. Heap is a non-linear tree-based data structure, mostly used for the implementation of priority queues. An example of 3 degree (3-ary) min-heap is presented in Figure 1 (b). The utilization of the heap data structure in the mapping of CRH helps to arrange the solutions in a hierarchy based on their fitness and use that arrangement in position-updating mechanism of the algorithm in a very unique way. The proposed algorithm smartly models 3 types of behavior of the employees, e.g., the interaction of subordinates with their immediate head, the interaction between the colleagues, and the self-contribution of individuals. The proposed algorithm can be adapted to solve a wide-range of engineering, industry, science and business related optimization problems arising in expert and intelligent systems. Many of the real-life resource scheduling, production planning, vehicle routing, network optimization, robotics-path planning, packaging problems and many other engineering and industry-related optimization problems of intelligent and expert systems can be solved using the proposed HBO. Moreover, this paper also contributes in the following respects:

1. To the best of our knowledge, the concept of corporate rank hierarchy has not been mapped yet. However, the arrangement of the individuals in an organizational chart allows the group of individuals to accomplish their task collectively in an optimized way. The mapping of the corporate rank hierarchy and interaction between the individuals in that hierarchy is a unique idea. The use of the heap data structure for mapping makes the proposed algorithm a novel approach.

- 2. The performance of the proposed algorithm is evaluated on 97 benchmark functions and 3 mechanical engineering optimization problems. The set of benchmarks includes unimodal functions, multimodal functions, and CEC-BC-2017 (N.H. Awad, 2017) test functions. The performance is compared with 7 well-known algorithms including the winner of CEC-BC-2017. It is shown through experiments and Friedman mean rank statistical test that HBO secures 1<sup>st</sup> rank for the unimodal functions as well as the multimodal functions. However, the rank of HBO for CEC-BC-2017 is 2<sup>nd</sup> after EBO-CMAR (Kumar et al., 2017) (CEC-BC-2017 winner) but multiple comparison test based on Bonferroni method (Zar, 1999) shows the difference in ranks of HBO and EBO-CMAR is not statistically significant. Moreover, the overall rank of HBO is 1<sup>st</sup> for all 97 functions. Such an excellent performance on a comprehensive suite of benchmarks against well-known algorithms shows that HBO has excellent optimization capability and is expected to perform well on real-life optimization problems.
- Another property of HBO is its simplicity. However, we anticipate that the variations in terms of improvements will be made in the future. Moreover, the mapping method encourages researchers to integrate other well-known data structures into existing or new optimization algorithms.

Section 2 describes the inspiration and mathematical modeling of CRH by using heap data structure, and Section 3 presents how the proposed algorithm can be implemented. In Section 4 the performance of proposed algorithm is evaluated by solving benchmark functions, and Section 5 assesses the applicability of proposed algorithm on mechanical engineering problems. The optimization capabilities, practical implications, and the future directions are briefly discussed in Section 6. Finally, Section 7 presents the concluding remarks.

#### 2. Heap Based Optimizer (HBO)

In this section, we discuss the inspiration and present the mathematical model of the proposed Heap Based Optimizer (HBO).

#### 2.1. Inspiration

The officials in a company or corporation are given corporate titles (designations). The titles define the job descriptions and responsibilities of the employees. Although the designations vary from corporation to corporation and from business to business, they are arranged in a hierarchy and are given many names such as corporate rank hierarchy (CRH), organizational chart tree, or corporate hierarchy structure, etc. A partial sample of CRH is presented in Figure 1 (a). The organizational structure is a set of methods that split the task into particular duties and coordinate it (Ahmady et al., 2016). The primary aim of this structure (hierarchy) is giving the formal activities an organized shape and achieving the end goals optimally. The upper levels usually represent the executives and members of the board, the middle levels represent the managers and supervisors, and the lower levels represent the workers. Individuals at the same level are considered to be the heads/superiors for those at the lower level, individuals at the same level are considered to be the colleagues/co-workers and those who are at the lower levels are considered to

be subordinated to the upper levels. The decision-making power is maintained at the higher levels in the centralized organizational structure (Jones, 2019) and individuals perform a job by making their effort, working with their colleagues, and responding to their immediate boss.

The mapping of the entire idea is split into four steps in this article: (i) Modeling the corporate rank hierarchy (CRH), (ii) mathematically modeling the interaction between the subordinates and the immediate boss, (iii) mathematically modeling the interaction between the colleagues, and (iv) self contribution of an employee to accomplish a task.

#### 2.2. Modeling the corporate rank hierarchy

Considering the nature of CRH, we chose to model CRH with the heap data structure. By definition, the heap is a non-linear tree-shaped data structure with the following two properties: (i) Heap is a complete tree. A tree is called a complete tree if every level of the tree, except possibly the last level, is filled and all nodes in the last level are as far left as possible. (ii) In the case of min-heap, the key of every parent node is either smaller than or equal to the keys of its children and in case of max-heap, the key of every parent node is either greater than or equal to the keys of its children.

#### Figure 2: An illustration of the modeling of the CRH with min-heap.

The whole CRH is considered as the population. Each formal designation is treated as the search agent. In implementation phase, a search agent corresponds to a heap node. The fitness of the search agent is considered as the key of the node in the heap and the index of the search agent in population is considered as the value of the node in the heap. The process of CRH modelling through a heap data structure is shown in Figure 2, where  $x_i$  denotes  $i^{th}$  search agent of the population. The curve in the objective space represents the landscape of an assumed objective function and the search agent as a key, a heap is constructed. As can be seen in the Figure 2, the nodes find their positions in the heap according to their fitness. For instance,  $x_4$  is the best solution in the population, so is the root of the heap. It should be noted that min-heap has to be used for minimization and max-heap for maximization.

Figure 3: Illustration of the impact of *C* and *T* on values of  $\gamma$ . (a) depicts two scenarios for two different values of *C* and (b) highlights the region where  $\gamma \lambda^k$  from Eq. (1) can be positioned at any location, in both scenarios.

#### 2.3. Mathematical modeling of the interaction with immediate boss

The rules and policies are imposed from the upper levels in a centralized organizational structure and subordinates follow their immediate boss. By assuming that each parent node is an immediate boss to its children, this behaviour can be modelled by updating the position of each search agent  $\vec{x}_i$  with reference to its parent node *B* by using the following equation:

$$x_i^k(t+1) = B^k + \gamma \,\lambda^k |B^k - x_i^k(t)| \tag{1}$$

where t denotes the current iteration, k in superscript denotes the  $k^{th}$  component of a vector, and || computes the absolute value.  $\lambda^k$  is the  $k^{th}$  component of vector  $\vec{\lambda}$ , which is randomly generated as follows:

$$\lambda^k = 2 r - 1 \tag{2}$$

where *r* is a random number generated according to the uniform distribution from the range [0, 1]. In Eq. (1),  $\gamma$  is a carefully designed parameter, which is computed as follows:

$$\gamma = |2 - \frac{(t \mod \frac{T}{C})}{\frac{T}{4C}}| \tag{3}$$

where t denotes the current iteration, T represents the total number of iterations, and C is a user-defined parameter and explained below. With the course of iterations,  $\gamma$  reduces linearly from 2 to 0 and after reaching 0, it starts to increase back to 2 with iterations. However, it is the parameter C that determines how many cycles  $\gamma$  will complete in T iterations. For illustration see Figure 3, where part (a) of the figure shows how  $\gamma$  changes with iterations. For better illustration, two scenarios are depicted. We set C = 2 in the first scenario, and C = 5 in the second scenario ; however, in both scenarios T is set to 200. Figure 3 (b) highlights the region where  $\gamma \lambda^k$  from Eq. (1) can be positioned at any location depending upon the value of random parameter  $\lambda^k$ . For example in scenario 1 (C = 2) at t = 75,  $\gamma \lambda^k$  can have any value in the range [-1, 1] depending upon the value of  $\lambda^k$  and in scenario 2 (C = 5) at t = 75,  $\gamma \lambda^k$  can have any value in the range [-1.5, 1.5] depending upon the value of  $\lambda^k$ . From Figure 3, we can learn C should play a crucial role in Eq. (1) because C controls the rate of variation in the values of  $\gamma \lambda^k$ .

To see the impact of the parameter C on the performance of HBO, we solved several unimodal and multimodal benchmark functions by varying C from the lowest value to a high value. For instance, the impact of the value of C on the performance of HBO for Sphere, Generalized Penalized, Ackley, and Griewank benchmark functions is shown in Figure 4. We can learn from the combined impact on the curves of unimodal and multimodal functions that the strong variation or the high value of C allows search agents to escape the local optima at the expense of weak exploitation. For example, if the total iterations are 1300, the performance for the multimodal functions (Generalized Penalized, Ackley, and Griewank) at small values of C is not very good because multimodal functions have many local optima and the algorithm might not be in a position to escape them. However, the results for the multimodal functions improve if the value of C is increased but the

Figure 4: Impact of the parameter *C* on the performance of HBO for 1 unimodal and 3 multimodal functions, where the number of dimensions (variables) = 30. *T* denotes the total iterations, *t* denotes iterations per cycle, and *C* denotes total number of cycles. Note: In this experiment *T* is assumed to be equal to 1300.

performance stabilizes after  $C = \frac{T}{42}$ . Based on these simulations we can fix the minimum value of *C* for the set of experiments on multimodal functions. Furthermore, the unimodal functions do not have local optima and the parameter *C* may behave differently for these functions. For instance, we are presenting the curve for Sphere function in Figure 4. The performance for the Sphere (unimodal) function is best at  $\frac{T}{25}$  and the performance starts deteriorating after that. By performing this experiment for many other functions we decided to calculate the balanced value of *C* as follows:

$$C = \lfloor T/25 \rfloor \tag{4}$$

Figure 5: Illustration of the position updating mechanism of Eq. (1). (a) illustrates how  $\gamma \lambda^k$  scales  $|B^k - x_i^k(t)|$  in any iteration and (b) highlights the regions around  $B^k$  which HBO searches in different iterations.

The position updating mechanism of Eq. (1) is depicted in Figure 5. By assuming  $D = |B^k - x_i^k(t)|$ , Figure 5(a) highlights how  $\gamma \lambda^k$  scales *D* up or down. For instance, in 40<sup>th</sup> iteration,  $\gamma \lambda^k$  lies in the range [-2, 2], which scales *D* in the range [-2D, 2D]. However, in 25<sup>th</sup> iteration  $\gamma \lambda^k |B^k - x_i^k(t)|$  gives value in the range [-0.5D, 0.5D] because  $\gamma \lambda^k$  lies in [-0.5, 0.5]. Similarly, in any iteration, the range of  $\gamma \lambda^k |B^k - x_i^k(t)|$  can be determined from Figure 5(a). The role of  $\gamma \lambda^k |B^k - x_i^k(t)|$  in Eq. (1) is to decide the area of the region to search around  $B^k$ . In Figure 5 (b) the regions around  $B^k$ , at different values of *t*, are highlighted. For instance, the size of the region to search around  $B^k$  in 40<sup>th</sup> and 80<sup>th</sup> iterations is twice the distance  $|B^k - x_i^k(t)|$ . The size of the region to search around  $B^k$  in 10<sup>th</sup>, 30<sup>th</sup>, 50<sup>th</sup>, and 70<sup>th</sup> iterations is equal to the distance  $|B^k - x_i^k(t)|$ . However, in 15<sup>th</sup>, 25<sup>th</sup>, 55<sup>th</sup>, and 65<sup>th</sup> iterations the size of the region to search around  $B^k$  around  $B^k$  is half the distance  $|B^k - x_i^k(t)|$ . The discussion can be concluded as the  $\gamma \lambda^k$  makes a search agent capable of escaping local optima when it scales *D* up and exploit the region around  $B^k$  when it scales *D* down.

#### 2.4. Mathematical modeling of the interaction between colleagues

The officials with the same rank are considered to be the colleagues. They interact with each other in order to fulfill the official tasks. In heap, we assume the nodes at the same level are colleagues and each search agent  $\vec{x}_i$  updates it position with reference to its randomly selected colleague  $\vec{S}_r$  according to the equation given below:

$$x_{i}^{k}(t+1) = \begin{cases} S_{r}^{k} + \gamma \,\lambda^{k} |S_{r}^{k} - x_{i}^{k}(t)|, & f(\vec{S}_{r}) < f(\vec{x}_{i}(t)) \\ x_{i}^{k} + \gamma \,\lambda^{k} |S_{r}^{k} - x_{i}^{k}(t)|, & f(\vec{S}_{r}) \ge f(\vec{x}_{i}(t)) \end{cases}$$
(5)

where f denotes the objective function and computes the fitness of the search agent. The position updating mechanism of Eq. (5) is very similar to Eq. (1); however, Eq. (5) enables the search agent to explore the region around  $S_r^k$  if  $f(\vec{S_r}) < f(\vec{x_i}(t))$  and allows to explore the region around  $x_i^k$  otherwise. For illustration see Figure 6. This behavior promotes both exploration and exploitation. The random selection of the colleagues incorporates the diversity and always searching around good solutions promotes exploitation.

Figure 6: Illustration of the position updating mechanism of both cases of Eq. (5)

#### 2.5. Modeling of the self contribution of an employee

This phase maps the concept of self-contribution of an employee. The mapping of this phase is kept very simple: however, we suggest a few variations in Section 6. We are modeling this behavior by retaining the previous position of the employee in the next iteration, as expressed below:

$$x_{i}^{k}(t+1) = x_{i}^{k}(t) \tag{6}$$

In Eq. (6), the search agent  $\vec{x}_i$  does not change its position for its  $k^{th}$  design variable in the next iteration. This behavior allows us to regulate the rate of change of a search agent. The next subsection discusses how exploration can be controlled with this equation.

#### 2.6. Putting it all together

In this subsection, we discuss how to merge the position updating equations, modelled in previous subsections, into one equation. A major challenge is determining the probabilities of selection for all three equations as their probabilities of selection play a significant role in balancing exploration and exploitation. A roulette wheel is designed to balance these probabilities, which is split into three proportions  $p_1$ ,  $p_2$ , and  $p_3$ . The selection of the proportion  $p_1$  allows a search agent to update its position using Eq. (6). The limit of  $p_1$  is computed as follows:

$$p_1 = 1 - \frac{t}{T} \tag{7}$$

where t denotes current the iteration and T denotes maximum number of iterations. The selection of proportion  $p_2$  allows a search agent to update its position using Eq (1). The limit of  $p_2$  is computed as follows:

$$p_2 = p_1 + \frac{1 - p_1}{2} \tag{8}$$

Finally, the selection of  $p_3$  represents updating position using Eq. (5) and limit of  $p_3$  is computed as follows:

$$p_3 = p_2 + \frac{1 - p_1}{2} = 1 \tag{9}$$

A general positions updating mechanism of HBO is presented in the following equation:

$$x_{i}^{k}(t+1) = \begin{cases} x_{i}^{k}(t), & p \leq p_{1} \\ B^{k} + \gamma \,\lambda^{k} | B^{k} - x_{i}^{k}(t) |, & p > p_{1} \text{ and } p \leq p_{2} \\ S_{r}^{k} + \gamma \,\lambda^{k} | S_{r}^{k} - x_{i}^{k}(t) |, & p > p_{2} \text{ and } p \leq p_{3} \text{ and } f(\vec{S}_{r}) < f(\vec{x}_{i}(t)) \\ x_{i}^{k} + \gamma \,\lambda^{k} | S_{r}^{k} - x_{i}^{k}(t) |, & p > p_{2} \text{ and } p \leq p_{3} \text{ and } f(\vec{S}_{r}) \geq f(\vec{x}_{i}(t)) \end{cases}$$
(10)

where p is a randomly generated number in the range [0, 1]. It is important to discuss why we are calculating  $p_1$ ,  $p_2$  and  $p_3$  as mentioned above. Two well-known functions sphere and griewank are used to analyze the impact of distinct combinations of  $p_1$  and  $p_2$  on exploration and exploitation of these functions. See Figure 7 for illustration. Since griewank is a multimodal function with

regularly distributed and widespread local minima, the performance for this function can only be increased if the algorithm can explore its search space. From griewank function in Figure 7, we can learn that the performance improves if the value of  $p_1$  increases or in other words the participation of Eq. (6) increases; however, the performance starts decreasing if  $p_2$  increases by fixing  $p_1$  at any point. It should be noted that by increasing  $p_2$  the participation of Eq. (1) increases but participation of Eq. 5 decreases. Conclusively, both Eq. (6) and Eq. (5) enhance exploration. However, the role of Eq. (1) will be prominent for sphere function. Since sphere is a unimodal function, the performance for this function can only be enhanced if the algorithm can exploit promising areas once they are discovered. From sphere function in Figure 7, we can learn that the performance increases if both  $p_1$  and  $p_2$  increase but after a certain limit the performance begins to deteriorate by raising  $p_2$  any further because the participation of Eq. (5) in the form of exploitation starts getting compromised. Conclusively, both Eq. (1) and Eq. (5) promote exploitation and after assigning a handsome proportion to  $p_1$  for exploration the rest of the proportion should be equally divided for Eq. (1) and Eq. (5).

Figure 7: Impact of different distinct combinations of  $p_1$  and  $p_2$  on exploration and exploitation of griewank and sphere functions.

The whole discussion concludes the argument that Eq. (6) enhances exploration, Eq. (1) enhances exploitation and convergence, and Eq. (5) promotes both the exploration and exploitation. Based on these observations,  $p_1$  is kept higher in beginning and is linearly reduced over the course of iterations, which reduces exploration with iterations and enhances exploitation with iterations. After computing  $p_1$ , the rest of the span is divided into two equal parts, which makes attraction towards the boss and colleagues equally probable.

#### 3. Implementation of HBO and complexity overhead analysis

In this section, all the important steps of HBO and their implementation-related details are discussed. Furthermore, it is justified that integrating heap into the implementation of HBO does not affect the time and space complexity of the proposed algorithm asymptotically.

#### 3.1. Steps of HBO

- 1. Definition and initialization of the parameters: Initialize general parameters, such as the size of the population (N), number of design variables/dimensions (D), maximum number of iteration (T), and ranges of the design variables ( $L_i$ ,  $U_i$ ). The algorithm specific parameter C can be computed by using Eq. (4).
- 2. Initialization of the population: Generate a random population *P* of *N* search agents, each consisting of *D* dimensions. The representation of population *P* is presented below:

$$\mathbf{P} = \begin{bmatrix} \vec{x}_1^T \\ \vec{x}_2^T \\ \vdots \\ \vec{x}_N^T \end{bmatrix} = \begin{bmatrix} x_1^1 & x_1^2 & x_1^2 & \dots & x_1^D \\ x_2^1 & x_2^2 & x_2^2 & \dots & x_2^D \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_N^1 & x_N^2 & x_N^2 & \dots & x_N^D \end{bmatrix}$$

Figure 8: Illustration of different functions of the heap. Number of search agents = 13, where heap.value stores the indices of the search agents in the population and heap.key stores the fitness of the corresponding search agents.

- 3. Building the heap: Heap can generally be a *d*-ary tree; however, we use 3-ary (ternary) heap to implement CRH in this paper. Although heap is a tree-shaped data structure, it can be implemented efficiently using an array because it has the property of completeness. The following are some significant *d*-ary heap-based operations needed to implement HBO.
  - parent (*i*): Assuming the heap is implemented as an array, this function receives the index of a node and returns the index of the parent of that node. The formula to compute the index of the parent of node *i* is given below:

$$parent(i) = \lfloor \frac{i+1}{d} \rfloor \tag{11}$$

where  $\lfloor \ \ \rfloor$  denotes the floor function, which returns the greatest integer less than or equal to the input. For example, *parent*(13) =  $\lfloor \frac{14}{3} \rfloor = 4$ , as depicted in Figure 8.

• child (i, j): In a 3-ary heap a node can have maximum 3 children. In our mapping we can say, a boss may not have more than 3 direct subordinates. This function returns the index of the  $j^{th}$  child of a node *i*. A constant-time mathematical formulation of this function is given below:

$$child(i,j) = d \times i - d + j + 1 \tag{12}$$

For example, as illustrated in Figure 8, the index of the  $2^{nd}$  child of node 2 is computed as:

$$child(2,2) = 6 - 3 + 2 + 1 = 6$$

• depth (*i*): Considering the depth of the last level equals to 0, the depth of any node *i* can be computed in constant time by using the following formula:

$$depth(i) = \lceil log_d(d \times i - i + 1) \rceil - 1 \tag{13}$$

July 12, 2020

where  $\lceil \rceil$  denotes the ceil function, which returns the smallest integer greater than or equal to the input. For example, the depth of node at index 27 in heap array is computed as:

$$depth(27) = \lceil log_3(81 - 27 + 1) - 1 \rceil = \lceil 2.6476 \rceil = 3$$

• colleague (*i*): All nodes at the level of a node *i* are considered the colleagues of node *i*. This function returns the index of any randomly selected colleague of node *i* and it can be computed by generating any random integer in the range  $\left[\frac{d \ d^{depth(i)-1}-1}{d-1}+1, \frac{d \ d^{depth(i)}-1}{d-1}\right]$ . For example, the range for the colleagues of node 6 is highlighted in Figure 8 and computed as follows:

$$\left[\frac{3 \times 3^{depth(6)-1} - 1}{3-1} + 1, \frac{3 \times 3^{depth(6)} - 1}{3-1}\right] = [5, 13]$$

• Heapify\_Up (i): It searches upward in the heap and inserts the node *i* at its correct location to maintain the heap property. The pseudo code for this operation is presented in Algorithm 1.

```
Algorithm 1 Heapify_Up (i)
```

**Input**: i (the index of the node we are trying to heapify)  $\triangleright$  Assuming that the rest of the nodes fulfill the heap property **while**  $i \neq root$  and heap[i].key < heap[parent(i)].key **do**  | swap(heap[i], heap[parent(i)])  $i \leftarrow parent(i)$ 

end

Finally, the algorithm to build the heap is presented in Algorithm 2. For a population of 13 search agents, a heap is built in Figure 8 where *heap.value* stores the indices of the search agents in the population and *heap.key* stores the fitness of the corresponding search agents. Please note that all the operations presented above except  $Heapify_Up()$  and  $Build_heap()$ 

```
      Algorithm 2 Build_Heap (P, N)

      Input: P (population of search agents), N (population size)

      for i \leftarrow 1 to N do

      heap[i].value \leftarrow i

      heap[i].key \leftarrow f(x_i)

      Heapify_Up (i)
```

```
end
```

are constant time operations; however, the time complexity of  $Heapify_Up()$  is  $O(log_dN)$  and time complexity of  $Build_Heap()$  is O(N) (Zhu et al., 2019a).

4. Repeated applications of position updating mechanism: Search agents update their positions repeatedly in accordance with earlier discussed equations and attempt to converge on the optimum global. The main body of HBO is presented in Algorithm 3.

# 3.2. Complexity overhead analysis

Most optimization algorithms use O(ND) space to store population and use O(N) space to store cost/fitness of all search agents. However, their overall space complexity can be expressed as O(ND) where N denotes the total number of search agents in population and D denotes the number of dimensions of the problem. The space complexity of HBO is also bounded by O(ND) because population consumes O(ND) and heap consumes O(N) space.

The time complexity analysis of most algorithms involves analyses of three components. (i) The time complexity of initialization of the population, generally bounded by O(ND), (ii) time complexity of initial fitness evaluation, generally bounded by  $O(NC_{0bj})$ , where  $C_{obj}$  represents the cost of the objective function, and (iii) time complexity of the main loop, generally bounded

```
Algorithm 3 HBO Main Body ()
for t \leftarrow 1 to T do
     Compute \gamma by using Eq. (3)
     Compute p_1 by using Eq. (7)
     Compute p_2 by using Eq. (8)
     for I \leftarrow N down to 2 do
                                              \triangleright i is the index of the search agent in population P corresponds
          i \leftarrow heap[I].value
                                                 to I^{th} node in heap. The heap is constructed in Algorithm 2.
          bi \leftarrow heap[parent(I)].value
                                                                                      \triangleright bi is the index of the parent of I
          ci \leftarrow heap[colleague(I)].value
                                                                         \triangleright ci is the index of a random colleague of I
          \vec{B} \leftarrow \vec{x}_{bi}
                                                                          \triangleright \vec{B} is the position vector of the parent of I
          \vec{S} \leftarrow \vec{x}_{ci}
                                                             \triangleright \vec{S} is the position vector of a random colleague of I
          for k \leftarrow 1 to D do
               p \leftarrow rand()
              x_{temp}^k \leftarrow update x_i^k(t) by using Eq. (10)
          end
          if f(\vec{x}_{temp}) < f(\vec{x}_i(t)) then
           \vec{x}_i(t+1) \leftarrow \vec{x}_i(t)
          end
          Heapify_Up (I)
     end
end
return x<sub>heap[1]</sub>.value
```

by  $O(TND + TNC_{0bj})$ , where *T* denotes the total number of iterations. Since the cost of the objective functions varies from function to function, the general time complexity T(N) of such algorithms can be expressed as follows:

$$T(N) = \begin{cases} O(TND), & D > C_{0bj} \\ O(TNC_{0bj}), & Otherwise \end{cases}$$
(14)

On the contrary, the time complexity analysis of HBO involves analyses of four components: (i) The time complexity of initialization of the population bounded by O(ND), (ii) time complexity of initial fitness evaluation bounded by  $O(NC_{0bj})$ , (iii) time complexity of Build\_Heap bounded by O(N), and (iv) time complexity of the main loop bounded by  $O(TND + TNC_{0bj} + TNlog_dN)$ , where additional  $TNlog_dN$  is for calling heapify after updating each search agent. The overall time complexity T(N) of HBO is also expressible through Eq. (14) because calling heapify for each search agent does not add any significant overhead to the overall time complexity. It should be noted that  $log_dN$  denotes the number of levels in the heap and the heaps we use to address most of the optimization problems only have 4 to 6 levels.

#### 4. Experiments to evaluate the performance of HBO

A global optimization algorithm should be able to explore the search space to find promising areas and exploit the promising areas to converge on the global optimum. An algorithm requires a very nice equilibrium between exploration and exploitation to converge to the global optimum. In this section, we evaluate the performance and the behaviour of HBO from these three perspectives.

|       | Table 2: Descriptions of unimodal fixed-dimension benchmark functions. |      |            |           |       |                  |      |            |              |
|-------|------------------------------------------------------------------------|------|------------|-----------|-------|------------------|------|------------|--------------|
| f.no. | Name                                                                   | Vars | Range      | $f_{min}$ | f.no. | Name             | Vars | Range      | <i>f</i> min |
| f1    | Beale                                                                  | 2    | [-4.5,4.5] | 0         | f6    | Wayburn Seader 3 | 2    | [-500,500] | 19.10588     |
| f2    | Booth                                                                  | 2    | [-10,10]   | 0         | f7    | Leon             | 2    | [-1.2,1.2] | 0            |
| f3    | Brent                                                                  | 2    | [-10,10]   | 0         | f8    | Cube             | 2    | [-10,10]   | 0            |
| f4    | Matyas                                                                 | 2    | [-10,10]   | 0         | f9    | Zettl            | 2    | [-5,10]    | -0.00379     |
| f5    | Schaffer N. 4                                                          | 2    | [-100,100] | 0.292579  |       |                  |      |            |              |

Table 3: Descriptions of unimodal variable-dimension benchmark functions.

| f.no. | Name            | Vars | Range        | $f_{min}$ | f.no. | Name            | Vars | Range      | f <sub>min</sub> |
|-------|-----------------|------|--------------|-----------|-------|-----------------|------|------------|------------------|
| f10   | Sphere          | 30   | [-100,100]   | 0         | f18   | Rosenbrock      | 30   | [-30,30]   | 0                |
| f11   | Powell Sum      | 30   | [-1,1]       | 0         | f19   | Brown           | 30   | [-1,4]     | 0                |
| f12   | Schwefel's 2.20 | 30   | [-100,100]   | -0        | f20   | Dixon and Price | 30   | [-10,10]   | 0                |
| f13   | Schwefel's 2.21 | 30   | [-100,100]   | 0         | f21   | Powell Singular | 30   | [-4,5]     | 0                |
| f14   | Step            | 30   | [-100,100]   | 0         | f22   | Xin-She Yang    | 30   | [-20,20]   | 0                |
| f15   | Stepint         | 30   | [-5.12,5.12] | -155      | f23   | Perm 0,D,Beta   | 5    | [-Var,var] | 0                |
| f16   | Schwefel's 2.22 | 30   | [-100,100]   | 0         | f24   | Sum Squares     | 30   | [-10,10]   | 0                |
| f17   | Schwefel's 2.23 | 30   | [-10,10]     | 0         |       |                 |      |            |                  |

#### 4.1. Experimental setup

To evaluate the performance of HBO, we are using 97 benchmark functions, which are classified in 5 groups: (i) Unimodal fixed-dimension benchmark functions, (ii) unimodal variabledimension benchmark functions, (iii) multimodal fixed-dimension benchmark functions, (iv) multimodal variable-dimension benchmark functions, and (v) shifted, rotated, hybrid, and composite benchmark functions from CEC-BC-2017 (N.H. Awad, 2017). The names of these functions and their other related properties are presented in Tables 2, 3, 4, 5, and 6, respectively. In each table, Vars denotes the number of dimensions (design variables) of the functions, Range defines the lower and upper bounds of the design variables, and  $f_{min}$  represents the global minimum of the functions. Moreover, Table 2 describes the fixed-dimension unimodal benchmark functions, Table 3 presents variable-dimension unimodal benchmark functions, Table 4 describes fixed-dimension multimodal benchmark functions, Table 5 presents variable-dimension multimodal benchmark functions, and Table 6 presents shifted, rotated, hybrid, and composite benchmark functions from CEC-BC-2017. The 2D landscapes of few of the functions from each category are presented in Figure 9. The researchers have used a suite of 23 classical benchmark functions in many literature articles (Mirjalili & Lewis, 2016; Mirjalili et al., 2014; Mirjalili, 2016; Rashedi et al., 2009); however, we extended

| f.no. | Name            | Vars | Range               | fmin     | f.no. | Name             | Vars | Range      | fmin     |
|-------|-----------------|------|---------------------|----------|-------|------------------|------|------------|----------|
| f25   | Egg Crate       | 2    | [-5,5]              | 0        | f39   | Cross function   | 2    | [-10,10]   | 0        |
| f26   | Ackley N.3      | 2    | [-32,32]            | -195.629 | f40   | Cross leg table  | 2    | [-10,10]   | -1       |
| f27   | Adjiman         | 2    | [-1,2]              | -2.02181 | f41   | Crowned cross    | 2    | [-10,10]   | 0.0001   |
| f28   | Bird            | 2    | [-2pi, 2pi]         | -106.765 | f42   | Easom            | 2    | [-100,100] | -1       |
| f29   | Camel 6 Hump    | 2    | [-5,5]              | -1.0316  | f43   | Giunta           | 2    | [-1,1]     | 0.060447 |
| f30   | Branin RCOS     | 2    | [-5,5]              | 0.397887 | f44   | Helical Valley   | 3    | [-10,10]   | 0        |
| f31   | Goldstien Price | 2    | [-2,2]              | 3        | f45   | Himmelblau       | 2    | [-5,5]     | 0        |
| f32   | Hartman 3       | 3    | [0,1]               | -3.86278 | f46   | Holder Table 2   | 2    | [-10,10]   | -19.2085 |
| f33   | Hartman 6       | 6    | [0,1]               | -3.32236 | f47   | Pen Holder       | 2    | [-11,11]   | -0.96354 |
| f34   | Cross-in-tray   | 2    | [-10,10]            | -2.06261 | f48   | Test Tube Holder | 2    | [-10,10]   | -10.8723 |
| f35   | Bartels Conn    | 2    | [-500,500]          | 1        | f49   | Shubert          | 2    | [-10,10]   | -186.731 |
| f36   | Bukin 6         | 2    | [(-15,-5), (-5,-3)] | 180.3276 | f50   | Shekel           | 4    | [0, 10]    | -10.5364 |
| f37   | Carrom Table    | 2    | [-10,10]            | -24.1568 | f51   | Three-Hump Camel | 2    | [-5,5]     | 0        |
| f38   | Chichinadze     | 2    | [-30,30]            | -43.3159 |       | ·                |      |            |          |

Table 4: Descriptions of multimodal fixed-dimension benchmark functions.

Table 5: Descriptions of multimodal variable-dimension benchmark functions.

| f.no. | Name            | Vars | Range        | <i>f</i> min | f.no. | Name              | Vars | Range        | $f_{min}$ |
|-------|-----------------|------|--------------|--------------|-------|-------------------|------|--------------|-----------|
| f52   | Schwefel's 2.26 | 30   | [-500,500]   | -418.983     | f61   | Styblinski-Tang   | 30   | [-5,5]       | -1174.98  |
| f53   | Rastrigin       | 30   | [-5.12,5.12] | 0            | f62   | Griewank          | 30   | [-100,100]   | 0         |
| f54   | Periodic        | 30   | [-10,10]     | 0.9          | f63   | Xin-She Yang N. 4 | 30   | [-10,10]     | -1        |
| f55   | Qing            | 30   | [-500,500]   | 0            | f64   | Xin-She Yang N. 2 | 30   | [-2pi,2pi]   | 0         |
| f56   | Alpine N. 1     | 30   | [-10,10]     | 0            | f65   | Gen. Penalized    | 30   | [-50,50]     | 0         |
| f57   | Xin-She Yang    | 30   | [-5,5]       | 0            | f66   | Penalized         | 30   | [-50,50]     | 0         |
| f58   | Ackley          | 30   | [-32,32]     | 0            | f67   | Michalewics       | 30   | [0,pi]       | -29.6309  |
| f59   | Trignometric 2  | 30   | [-500,500]   | 0            | f68   | Quartic Noise     | 30   | [-1.28,1.28] | 0         |
| f60   | Salomon         | 30   | [-100,100]   | 0            |       |                   |      |              |           |

their count to 97 in this study for a thorough assessment of the proposed algorithm. The performance of HBO is compared with 7 highly-referred state-of-the-art algorithms in the literature. The names of the algorithms are gravitational search algorithm (GSA) (Rashedi et al., 2009), particle swarm optimization (PSO) (Eberhart & Kennedy, 1995), sine cosine algorithm (SCA) (Mirjalili, 2016), moth flame optimization (MFO) (Mirjalili, 2015b), multi-verse optimizer (MVO) (Mirjalili et al., 2015), cuckoo search (CS) (Yang & Deb, 2009), and effective butterfly optimizer using covariance matrix adapted retreat phase (EBO-CMAR) (Kumar et al., 2017). The parameter settings of all these algorithms are taken from their original papers and are presented in Table 7. All the algorithms are coded in MATLAB programming software and simulations are run on a Core i7-4650U with 8 GB RAM. The MATLAB code will be released at GitHub after acceptance of the paper. The codes of all algorithms except PSO are published by their original authors. All results are produced by executing each algorithm 30 times for each benchmark function with randomly initialized populations.

Figure 9: 2D landscapes of a few benchmark functions from all 5 categories. (a) Fixed-dimension unimodal functions, (b) Variable-dimension unimodal functions, (c) Fixed-dimension multimodal functions, (d) Variable-dimension multimodal functions, and (e) Rotated-Shifted functions.

| f.no.  | Name                                                        | Vars | Range      | fmin |
|--------|-------------------------------------------------------------|------|------------|------|
| Unimo  | dal functions                                               |      |            |      |
| f69    | Shifted and Rotated Bent Cigar Function                     | 10   | [-100,100] | 100  |
| Multin | nodal functions                                             |      |            |      |
| f70    | Shifted and Rotated Rosenbrock's Function                   | 10   | [-100,100] | 300  |
| f71    | Shifted and Rotated Rastrigin's Function                    | 10   | [-100,100] | 400  |
| f72    | Shifted and Rotated Expanded Scaffer's F6 Function          | 10   | [-100,100] | 500  |
| f73    | Shifted and Rotated Lunacek Bi <sub>RastriginFunction</sub> | 10   | [-100,100] | 600  |
| f74    | Shifted and Rotated Non-Continuous Rastrigin's Function     | 10   | [-100,100] | 700  |
| f75    | Shifted and Rotated Levy Function                           | 10   | [-100,100] | 800  |
| f76    | Shifted and Rotated Schwefel's Function                     | 10   | [-100,100] | 900  |
| Hybrid | l functions (N is basic number of functions)                |      |            |      |
| f77    | Hybrid Function 1 (N=3)                                     | 10   | [-100,100] | 1000 |
| f78    | Hybrid Function 2 (N=3)                                     | 10   | [-100,100] | 1100 |
| f79    | Hybrid Function 3 (N=3)                                     | 10   | [-100,100] | 1200 |
| f80    | Hybrid Function 4 (N=4)                                     | 10   | [-100,100] | 1300 |
| f81    | Hybrid Function 5 (N=4)                                     | 10   | [-100,100] | 1400 |
| f82    | Hybrid Function 6 (N=4)                                     | 10   | [-100,100] | 1500 |
| f83    | Hybrid Function 6 (N=5)                                     | 10   | [-100,100] | 1600 |
| f84    | Hybrid Function 6 (N=5)                                     | 10   | [-100,100] | 1700 |
| f85    | Hybrid Function 6 (N=5)                                     | 10   | [-100,100] | 1800 |
| f86    | Hybrid Function 6 (N=6)                                     | 10   | [-100,100] | 1900 |
| Compo  | osite functions (N is basic number of functions)            |      |            |      |
| f87    | Composite Function 1 (N=3)                                  | 10   | [-100,100] | 2000 |
| f88    | Composite Function 2 (N=3)                                  | 10   | [-100,100] | 2100 |
| f89    | Composite Function 3 (N=4)                                  | 10   | [-100,100] | 2200 |
| f90    | Composite Function 4 (N=4)                                  | 10   | [-100,100] | 2300 |
| f91    | Composite Function 5 (N=5)                                  | 10   | [-100,100] | 2400 |
| f92    | Composite Function 6 (N=5)                                  | 10   | [-100,100] | 2500 |
| f93    | Composite Function 7 (N=6)                                  | 10   | [-100,100] | 2600 |
| f94    | Composite Function 8 (N=6)                                  | 10   | [-100,100] | 2700 |
| f95    | Composite Function 9 (N=6)                                  | 10   | [-100,100] | 2800 |
| f96    | Composite Function 10 (N=3)                                 | 10   | [-100,100] | 2900 |
| f97    | Composite Function 11 (N=3)                                 | 10   | [-100,100] | 3000 |

| Table 6. Descri | ptions of the | benchmark        | functions from | m CEC 201     | 7 (N H    | Awad 2017)   |
|-----------------|---------------|------------------|----------------|---------------|-----------|--------------|
| Table 0. Desell | phons of the  | 0011011111111111 | runctions noi  | $\Pi CLC 201$ | / (11.11. | 1 waa, 2017) |

Table 7: Algorithms used for comparative analysis and their parameter settings. NFEs denotes the number of objective function evaluations.

| Algorithm                                                                                                                                                                                                | Parameters setting                                                                                                                                                                                                                                                                                       | NFEs                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| GSA (Rashedi et al., 2009)<br>PSO (Eberhart & Kennedy, 1995)<br>SCA (Mirjalili, 2016)<br>MFO (Mirjalili, 2015b)<br>MVO (Mirjalili et al., 2015)<br>CS (Yang & Deb, 2009)<br>EBO-CMAR (Kumar et al. 2017) | $N = 50, \alpha = 20, G_0 = 100, k = [N \to 1]$ $N = 50, c1 = 2, c2 = 2, w = [0.9 \to 0.2]$ $N = 50, a = 2, [r1, r2, r3, r4] \text{ from corresponding eq.}$ $N = 30$ $N = 60, WEP_{max} = 1, WEP_{min} = 0.2$ $N = 20, pa = 0.25$ $PS_{1} = max = 4D, PS_{2} = max = 46, 8D, PS_{2} = max = 10D, H = 6$ | 50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000 |
|                                                                                                                                                                                                          | $\sigma = 0.3, CS = 100, prob_{ls} = 0.1, cfe_{ls} = 0.25 * FE_{max}$                                                                                                                                                                                                                                    | 50,000                                                             |
| НВО                                                                                                                                                                                                      | $N = 40, [C, p_1, p_2]$ from corresponding equations.                                                                                                                                                                                                                                                    | 50,000                                                             |

#### 4.2. Evaluation of the exploitation capability of HBO

The area around the good solutions is considered promising for the global optimum which is why many algorithms search the area around good solutions by attracting the poor search agents to them. HBO follows the same rule but in a different way. In HBO, a hierarchical approach is used in which each child exploits the area around its parent, as depicted in Figure 10 (a). Two experiments are performed to practically assess the exploitative capability of HBO. It should be noted that the unimodal functions are used in both experiments because unimodal functions are deemed a helpful source for assessing the algorithm's exploitative capacity. In the first experiment, the results for fixed-dimension unimodal benchmark functions are compared with other algorithms in Table 8 and in the second experiment, the results for variable-dimension unimodal benchmark functions are compared with other algorithms in Table 9. In the case of fixed-dimension functions, HBO and a few other algorithms share  $1^{st}$  position for all functions except f4 and f7; however, the results for f4 and f7 are also very good and stochastically equivalent to the other good performers. In the case of variable-dimension functions, HBO outperforms the other algorithms by securing  $1^{st}$  position for all functions except f13, f17, f18, f21 and f23; however, the performance for these 5 functions is also comparable to the others. From the outcomes, we can conclude that HBO has excellent exploitation capability and can deliver better outcomes in challenging environments. There are a few reasons behind good exploitative behavior of HBO. First, the value of  $\gamma$  in the range [-1,1] allows search agents to exploit area around their bosses/colleagues. Second, a gradual increase in the selection probability of Eq. (1) and Eq. (5) allows the population to evolve towards the better solutions. Third, a search agent is allowed to update its position only if the next position is better than the previous position.

Figure 10: (a) Depicts the hierarchical position updating approach and (b) illustrates the search agent's own impact and the impact of boss and colleagues on its position updating.

#### 4.2.1. Statistical analysis of the results for unimodal functions

To see the overall rank of each algorithm, we have performed Friedman mean rank test. Friedman test is a non-parametric statistical test developed by Milton Friedman (Friedman, 1937; Milton, 1939; Friedman, 1940). Friedman test involves sorting each block of rows together, then considering the ranked column values. The mean ranks of all algorithms given by Friedman test for unimodal functions are presented in Figure 11. Smallest bar or lowest value on the bar in the figure indicates the best mean rank. The results show that HBO secures 1<sup>st</sup> rank and EBO-CMAR (winner of CEC-BC-2017) secures 2<sup>nd</sup> rank; however, the difference between the ranks of HBO and EBO-CMAR is very minute and insignificant. Conclusively, HBO has comparatively good exploitative capability, which is little better than the winner of CEC-BC-2017 and significantly better than the others.

| Table 8: Comparison of the performance of HBO with other algorithms on unimodal fixed-dimension functions. |  |
|------------------------------------------------------------------------------------------------------------|--|
|------------------------------------------------------------------------------------------------------------|--|

| f.no. | Stats | HBO | GSA      | PSO | SCA      | MFO | MVO     | CS | EBO-CMAR  |
|-------|-------|-----|----------|-----|----------|-----|---------|----|-----------|
| f1    | Med   | 0   | 6.29E-21 | 0   | 7.23E-05 | 0   | 1.6E-08 | 0  | 0         |
|       |       |     |          |     |          |     |         |    | continued |

| cor | . continued |          |          |          |          |          |          |          |          |  |  |
|-----|-------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Fn  | Stats       | HBO      | GSA      | PSO      | SCA      | MFO      | MVO      | CS       | EBO-CMAR |  |  |
|     | Mean        | 0        | 9.48E-21 | 0        | 7.88E-05 | 2.35E-32 | 1.98E-08 | 0        | 0        |  |  |
|     | Std         | 0        | 7.41E-21 | 0        | 5.6E-05  | 1.01E-31 | 1.44E-08 | 0        | 0        |  |  |
| f2  | Med         | 0        | 8.29E-21 | 0        | 0.000148 | 0        | 1.36E-07 | 0        | 0        |  |  |
|     | Mean        | 0        | 1.2E-20  | 0        | 0.000313 | 0        | 1.77E-07 | 0        | 0        |  |  |
|     | Std         | 0        | 1.3E-20  | 0        | 0.000331 | 0        | 1.61E-07 | 0        | 0        |  |  |
| f3  | Med         | 1.38E-87 | 1.51E-05 | 1.38E-87 | 1.38E-87 | 1.38E-87 | 1.38E-87 | 1.38E-87 | 1.38E-87 |  |  |
|     | Mean        | 1.38E-87 | 4.09E-05 | 1.38E-87 | 1.38E-87 | 1.38E-87 | 1.38E-87 | 1.38E-87 | 1.38E-87 |  |  |
|     | Std         | 6.8E-103 | 6.78E-05 | 4.6E-103 | 4.6E-103 | 4.6E-103 | 4.6E-103 | 4.6E-103 | 2.4E-103 |  |  |
| f4  | Med         | 5.1E-107 | 4.68E-22 | 1.3E-95  | 1.7E-132 | 2.6E-142 | 3.55E-09 | 1.21E-55 | 0        |  |  |
|     | Mean        | 9.21E-78 | 6.88E-22 | 7.36E-93 | 2.1E-121 | 2.75E-66 | 5.03E-09 | 1.26E-52 | 0        |  |  |
|     | Std         | 5.05E-77 | 7.43E-22 | 3.08E-92 | 9.8E-121 | 1.38E-65 | 5.21E-09 | 4.33E-52 | 0        |  |  |
| f5  | Med         | 0.292579 | 0.301431 | 0.292579 | 0.292579 | 0.292579 | 0.292579 | 0.292579 | 0.292579 |  |  |
|     | Mean        | 0.292579 | 0.306436 | 0.292579 | 0.292579 | 0.292687 | 0.292579 | 0.292579 | 0.292579 |  |  |
|     | Std         | 7.14E-17 | 0.014464 | 7.93E-17 | 1.76E-07 | 0.000288 | 6.19E-07 | 6.73E-11 | 9.2E-09  |  |  |
| f6  | Med         | 19.10588 | 19.10588 | 19.10588 | 19.11139 | 19.10588 | 19.10677 | 19.10588 | 19.10588 |  |  |
|     | Mean        | 19.10588 | 19.10588 | 19.10588 | 19.11828 | 19.10588 | 19.10717 | 19.10588 | 19.10588 |  |  |
|     | Std         | 1.45E-14 | 3.4E-15  | 9.17E-15 | 0.014647 | 6.76E-15 | 0.001452 | 7.47E-15 | 2.37E-15 |  |  |
| f7  | Med         | 8.53E-17 | 0.00257  | 1.5E-22  | 6.5E-05  | 0.001156 | 1.25E-08 | 0        | 7.36E-21 |  |  |
|     | Mean        | 3.59E-13 | 0.002669 | 1.45E-20 | 0.000133 | 0.004254 | 2.48E-08 | 0        | 3.90E-12 |  |  |
|     | Std         | 1.29E-12 | 0.002082 | 3.86E-20 | 0.000196 | 0.005276 | 3.4E-08  | 0        | 1.21E-08 |  |  |
| f8  | Med         | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |  |
|     | Mean        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |  |
|     | Std         | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |  |
| f9  | Med         | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 |  |  |
|     | Mean        | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 | -0.00379 |  |  |
|     | Std         | 1.76E-18 | 9.9E-19  | 1.33E-18 | 2.89E-10 | 1.33E-18 | 2.9E-08  | 1.33E-18 | 0        |  |  |
|     |             |          |          |          |          |          |          |          |          |  |  |

Table 9: Comparison of the performance of HBO with other algorithms on unimodal variable-dimension functions.

| f.no. | Stats | HBO            | GSA            | PSO     | SCA     | MFO     | MVO     | CS          | EBO-CMAR        |
|-------|-------|----------------|----------------|---------|---------|---------|---------|-------------|-----------------|
| f10   | Med   | <b>4.6E-28</b> | 2.4E-17        | 2.1E-12 | 0.00029 | 3.1E-10 | 0.19031 | 7.8E-05     | 8.3E-16         |
|       | Mean  | <b>8.5E-27</b> | 2.4E-17        | 4.8E-11 | 0.00737 | 800     | 0.21839 | 0.00011     | 8.99E-16        |
|       | Std   | 3.6E-26        | 8.5E-18        | 2.1E-10 | 0.02329 | 2768.87 | 0.06965 | 0.00011     | 2.71E-16        |
| f11   | Med   | <b>5.3E-70</b> | 5E-18          | 4.9E-25 | 2.2E-15 | 3.2E-31 | 8.6E-08 | 4.4E-17     | 5.73E-33        |
|       | Mean  | <b>1.3E-64</b> | 2.7E-17        | 6.6E-22 | 2E-10   | 1.2E-27 | 8.8E-08 | 1.1E-15     | 6.53E-32        |
|       | Std   | 7.3E-64        | 6.2E-17        | 2.8E-21 | 8E-10   | 5E-27   | 5.9E-08 | 2.9E-15     | 1.72E-31        |
| f12   | Med   | <b>2E-18</b>   | 2.3E-08        | 3.6E-06 | 1.5E-05 | 100     | 2.62075 | 0.01978     | 4.56E-06        |
|       | Mean  | <b>2.8E-18</b> | 2.3E-08        | 6.8E-06 | 5.9E-05 | 76.0004 | 2.8031  | 0.02831     | 5.27E-06        |
|       | Std   | 3.8E-18        | 3.2E-09        | 8.9E-06 | 0.00013 | 83.0658 | 0.79795 | 0.03062     | 2.23E-06        |
| f13   | Med   | 1.13756        | <b>3.4E-09</b> | 0.41017 | 11.7186 | 67.6111 | 0.62211 | 10.5873     | 0.000477        |
|       | Mean  | 1.21633        | 0.01449        | 0.40665 | 13.7426 | 66.4658 | 0.65522 | 11.5805     | <b>0.000802</b> |
|       | Std   | 0.8007         | 0.07246        | 0.11811 | 8.47197 | 8.71094 | 0.20993 | 3.53693     | 0.000709        |
| f14   | Med   | <b>3.1E-28</b> | 1.9E-17        | 2.1E-12 | 4.11205 | 3.3E-10 | 0.19494 | 0.00012     | 8.25E-16        |
|       | Mean  | <b>1.3E-26</b> | 2E-17          | 1.5E-10 | 4.20256 | 3588.09 | 0.19032 | 0.00017     | 8.07E-16        |
|       | Std   | 5.4E-26        | 6.2E-18        | 5.3E-10 | 0.4928  | 6365.06 | 0.02881 | 0.00018     | 2.04E-16        |
| f15   | Med   | -155           | -119           | -133    | -107    | -155    | -147    | <b>-155</b> | -122            |
|       | Mean  | -155           | -118.96        | -132.16 | -106.16 | -155    | -147.8  | -154.56     | -106.1          |
|       | Std   | 0              | 2.93655        | 10.455  | 4.61591 | 0       | 2.39792 | 1.00333     | 3.12291         |
| f16   | Med   | <b>6.6E-19</b> | 58.5087        | 9.7E-06 | 2.5E-06 | 400     | 1.1E+19 | 1E+10       | 1.82E-05        |
|       | Mean  | <b>1.5E-18</b> | 63.6029        | 0.0002  | 7.5E-05 | 448     | 1.1E+21 | 1E+10       | 3.22E-05        |
|       | Std   | 1.7E-18        | 48.0521        | 0.00067 | 0.0003  | 204.369 | 3.6E+21 | 0           | 2.62E-05        |
|       |       |                |                |         |         |         |         |             | continued       |

| Fn  | Stats | HBO     | GSA                | PSO                | SCA     | MFO                | MVO              | CS      | EBO-CMAR             |
|-----|-------|---------|--------------------|--------------------|---------|--------------------|------------------|---------|----------------------|
| f17 | Mad   | 2.7E.50 | 2 1E 99            | 2 1E 10            | 0.01591 | 8 6E 10            | 2E 15            | 7.6E.06 | 9 12E 27             |
| 117 | Mean  | 2.7E-39 | J.1E-00<br>1 3E 88 | 2.1E-19<br>2.8E-16 | 1711.85 | 0.0E-19<br>2.2E 11 | 2E-13<br>1.6E-14 | 7.0E-00 | 0.12E-37<br>2.04E-35 |
|     | Std   | 1.5E-49 | 4.6E-88            | 1.2E-15            | 8248.58 | 1.6E-10            | 4.9E-14          | 0.00631 | 1.32E-34             |
| f18 | Med   | 76.1145 | 26.0798            | 25.9212            | 31.1826 | 555.187            | 31.8312          | 29.517  | 9.933503             |
|     | Mean  | 63.8433 | 28.9477            | 3643.9             | 73.3545 | 3209394            | 265.897          | 48.8975 | 9.769767             |
|     | Std   | 33.5034 | 13.9235            | 17994.4            | 103.248 | 1.6E+07            | 531.457          | 29.1874 | 1.136834             |
| f19 | Med   | 5.3E-31 | 4.2E-17            | 31                 | 2E-08   | 12                 | 0.00053          | 6.9E-07 | 3.43E-15             |
|     | Mean  | 2.5E-30 | 4.3E-17            | 39                 | 7.8E-07 | 14.48              | 0.00055          | 1.3E-06 | 3.87E-15             |
|     | Std   | 5.3E-30 | 1.3E-17            | 24.1039            | 2.8E-06 | 9.36358            | 0.00018          | 1.3E-06 | 1.91E-15             |
| f20 | Med   | 0.66667 | 0.66667            | 0.67049            | 0.72082 | 95.7188            | 0.85047          | 0.69866 | 0.666667             |
|     | Mean  | 0.66673 | 0.67272            | 96.1583            | 2.6131  | 40292.9            | 2.075            | 1.01916 | 0.666667             |
|     | Std   | 0.00028 | 0.03027            | 134.03             | 4.85844 | 83888.4            | 2.71328          | 0.63911 | 3.01E-12             |
| f21 | Med   | 0.00166 | 0.01148            | 390.268            | 0.01223 | 211.189            | 0.32012          | 0.0071  | 5.12E-09             |
|     | Mean  | 0.00186 | 0.02005            | 690.979            | 2.52091 | 892.32             | 0.32042          | 0.0102  | 8.81E-09             |
|     | Std   | 0.00074 | 0.02257            | 812.839            | 12.164  | 1296.1             | 0.15215          | 0.00737 | 1.34E-08             |
| f22 | Med   | 4E-232  | 3.6E-41            | 4E-232             | 6E-199  | 4E-232             | 1E-177           | 4E-232  | 4.3E-232             |
|     | Mean  | 4E-232  | 1.6E-35            | 4E-232             | 5E-189  | 4E-232             | 2E-159           | 4E-232  | 4.3E-232             |
|     | Std   | 0       | 5E-35              | 0                  | 0       | 0                  | 8E-159           | 0       | 0                    |
| f23 | Med   | 1.13066 | 348.325            | 0.07123            | 19.9472 | 0.52853            | 0.22093          | 1.26415 | 2.016307             |
|     | Mean  | 1.4738  | 512.377            | 0.18433            | 21.5403 | 7.27586            | 0.39812          | 1.48717 | 2.163735             |
|     | Std   | 1.44998 | 469.867            | 0.27907            | 13.2359 | 15.7645            | 0.48897          | 1.32319 | 2.010001             |
| f24 | Med   | 6.1E-29 | 1.9E-16            | 8.1E-10            | 2.6E-05 | 300                | 0.15061          | 7.2E-06 | 1.03E-12             |
|     | Mean  | 2E-28   | 2E-16              | 68                 | 0.00023 | 564                | 0.18363          | 1.3E-05 | 1.60E-12             |
|     | Std   | 5E-28   | 4.3E-17            | 98.8264            | 0.00052 | 670.746            | 0.10162          | 1.2E-05 | 1.21E-12             |

Figure 11: Result of Friedman Mean Rank Test for all unimodal functions. Smaller bars/outcomes on the bars denote the higher ranks.

#### 4.3. Evaluation of the exploration capability of HBO

By comparing the landscapes of multimodal and unimodal benchmark functions presented in Figure 9, we can easily find that reaching the global optimum for multimodal functions is tougher than the unimodal functions because multimodal functions have many local optima and an optimization algorithm needs to escape them. A search agent may escape local optimum if force is applied to the search agent from different directions to pull it out of the local optimum. This is how HBO attains exploration. Before to discuss it in detail, let the exploration capacity of HBO first be evaluated by optimizing multimodal benchmark functions and comparing efficiency with other algorithms. First experiment is performed for fixed-dimension multimodal benchmark functions. Although, these functions have fixed number of dimensions (design variables) and can not be scaled up or down but they offer a very challenging landscapes to optimize, for illustration see Figure 9 (c). The results of HBO and all other algorithms for the fixed-dimension multimodal benchmarks are presented in Table 10. The findings obviously demonstrate that in most instances, HBO reaches the global optimum. If we compare the results then HBO shares 1<sup>st</sup> position for all functions except f40, f41 and f44. Performance for such functions, however, is also similar to the algorithms that give the best results for these functions. Second experiment is performed

for variable-dimension multimodal benchmark functions. The dimensionality, in addition to the local optima, makes these functions more complex and more difficult to optimize. The capacity of HBO to solve variable-dimension multimodal functions is compared with other algorithms in Table 11. The findings indicate that HBO is able to explore the search space tremendously. In all instances, HBO outperforms competitors except f54, f63 and f68; however, the performance for these three functions is also competitive. The sources of excellent capacity for exploration are discussed below:

- As discussed in Section 2, Eq. (6) allows search agents to converge gradually, thus stops them from converging to some local optimum rapidly.
- In HBO, unlike many well-known optimization algorithms, neither all search agents update their position with reference to a common good solution (global leader) nor a search agent updates the position with reference to only one better solution. In fact, each search agent follows its own boss, as depicted in Figure 10 (a), which allows each search agent to explore vicinity around a different good solution. Moreover, a search agent, for its different design variables, might be following a different solution depending upon the position updating equation selected probabilistically, see Figure 10 (b) for illustration. In Figure 10 (b), it is shown that  $x_7$  is updating its one design variable with reference to its boss  $x_3$ , other with reference to its colleague  $x_1$ , and one another is keeping unchanged.
- Another source of exploration in HBO is the definition of  $\gamma$ . Whenever it gives value in the range [-2, -1] or [1, 2] the search agent has a chance to jump out of the vicinity bounded by the distance between the search agent and the reference solution, which enhances the exploration capability of HBO. It has already been depicted in Figure 5 (b). Furthermore, the repetitions of these ranges for  $\gamma$  are increased if the value of *C* is increased.

### 4.3.1. Statistical analysis of the results for multimodal functions

To determine the overall rank of each algorithm for the multimodal functions, the results of Friedman mean rank test are reported in Figure 12. Smallest bar or lowest value on the bar in the figure indicates the best mean rank. The results show that HBO secures  $1^{st}$  rank and EBO-CMAR secures  $2^{nd}$  rank; however, in this case, the difference between the ranks of HBO and EBO-CMAR is not minute. The performance of HBO and most of the comparative algorithms for fixed-dimension multimodal functions is nearly equivalent; however, the real strength of HBO can be seen in the case of variable-dimension benchmark functions in which HBO mostly outperform the other algorithms including EBO-CMAR. Conclusively, HBO demonstrates good exploration capability especially in the case of variable-dimension benchmark functions.

| f.no. | Stats | HBO      | GSA      | PSO      | SCA      | MFO      | MVO      | CS       | EBO-CMAR  |
|-------|-------|----------|----------|----------|----------|----------|----------|----------|-----------|
| f25   | Med   | 0        | 8.12E-20 | 1E-129   | 4.4E-158 | 0        | 2.26E-07 | 7.73E-52 | 0         |
|       | Mean  | 0        | 1.09E-19 | 7.8E-128 | 3.5E-150 | 0        | 2.94E-07 | 1.09E-49 | 0         |
|       | Std   | 0        | 1.16E-19 | 1.7E-127 | 1.7E-149 | 0        | 2.6E-07  | 1.91E-49 | 0         |
| f26   | Med   | -195.629 | -195.629 | -195.629 | -195.629 | -195.629 | -195.629 | -195.629 | -195.629  |
|       |       |          |          |          |          |          |          |          | continued |

Table 10: Comparison of the performance of HBO with other algorithms on multimodal fixed dimension functions.

| cont | inued |                 |                 |                 |                 |                  |                 |                 |                 |
|------|-------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| Fn   | Stats | HBO             | GSA             | PSO             | SCA             | MFO              | MVO             | CS              | EBO-CMAR        |
|      | Mean  | <b>-195.629</b> | <b>-195.629</b> | <b>-195.629</b> | <b>-195.629</b> | <b>-195.629</b>  | <b>-195.629</b> | <b>-195.629</b> | <b>-195.629</b> |
|      | Std   | 5.78E-14        | 5.8E-14         | 5.8E-14         | 6.38E-05        | 5.8E-14          | 2.9E-06         | 5.8E-14         | 3E-14           |
| f27  | Med   | -2.02181        | -2.02138        | -2.02181        | <b>-2.02181</b> | -2.02181         | -2.02181        | -2.02181        | <b>-2.02181</b> |
|      | Mean  | -2.02181        | -2.02119        | -2.02181        | <b>-2.02181</b> | -2.02181         | -2.02181        | -2.02181        | <b>-2.02181</b> |
|      | Std   | 1.36E-15        | 0.000654        | 1.36E-15        | 7.6E-10         | 1.36E-15         | 3.49E-11        | 1.36E-15        | 4.68E-16        |
| f28  | Med   | -106.765        | <b>-106.765</b> | -106.765        | -106.753        | -106.765         | -106.765        | -106.765        | -106.765        |
|      | Mean  | -106.765        | -106.616        | -106.765        | -106.745        | -106.765         | -106.765        | -106.765        | -106.765        |
|      | Std   | 2.95E-14        | 0.556386        | 8.7E-15         | 0.019459        | 2.8E-14          | 2.35E-06        | 4.1E-15         | 2.72E-14        |
| f29  | Med   | -1.03163        | -1.03163        | -1.03163        | -1.03162        | <b>-1.03163</b>  | -1.03163        | -1.03163        | -1.03163        |
|      | Mean  | -1.03163        | -1.03163        | -1.03163        | -1.03162        | <b>-1.03163</b>  | -1.03163        | -1.03163        | -1.03163        |
|      | Std   | 6.71E-16        | 5.55E-16        | 6.72E-16        | 1.29E-05        | 6.8E-16          | 5.75E-08        | 6.8E-16         | 7.4E-17         |
| f30  | Med   | <b>0.397887</b> | <b>0.397887</b> | <b>0.397887</b> | <b>0.39818</b>  | <b>0.397887</b>  | <b>0.397887</b> | <b>0.397887</b> | <b>0.397887</b> |
|      | Mean  | <b>0.397887</b> | <b>0.397887</b> | <b>0.397887</b> | <b>0.398279</b> | <b>0.397887</b>  | <b>0.397887</b> | <b>0.397887</b> | <b>0.397887</b> |
|      | Std   | 0               | 0               | 0               | 0.000339        | 0                | 2.58E-08        | 0               | 0               |
| f31  | Med   | <b>3</b>        | 3               | <b>3</b>        | 3.000004        | 3                | <b>3</b>        | <b>3</b>        | 3               |
|      | Mean  | <b>3</b>        | 3               | <b>3</b>        | 3.00001         | 3                | 3.000001        | <b>3</b>        | 3               |
|      | Std   | 1.04E-15        | 1.83E-15        | 9.46E-16        | 1.33E-05        | 1.68E-15         | 6.55E-07        | 9.64E-16        | 0               |
| f32  | Med   | -3.86278        | -3.86278        | <b>-3.86278</b> | -3.85468        | -3.86278         | -3.86278        | -3.86278        | -3.86278        |
|      | Mean  | -3.86278        | -3.86278        | -3.86247        | -3.85551        | -3.86278         | -3.86278        | -3.86278        | -3.86278        |
|      | Std   | 2.71E-15        | 1.99E-15        | 0.001576        | 0.002786        | 2.27E-15         | 3.02E-07        | 2.27E-15        | 9.36E-16        |
| f33  | Med   | -3.322          | -3.322          | -3.19957        | -3.0753         | -3.2031          | -3.32199        | -3.322          | <b>-3.322</b>   |
|      | Mean  | -3.322          | -3.322          | -3.22063        | -3.03156        | -3.23811         | -3.26481        | -3.322          | -3.29822        |
|      | Std   | 1.36E-15        | 4.53E-16        | 0.113038        | 0.145542        | 0.06013          | 0.060747        | 4.53E-16        | 0.05013         |
| f34  | Med   | -2.06261        | -2.06261        | -2.06261        | -2.06261        | -2.06261         | -2.06261        | -2.06261        | <b>-2.06261</b> |
|      | Mean  | -2.06261        | -2.06261        | -2.06261        | -2.06261        | -2.06261         | -2.06261        | -2.06261        | <b>-2.06261</b> |
|      | Std   | 9.03E-16        | 9.06E-16        | 9.06E-16        | 5.31E-06        | 9.06E-16         | 6.14E-09        | 9.06E-16        | 4.68E-16        |
| f35  | Med   | 1               | 1.000004        | 1               | 1               | 1                | 1.00274         | 1               | 1               |
|      | Mean  | 1               | 1.00001         | 1               | 1               | 1                | 1.002914        | 1               | 1               |
|      | Std   | 0               | 1.31E-05        | 0               | 0               | 0                | 0.001642        | 0               | 0               |
| f36  | Med   | <b>180.3276</b> | 180.3277        | <b>180.3276</b> | <b>180.3276</b> | <b>180.3276</b>  | <b>180.3276</b> | NA              | NA              |
|      | Mean  | <b>180.3276</b> | 180.3278        | <b>180.3276</b> | <b>180.3276</b> | <b>180.3276</b>  | <b>180.3276</b> | NA              | NA              |
|      | Std   | 0               | 0.000329        | 0               | 0               | 0                | 0               | NA              | NA              |
| f37  | Med   | -24.1568        | <b>-24.1568</b> | -24.1568        | -24.1435        | -24.1568         | -24.1568        | -24.1568        | -24.1568        |
|      | Mean  | -24.1568        | -24.1373        | -24.1568        | -24.1383        | -24.1568         | -24.1568        | -24.1568        | -24.1568        |
|      | Std   | 8.9E-15         | 0.043688        | 8.97E-15        | 0.015637        | 5.08E-15         | 1.6E-06         | 5.85E-15        | 5.92E-15        |
| f38  | Med   | -42.9444        | -42.9386        | <b>-42.9444</b> | -42.9433        | - <b>42.9444</b> | <b>-42.9444</b> | <b>-42.9444</b> | <b>-42.9444</b> |
|      | Mean  | -42.9444        | -42.8605        | -42.8728        | -42.9429        | - <b>42.9444</b> | <b>-42.9444</b> | <b>-42.9444</b> | <b>-42.9444</b> |
|      | Std   | 3.61E-14        | 0.153608        | 0.167332        | 0.001715        | 2.9E-14          | 4.06E-06        | 2.9E-14         | 1.47E-14        |
| f39  | Med   | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b>  | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b> |
|      | Mean  | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b>  | <b>4.85E-05</b> | <b>4.85E-05</b> | <b>4.85E-05</b> |
|      | Std   | 1.38E-20        | 6.92E-21        | 6.92E-21        | 1.1E-10         | 6.92E-21         | 1.36E-13        | 6.92E-21        | 7.01E-21        |
| f40  | Med   | -0.08478        | -0.00762        | -0.08478        | -0.00037        | -0.08284         | -0.00035        | -0.00436        | -0.08478        |
|      | Mean  | -0.08472        | -0.00754        | -0.15413        | <b>-0.37981</b> | -0.10401         | -0.00038        | -0.00648        | -0.26782        |
|      | Std   | 0.000356        | 0.000899        | 0.255101        | 0.482087        | 0.189542         | 0.000141        | 0.0054          | 0.378938        |
| f41  | Med   | <b>0.00118</b>  | 0.013535        | <b>0.00118</b>  | 0.413084        | 0.001207         | 0.227099        | 0.024604        | <b>0.00118</b>  |
|      | Mean  | 0.001179        | 0.013084        | <b>0.001012</b> | 0.282322        | 0.008629         | 0.22724         | 0.029771        | 0.009655        |
|      | Std   | 6.56E-07        | 0.001716        | 0.000406        | 0.240743        | 0.015171         | 0.037235        | 0.01734         | 0.000448        |
| f42  | Med   | -1              | -1              | -1              | -0.99958        | -1               | -0.99999        | -1              | -0.98999        |
|      | Mean  | -1              | -1              | -1              | -0.99952        | -1               | -0.99999        | -1              | -0.98999        |
|      | Std   | 0               | 0               | 0               | 0.000378        | 0                | 8.9E-06         | 0               | 9.90E-06        |
| f43  | Med   | <b>0.06447</b>  | <b>0.06447</b>  | <b>0.06447</b>  | 0.064476        | <b>0.06447</b>   | <b>0.06447</b>  | <b>0.06447</b>  | <b>0.06447</b>  |
|      | Mean  | <b>0.06447</b>  | <b>0.06447</b>  | <b>0.06447</b>  | 0.064478        | <b>0.06447</b>   | <b>0.06447</b>  | <b>0.06447</b>  | <b>0.06447</b>  |
|      | Std   | 4.82E-17        | 4.25E-17        | 4.84E-17        | 6.06E-06        | 6.23E-17         | 7.09E-10        | 5.2E-17         | 3.91E-17        |

| con | tinued |                 |                 |                 |          |          |                 |          |                 |
|-----|--------|-----------------|-----------------|-----------------|----------|----------|-----------------|----------|-----------------|
| Fn  | Stats  | HBO             | GSA             | PSO             | SCA      | MFO      | MVO             | CS       | EBO-CMAR        |
| f44 | Med    | 2.31E-29        | 0.002338        | <b>1.53E-38</b> | 0.000147 | 0.000153 | 1.75E-05        | 1.27E-33 | 2.19E-10        |
|     | Mean   | 9.77E-26        | 0.007471        | <b>4.36E-34</b> | 0.001891 | 0.001914 | 5.41E-05        | 1.64E-27 | 1.89E-09        |
|     | Std    | 2.77E-25        | 0.012988        | 2.02E-33        | 0.005523 | 0.003791 | 7.55E-05        | 8.17E-27 | 3.40E-09        |
| f45 | Med    | <b>0</b>        | 5.05E-20        | <b>0</b>        | 0.003713 | <b>0</b> | 1.44E-07        | 1.02E-23 | <b>0</b>        |
|     | Mean   | <b>7.89E-32</b> | 8.85E-20        | 2.84E-31        | 0.004536 | 2.21E-31 | 2.39E-07        | 9.24E-22 | 6.89E-31        |
|     | Std    | 2.41E-31        | 8.59E-20        | 3.86E-31        | 0.004803 | 3.62E-31 | 2.74E-07        | 2.66E-21 | 3.39E-31        |
| f46 | Med    | -19.2085        | <b>-19.2085</b> | <b>-19.2085</b> | -19.2011 | -19.2085 | -19.2085        | -19.2085 | -19.2085        |
|     | Mean   | -19.2085        | -19.1934        | -19.161         | -19.1994 | -19.2085 | -19.2085        | -19.2085 | -19.2085        |
|     | Std    | 8.47E-15        | 0.02884         | 0.237557        | 0.00849  | 1.1E-14  | 3.32E-07        | 6.99E-15 | 3.35E-15        |
| f47 | Med    | -0.96353        | -0.96341        | -0.96353        | -0.96352 | -0.96353 | -0.96353        | -0.96353 | -0.96353        |
|     | Mean   | -0.96353        | -0.96336        | -0.96353        | -0.96352 | -0.96353 | -0.96353        | -0.96353 | -0.96353        |
|     | Std    | 0               | 0.000164        | 0               | 1.85E-05 | 0        | 6.19E-10        | 0        | 1.17E-16        |
| f48 | Med    | -10.8723        | -10.8612        | -10.8723        | -10.8723 | -10.8723 | <b>-10.8723</b> | -10.8723 | -10.8723        |
|     | Mean   | -10.8723        | -10.8601        | -10.8723        | -10.8723 | -10.8562 | -10.8652        | -10.8723 | -10.8723        |
|     | Std    | 3.61E-15        | 0.012144        | 3.63E-15        | 4.13E-07 | 0.023801 | 0.009704        | 3.63E-15 | 1.87E-15        |
| f49 | Med    | -186.731        | -185.585        | -186.731        | -186.618 | -186.731 | -186.731        | -186.731 | -186.731        |
|     | Mean   | -186.731        | -184.279        | -186.731        | -186.549 | -186.731 | -186.731        | -186.731 | -186.731        |
|     | Std    | 2.64E-14        | 3.674921        | 4.26E-14        | 0.167024 | 3.12E-14 | 7.45E-05        | 2.62E-10 | 2.02E-08        |
| f50 | Med    | -10.5364        | -10.5364        | <b>-10.5364</b> | -4.91002 | -10.5364 | -10.5363        | -10.5364 | <b>-10.5364</b> |
|     | Mean   | -10.5364        | -10.5364        | -10.1038        | -5.05406 | -9.17268 | -9.89116        | -10.5364 | -10.5365        |
|     | Std    | 1.81E-15        | 2.08E-15        | 1.497388        | 1.893045 | 2.810418 | 1.783183        | 8.22E-14 | 1.87E-15        |
| f51 | Med    | <b>0</b>        | 7.03E-21        | 9.2E-129        | 9.8E-154 | <b>0</b> | 7.66E-09        | 6.28E-54 | 1.24E-59        |
|     | Mean   | <b>0</b>        | 9.84E-21        | 1.4E-126        | 2.2E-146 | <b>0</b> | 1.22E-08        | 2.02E-50 | 3.94E-57        |
|     | Std    | 0               | 9.87E-21        | 4.5E-126        | 9.7E-146 | 0        | 1.05E-08        | 9.77E-50 | 3.33E-58        |

Table 11: Comparison of the performance of HBO with other algorithms on multimodal variable dimension functions.

| f.no. | Stats | HBO             | GSA             | PSO             | SCA      | MFO      | MVO      | CS       | EBO-CMAR |
|-------|-------|-----------------|-----------------|-----------------|----------|----------|----------|----------|----------|
| f52   | Med   | <b>1.27E-05</b> | 327.8278        | 199.3841        | 280.8342 | 134.4251 | 152.8595 | 124.8529 | 173.779  |
|       | Mean  | <b>2.368779</b> | 325.6861        | 197.0912        | 280.2942 | 133.0182 | 153.686  | 121.3023 | 197.8038 |
|       | Std   | 3.680208        | 14.32713        | 34.56364        | 9.926151 | 22.691   | 19.59828 | 15.69451 | 24.93263 |
| f53   | Med   | <b>1.492439</b> | 16.41682        | 80.59118        | 3.602768 | 157.2026 | 92.58562 | 66.32891 | 11.93951 |
|       | Mean  | <b>1.757761</b> | 17.41178        | 79.8289         | 10.18856 | 157.5637 | 96.53296 | 66.89123 | 23.25561 |
|       | Std   | 1.244442        | 4.114998        | 21.80321        | 14.53029 | 33.24362 | 27.12155 | 11.0364  | 5.031696 |
| f54   | Med   | 1.242823        | 1               | 2.775754        | 4.20689  | 4.255549 | 1.002174 | 1.170081 | <b>1</b> |
|       | Mean  | 1.225406        | 1               | 2.775754        | 4.531994 | 4.113488 | 1.002159 | 1.16335  | <b>1</b> |
|       | Std   | 0.109622        | 1.02E-16        | 0.955203        | 1.744219 | 1.097844 | 0.000456 | 0.025051 | 1.24E-13 |
| f55   | Med   | 7.98E-11        | 1592117         | <b>6.29E-11</b> | 5111.529 | 3.03E-06 | 346.6131 | 1E+10    | 4.85E-07 |
|       | Mean  | 4.96E-09        | 2193799         | <b>1.33E-09</b> | 44938.17 | 1.29E-05 | 348.8602 | 1E+10    | 0.000414 |
|       | Std   | 1.35E-07        | 2192991         | 5.36E-09        | 165063.9 | 2.73E-05 | 107.5889 | 0        | 0.001591 |
| f56   | Med   | <b>1.87E-12</b> | 2.33E-09        | 5.97E-06        | 0.005094 | 4.440211 | 3.68881  | 4.801046 | 3.52E-06 |
|       | Mean  | <b>7.03E-09</b> | <b>2.38E-09</b> | 0.355371        | 0.019103 | 7.646744 | 3.758177 | 5.486771 | 9.63E-06 |
|       | Std   | 2.04E-08        | 4.63E-10        | 1.229393        | 0.047921 | 7.69664  | 1.351876 | 1.712033 | 1.44E-05 |
| f57   | Med   | <b>5.28E-22</b> | 2.86E-06        | 50742.82        | 1.28E-05 | 367131.9 | 0.033149 | 0.775464 | 3.1E-11  |
|       | Mean  | <b>1.67E-19</b> | 0.001128        | 1928062         | 0.000228 | 4481183  | 2.602246 | 8.208223 | 5.63E-11 |
|       | Std   | 4.77E-19        | 0.003176        | 6519140         | 0.000456 | 10848431 | 10.10839 | 19.11906 | 8.56E-11 |
| f58   | Med   | <b>2.22E-14</b> | 3.48E-09        | 1.4E-06         | 18.60399 | 18.98799 | 0.650862 | 1.935688 | 1.08E-05 |
|       | Mean  | <b>2.73E-14</b> | 3.43E-09        | 3.95E-06        | 13.92582 | 14.11539 | 0.735326 | 1.701354 | 1.10E-05 |
|       | Std   | 1.47E-14        | 6.89E-10        | 6.03E-06        | 7.874642 | 8.439071 | 0.619771 | 1.005471 | 4.05E-08 |
| f59   | Med   | 1               | 5152.369        | 5.933111        | 103.8615 | 121.266  | 182.0208 | 129.2541 | 5.485088 |
|       | Mean  | 1               | 6565.999        | 8.117298        | 107.4402 | 60130.07 | 182.1578 | 131.8499 | 8.300152 |

| Fn  | Stats | HBO             | GSA             | PSO      | SCA      | MFO      | MVO      | CS       | EBO-CMAR        |
|-----|-------|-----------------|-----------------|----------|----------|----------|----------|----------|-----------------|
|     | Std   | 2.14E-16        | 4248.258        | 4.972892 | 20.73517 | 130692.8 | 27.56456 | 27.77208 | 4.818281        |
| f60 | Med   | <b>0.199873</b> | 1.308996        | 0.299873 | 0.199985 | 4.099873 | 0.499874 | 1.399901 | <b>0.199873</b> |
|     | Mean  | 0.229873        | 1.248939        | 0.347873 | 0.256104 | 6.071873 | 0.547873 | 1.378919 | <b>0.179873</b> |
|     | Std   | 0.046609        | 0.233003        | 0.06532  | 0.096212 | 3.701522 | 0.096264 | 0.268042 | 0.041404        |
| f61 | Med   | -1174.98        | -1097.23        | -1076.03 | -612.026 | -1019.48 | -1005.34 | -1106.92 | -1174.98        |
|     | Mean  | -1174.98        | -1107.13        | -1085.08 | -613.355 | -1015.61 | -1011.56 | -1100.76 | -1174.98        |
|     | Std   | 4.22E-14        | 22.28142        | 31.57904 | 31.91868 | 47.41921 | 38.73212 | 22.74872 | 0.027262        |
| f62 | Med   | <b>0</b>        | <b>0</b>        | 0.012316 | 0.00159  | 0.039202 | 0.034666 | 0.001853 | 1.96E-13        |
|     | Mean  | <b>7.4E-18</b>  | 0.000493        | 0.011133 | 0.115381 | 0.758264 | 0.034398 | 0.005808 | 2.09E-13        |
|     | Std   | 2.82E-17        | 0.002206        | 0.00644  | 0.211554 | 1.383064 | 0.009681 | 0.009444 | 1.19E-13        |
| f63 | Med   | 8.45E-22        | <b>6.67E-30</b> | 9.39E-25 | 1.59E-10 | 1.20E-13 | 6.45E-16 | 6.71E-14 | 4.8E-13         |
|     | Mean  | 7.23E-20        | <b>6.9E-30</b>  | 1.88E-14 | 1.69E-10 | 1.07E-13 | 6.52E-16 | 7.01E-14 | 4.26E-13        |
|     | Std   | 2.05E-19        | 1.9E-30         | 6.5E-14  | 8.18E-11 | 1.13E-13 | 1.68E-16 | 3.24E-14 | 1.82E-13        |
| f64 | Med   | <b>5.29E-12</b> | <b>3.51E-12</b> | 3.06E-11 | 3.47E-10 | 2.71E-11 | 1.79E-11 | 1.59E-11 | 1.9E-11         |
|     | Mean  | <b>5.31E-12</b> | <b>3.53E-12</b> | 3.06E-11 | 3.82E-10 | 2.61E-11 | 2.33E-11 | 1.54E-11 | 9.87E-11        |
|     | Std   | 7.41E-13        | 5.33E-14        | 1.34E-12 | 1.95E-10 | 3.03E-12 | 1.51E-11 | 3.68E-12 | 3.96E-12        |
| f65 | Med   | 1.25E-28        | 2.35E-18        | 4.92E-12 | 2.378227 | 0.010987 | 0.034323 | 3.919759 | 5.66E-15        |
|     | Mean  | 1.17E-27        | 0.000549        | 0.004395 | 3.027752 | 16402510 | 0.039241 | 5.786021 | 2.18E-14        |
|     | Std   | 3.63E-27        | 0.002457        | 0.005494 | 1.743096 | 82012548 | 0.019365 | 5.487841 | 3.43E-14        |
| f66 | Med   | <b>5.43E-30</b> | 1.56E-19        | 1.99E-14 | 0.655037 | 0.103669 | 1.234599 | 2.128034 | 1.35E-14        |
|     | Mean  | <b>6.13E-29</b> | 0.063639        | 0.004147 | 1.219443 | 0.37375  | 1.296764 | 2.120552 | 5.38E-14        |
|     | Std   | 2.2E-28         | 0.133857        | 0.020734 | 1.671748 | 0.535287 | 1.22462  | 0.85441  | 1.24E-13        |
| f67 | Med   | -27.895         | -27.6524        | -17.8654 | -7.93566 | -25.3297 | -15.1814 | -18.0941 | -24.4579        |
|     | Mean  | -27.8159        | -27.451         | -17.9252 | -7.93718 | -25.1561 | -14.8792 | -18.1274 | -24.4436        |
|     | Std   | 0.90429         | 0.827775        | 1.839035 | 0.83881  | 1.862249 | 1.662599 | 0.960404 | 1.055604        |
| f68 | Med   | 0.010402        | 0.018265        | 2.720734 | 0.016155 | 1.637257 | 0.010857 | 0.077495 | <b>0.004267</b> |
|     | Mean  | 0.010944        | 0.020008        | 4.873331 | 0.02002  | 5.650202 | 0.012286 | 0.0904   | <b>0.004466</b> |
|     | Std   | 0.003052        | 0.007638        | 6.195275 | 0.012613 | 9.489989 | 0.004913 | 0.039609 | 0.001445        |

Figure 12: Result of Friedman Mean Rank Test for all multimodal functions. Smaller bars/outcomes on the bars denote the higher ranks.

#### 4.4. Evaluation of convergence capability

... continued

Convergence is the state which reaches when the entire population is settled at a single point and/or stops improving. If an algorithm lacks the ability for exploration, it can converge prematurely to some local optimum; however, by lacking exploitative capability an algorithm might not even converge at a single point. An excellent balance between exploration and exploitation is needed to prevent premature convergence and reach the global optimum. In HBO, that balance is attained through the parameters  $p_1$ , and  $p_2$ . The definition of  $p_1$  allows HBO to avoid premature convergence by starting from the highest probability and linearly decreasing to 0 with the course of iterations. The high value of  $p_1$  stops search agent to quickly converge but as the proportion for  $p_1$  decreases and the proportions for  $p_2$  and  $p_3$  increase the attraction towards the better solutions also increases, which finally results in convergence. Figure 13: Comparison of convergence curves of HBO with other algorithms for a few variable-dimension unimodal benchmark functions.

Figure 14: Comparison of convergence curves of HBO with other algorithms for a few variable-dimension multimodal benchmark functions.

To practically examine the convergence capability of HBO, its convergence curves for 8 unimodal variable-dimension functions are plotted and compared with PSO, SCA, MFO and MVO in Figure 13. HBO, as compared to the others, is little steady in the beginning because of the higher value of  $p_1$  but it keeps improving smoothly with the iterations and becomes better than the others after 5 to 10 thousand function evaluations, which roughly implies  $p_1 < 0.85$ . To see the impact of local optima on the convergence of HBO, its convergence curves for 9 multimodal variable-dimension functions are compared in Figure 14. For multimodal functions the behavior of HBO can be categorised in 3 types, which are discussed below:

- For *f*56, *f*57, *f*65 and *f*66, the behavior of HBO is well-balanced. HBO keeps improving linearly from the very beginning without getting trapped in any local optimum and outperforms the others.
- In the cases of f58 and f62, HBO progresses steadily for first 10 to 15 thousand function evaluations because of being in the exploration phase and improves quickly afterwards as the rate of exploitation starts increasing significantly.
- Finally, for the functions *f*52, *f*53 and *f*68, HBO makes a curve showing the rapid convergence in the first half of the iterations. If the landscapes of these functions are analyzed, with so many local optima, they have very challenging surfaces. For these functions, a rapid convergence requires a strong ability to explore the search space that HBO demonstrates.

#### 4.5. Performance evaluation of HBO on CEC-BC-2017 test functions

The suite of benchmark functions designed for CEC-BC-2017 includes 30 unimodal, multimodal, composite, and hybrid functions; however the second function has been removed due to the unstable behavior. These functions have very challenging landscapes and in this section, we evaluate the performance of HBO on these functions against the same algorithms, which we have used in previous experiments. It is important to mention here that the set of comparative algorithms also includes the winner of CEC-BC-2017 called EBO-CMAR. The details of the functions including their names, number of design variables, range of the variables, and global optimum are presented in Table 6. The average and standard deviation of 30 runs of the algorithms for all functions of CEC-BC-2017 are presented in Table 12.

| f.no. | Stats | НВО      | GSA    | PSO     | SCA   | MFO      | MVO      | CS       | EBO-CMAR  |
|-------|-------|----------|--------|---------|-------|----------|----------|----------|-----------|
| f69   | Avg   | 535.7896 | 296.00 | 3959.60 | 8E+08 | 1.67E+08 | 8643.646 | 3.23E+08 | 100       |
|       |       |          |        |         |       |          |          |          | continued |

Table 12: Comparison of the statistical results obtained for CEC-BC-2017 benchmark test functions.

 $\ldots$  continued

| Fn  | Stats      | HBO                  | GSA            | PSO            | SCA                  | MFO                  | MVO                  | CS                   | EBO-CMAR                 |
|-----|------------|----------------------|----------------|----------------|----------------------|----------------------|----------------------|----------------------|--------------------------|
|     | Std        | 543.1567             | 275.10         | 4456.60        | 1.84E+08             | 5.06E+08             | 5831.444             | 4.17E+08             | 0                        |
| f70 | Avg        | 300.0249             | 10829.20       | 300.00         | 1543.853             | 11597.22             | 300.0254             | 301.2                | <b>300</b>               |
|     | Std        | 0.116151             | 1620.74        | 0.00           | 1046.025             | 10006.07             | 0.10903              | 6.4E-06              | 0                        |
| f71 | Avg        | 404.7788             | 406.60         | 405.94         | 437.8285             | 424.7637             | 405.7562             | 405.1247             | <b>400</b>               |
|     | Std        | 0.428089             | 2.92           | 3.28           | 16.71067             | 34.25905             | 1.413572             | 0.086962             | 1.89E-14                 |
| f72 | Avg        | 510.549              | 556.70         | 513.06         | 550.7501             | 529.4872             | 519.5746             | 518.3719             | <b>500.3672</b>          |
|     | Std        | 3.634439             | 8.40           | 6.54           | 7.982532             | 11.92222             | 5.986546             | 5.916674             | 0.657057                 |
| f73 | Avg        | <b>600</b>           | 621.60         | 600.24         | 618.8765             | 602.241              | 600.7418             | 600.8636             | <b>600</b>               |
|     | Std        | 4.8E-14              | 9.02           | 0.98           | 3.947706             | 1.977177             | 0.849693             | 0.651739             | 6.56E-14                 |
| f74 | Avg<br>Std | 713.052<br>4.027615  | 714.60<br>1.55 | 718.98<br>5.10 | 771.5427<br>8.233241 | 735.5393<br>8.114764 | 727.2502<br>4.702083 | 730.2516<br>4.755411 | <b>710.8196</b> 0.28215  |
| f75 | Avg<br>Std | 808.7198<br>3.934154 | 820.50<br>4.69 | 811.39<br>5.47 | 839.3499<br>6.499727 | 837.0564<br>13.03039 | 820.2996<br>8.663515 | 820.6072<br>4.640893 | <b>800.2247</b> 0.413797 |
| f76 | Avg        | <b>900</b>           | <b>900.00</b>  | <b>900.00</b>  | 996.687              | 1007.864             | 900.2162             | 902.9494             | <b>900</b>               |
|     | Std        | 0                    | 0.00           | 0.00           | 41.0157              | 176.4655             | 0.566283             | 3.35952              | 0                        |
| f77 | Avg        | 1552.687             | 2694.60        | 1473.30        | 2259.251             | 1814.364             | 1744.32              | 1640.57              | <b>1099.353</b>          |
|     | Std        | 156.713              | 297.62         | 214.97         | 166.7697             | 282.0393             | 263.1552             | 147.4421             | 85.70686                 |
| f78 | Avg        | 1102.227             | 1134.70        | 1110.50        | 1200.436             | 1156.355             | 1130.25              | 1103.58              | <b>1100</b>              |
|     | Std        | 1.231383             | 10.45          | 6.28           | 83.65854             | 78.4699              | 24.21214             | 1.241033             | 2.74E-11                 |
| f79 | Avg        | 81747.03             | 702723.00      | 14532.00       | 11910003             | 1344229              | 616701.9             | 1413.652             | <b>1287.319</b>          |
|     | Std        | 91097.37             | 42075.40       | 11260.00       | 11005843             | 2863313              | 473060.5             | 64.29277             | 100.1878                 |
| f80 | Avg        | 2961.075             | 11053.00       | 8601.10        | 31047.57             | 14740.09             | 12208.16             | 1309.985             | <b>1303.104</b>          |
|     | Std        | 2557.818             | 2110.55        | 5123.60        | 18855.22             | 12992.74             | 6129.402             | 2.498851             | 2.691863                 |
| f81 | Avg        | 1453.975             | 7147.50        | 1482.10        | 1638.34              | 4613.985             | 1459.757             | 1413.601             | <b>1400.035</b>          |
|     | Std        | 74.8672              | 1489.52        | 42.46          | 99.61163             | 2946.199             | 24.65836             | 6.198319             | 0.061189                 |
| f82 | Avg        | 1604.459             | 18001.00       | 1714.30        | 2177.631             | 14499.43             | 1610.813             | 1501.966             | <b>1500.149</b>          |
|     | Std        | 202.2075             | 5498.67        | 282.89         | 229.2363             | 11276.97             | 145.9304             | 0.658341             | 0.199345                 |
| f83 | Avg        | 1602.001             | 2149.70        | 1860.00        | 1741.876             | 1799.57              | 1768.661             | 1610.443             | <b>1600.643</b>          |
|     | Std        | 2.739227             | 105.80         | 127.65         | 80.46611             | 146.3447             | 142.4687             | 10.97171             | 0.322247                 |
| f84 | Avg        | 1702.797             | 1857.70        | 1761.60        | 1785.585             | 1777.122             | 1789.585             | 1730.826             | <b>1700.411</b>          |
|     | Std        | 4.303241             | 108.32         | 47.50          | 28.72761             | 45.19119             | 61.28143             | 7.935544             | 0.384295                 |
| f85 | Avg        | 3771.107             | 8720.50        | 14599.00       | 178737.5             | 19869.11             | 21441.57             | 1807.308             | <b>1802.265</b>          |
|     | Std        | 1154.932             | 5060.10        | 11852.20       | 149895.5             | 11934.01             | 13764.76             | 3.7134               | 6.24546                  |
| f86 | Avg        | 1977.153             | 13670.00       | 2602.80        | 3376.863             | 10397.75             | 1929.977             | 1902.082             | <b>1900.043</b>          |
|     | Std        | 157.9963             | 19168.00       | 2185.02        | 2901.632             | 12201.66             | 19.16336             | 0.351679             | 0.03392                  |
| f87 | Avg        | <b>2000.021</b>      | 2272.30        | 2085.10        | 2087.696             | 2074.901             | 2044.661             | 2028.09              | 2000.156                 |
|     | Std        | 0.079201             | 81.72          | 62.25          | 22.736               | 46.66931             | 34.67326             | 6.540017             | 0.16453                  |
| f88 | Avg        | 2250.372             | 2357.70        | 2281.70        | 2236.762             | 2319.647             | 2286.316             | 2256.678             | <b>2230.587</b>          |
|     | Std        | 49.59053             | 28.20          | 54.02          | 53.59605             | 37.17628             | 59.06308             | 57.30963             | 49.24987                 |
| f89 | Avg        | <b>2299.039</b>      | 2300.00        | 2314.80        | 2368.054             | 2304.205             | 2347.236             | 2301.879             | 2300                     |
|     | Std        | 4.916489             | 0.07           | 66.10          | 19.87323             | 4.59443              | 138.0584             | 15.86097             | 1.05E-11                 |
| f90 | Avg        | 2613.876             | 2736.50        | 2620.80        | 2659.471             | 2630.681             | 2616.139             | 2619.442             | <b>2601.974</b>          |
|     | Std        | 4.341088             | 39.14          | 9.23           | 8.751258             | 8.697182             | 5.697303             | 3.511326             | 1.764107                 |
| f91 | Avg        | 2633.722             | 2742.20        | 2692.20        | 2760.82              | 2762.662             | 2727.99              | <b>2567.618</b>      | 2578.898                 |
|     | Std        | 95.03502             | 5.52           | 108.20         | 68.05451             | 10.18015             | 80.7585              | 78.64748             | 108.3447                 |
| f92 | Avg        | 2912.622             | 2937.50        | 2924.00        | 2963.651             | 2950.647             | 2951.075             | 2917.312             | 2920.656<br>continued    |

| Fn  | Stats | HBO             | GSA        | PSO       | SCA      | MFO      | MVO      | CS              | EBO-CMAR        |
|-----|-------|-----------------|------------|-----------|----------|----------|----------|-----------------|-----------------|
|     | Std   | 19.81313        | 15.36      | 25.02     | 17.28965 | 31.27117 | 42.92945 | 19.69569        | 24.0413         |
| f93 | Avg   | 2885.041        | 34407.50   | 2952.10   | 3073.043 | 3022.139 | 2900.134 | <b>2842.893</b> | 2890            |
|     | Std   | 62.5852         | 628.73     | 249.66    | 25.57284 | 92.7532  | 0.037098 | 94.2884         | 42.1637         |
| f94 | Avg   | <b>3090.815</b> | 3259.50    | 3116.20   | 3103.917 | 3095.412 | 3099.225 | 3091.353        | 3091.296        |
|     | Std   | 1.619507        | 41.66      | 24.99     | 2.122732 | 2.880396 | 20.45328 | 1.276217        | 2.486536        |
| f95 | Avg   | 3174.83         | 3459.40    | 3315.90   | 3294.704 | 3387.949 | 3301.581 | <b>3100.129</b> | 3111.573        |
|     | Std   | 73.69574        | 33.84      | 121.83    | 72.75564 | 58.63187 | 132.742  | 0.278911        | 36.59639        |
| f96 | Avg   | 3177.423        | 3449.50    | 3203.80   | 3247.233 | 3224.653 | 3178.9   | 3191.396        | <b>3138.36</b>  |
|     | Std   | 13.69572        | 171.33     | 52.26     | 15.19993 | 64.38182 | 39.23594 | 32.11374        | 3.858333        |
| f97 | Avg   | 25686.73        | 1303361.00 | 350650.00 | 1024036  | 832852.4 | 304191.9 | 4071.321        | <b>3403.194</b> |
|     | Std   | 14554.84        | 363843.00  | 504857.00 | 928491.9 | 712542.7 | 616893.3 | 266.4059        | 14.72898        |

The good performance of HBO is evident from the results. Although, HBO could not beat EBO-CMAR but HBO is better than the other algorithms and has comparable results to EBO-CMAR in many cases. For instance, HBO achieves  $1^{st}$  rank for f73, f76, f87, f89, f92, and f94. Furthermore, HBO performs better than EBO-CMAR for f93. Moreover, the results of HBO does not have any significant difference from the results of EBO-CMAR for f70, f71, f74, f78, f83, and f84. To have better insights, Friedman mean rank test is performed and the results are reported in Figure 15. The results of Friedman test shows that HBO attains  $2^{nd}$  rank after EBO-CMAR.

Figure 15: Result of Friedman Mean Rank Test for all CEC-BC-2017 functions. Smaller bars/outcomes on the bars denote the higher ranks.

The Friedman rank test gives the average ranking of the algorithms; however, it is important to see the statistical significance of the difference between the ranks of the algorithms. Using the statistics provided by the Friedman rank test, we perform multiple comparison test based on Bonferroni method (Zar, 1999) to find the statistical significance of the difference in the results. According to the Bonferroni method, the difference between two algorithms is statistically significant if the difference in average ranking of the algorithms is larger than comparison interval defined by the significance level ( $\alpha$ ) of the test. Two pair-wise comparison tests are performed. The first test is performed by considering HBO as a reference/control algorithm at the significance level of 0.05 and second test is performed by considering EBO-CMAR as the reference/control algorithm at the significance level of 0.15. The results of the first and second tests are depicted in Figure 16 and Figure 17, respectively. In both figures, the mean ranks of the algorithms are highlighted by the circles and comparison intervals are highlighted through the bars. The dotted red circle and bar denote the mean rank and comparison interval of the control algorithm, respectively. The bars in plain black are of the algorithms having a statistically significant difference from the control algorithm and the bars in plain grey are of the algorithms having a statistically insignificant difference from the control algorithm. The comparison in Figure 16 shows that the rank of HBO is statistically equivalent to CS and EBO-CMAR at the significance level of 0.05; however, the comparison in Figure 17 shows that the rank of EBO-CMAR is statistically equivalent to HBO

... continued

at the significance level of 0.15. It is worth mentioning here that if the significance level is set to 0.05 the rank of EBO-CMAR becomes statistically equivalent to CS as well but for any of the considered significance levels, the difference in ranks of HBO and EBO-CMAR is insignificant. Conclusively, according to Friedman mean rank test HBO attains  $2^{nd}$  best rank; however, the difference in ranks of HBO and EBO-CMAR is not statistically significant from the perspective of HBO as well as EBO-CMAR.

Figure 16: Considering HBO as the reference/control algorithm, the multiple comparison test based on Bonferroni method at significance level of 0.05.

Figure 17: Considering EBO-CMAR as the reference/control algorithm, the multiple comparison test based on Bonferroni method at significance level of 0.15.

#### 4.6. Overall mean ranks of the algorithms

In this subsection, the Friedman test is performed to find the overall mean rank of the algorithms for all 97 benchmark functions including unimodal, multimodal, and CEC-BC-2017 benchmark functions. The results of Friedman test are plotted in Figure 18. As we can see, the mean rank value of HBO is minimum, which indicates that HBO attains 1<sup>st</sup> rank.

Figure 18: Result of Friedman Mean Rank Test for all 97 functions. Smaller bars/outcomes on the bars denote the higher ranks.

#### 5. Demonstration of applicability on mechanical engineering problems

In order to demonstrate the applicability of the proposed algorithm on real world problems, we picked 3 well-known engineering problems: Speed reducer design problem, multiple disc clutch brake design problem, and rolling element bearing design problem. In the literature, these problems have extensively been used to evaluate the performance of optimization algorithms on real world problems. As the engineering problems are constrained optimization problems, a simple constraint handling technique called death penalty (scalar penalty function) (Coello, 2002) is used. In this approach, solutions are penalized on violating a constraint.

#### 5.1. Speed reducer design problem

This problem was presented by Golinski in 1970 (Golinski, 1970). The problem of speed reducer design deals with designing a simple gear box that is used between the engine and the propeller in light aircraft. The goal is to minimize the weight of a speed reducer so that the engine and propeller can rotate efficiently. The problem involves constraints on stresses in the shafts, transverse deflection of the shafts, surface stress and bending stress of the gear teeth. Schematic

Figure 19: Schematic views of speed reducer design.

view of the problem is depicted in Figure 19 and the mathematical definition of the problem is presented below:

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & f(x) = 0.7854x_1x_2^2 \left(3.333x_3^2 + 14.9334x_3 - 43.0934\right) \\ & \quad -1.508x_1 \left(x_6^2 + x_7^2\right) + 7.4777 \left(x_6^3 + x_7^3\right) \\ & \quad +0.7854 \left(x_4x_6^2 + x_5x_7^2\right) \\ \text{subject to} & g_1(x) = \frac{27}{x_1x_2^2x_3} - 1 \leqslant 0, \quad g_2(x) = \frac{397.5}{x_1x_2^2x_2^2} - 1 \leqslant 0 \\ & g_3(x) = \frac{1.93x_4^3}{x_2x_6^4x_3} - 1 \leqslant 0, \quad g_4(x) = \frac{1.93x_5^3}{x_2x_7^4x_3} - 1 \leqslant 0 \\ & g_5(x) = \frac{\left[(745x_4/x_2x_3)^2 + 16.9 \times 10^6\right]^{1/2}}{110x^3} - 1 \leqslant 0 \\ & g_6(x) = \frac{\left[(745x_5/x_2x_3)^2 + 157.5 \times 10^6\right]^{1/2}}{85x_7^3} - 1 \leqslant 0 \\ & g_7(x) = \frac{x_2x_3}{40} - 1 \leqslant 0, \quad g_8(x) = \frac{5x_2}{x_1} - 1 \leqslant 0 \\ & g_9(x) = \frac{x_1}{12x_2} - 1 \leqslant 0, \quad g_{10}(x) = \frac{1.5x_6 + 1.9}{x_4} - 1 \leqslant 0 \\ & g_{11}(x) = \frac{1.1x_7 + 1.9}{x_5} - 1 \leqslant 0 \\ & \text{where} & 2.6 \leqslant x_1 \leqslant 3.6, \quad 0.7 \leqslant x_2 \leqslant 0.8, \quad 17 \leqslant x_3 \leqslant 28, \\ & 7.3 \leqslant x_4 \leqslant 8.3, \quad 7.3 \leqslant x_5 \leqslant 8.3, \quad 2.9 \leqslant x_6 \leqslant 3.9, \\ & 5.0 \leqslant x_7 \leqslant 5.5 \end{array}$$

By executing the proposed algorithm 30 times in a row, the statistical results are produced. In Table 13, the results are compared with some well-known algorithms used to solve the problem of speed reducer design. The names of these algorithms are: Society and civilization (SC) algorithm (Ray & Liew, 2003b), hybrid PSO and DE (PSO-DE) (Liu et al., 2010), differential evolution with level comparison (DELC) (Wang & po Li, 2009), differential evolution with dynamic stochastic selection (DEDS) (Zhang et al., 2008), hybrid evolutionary algorithm and adaptive constraint-handling (HEAA) (Wang et al., 2008), modified differential evolution (MDE) (Mezura-Montes et al., 2006), artificial bee colony (ABC) (Karaboga & Basturk, 2007), and water cycle algorithm (WCA) (Eskandar et al., 2012). The results demonstrate that HBO shares  $1^{st}$  position with DELC and DEDS; however, HBO evaluates the objective function 9,010 times which is much lesser than the function evaluations of DEDS and DELC. In order to regenerate the results, it is recommended to use population of size = 40, iterations = 230 and a search agent should be penalized by a fitness value 1E + 16 on violating a constraint.

The values of the design variables (DV) of the best solutions obtained by all algorithms are presented in Table 14. Speed reducer design problem involves 11 constraints and HBO satisfies all of them with values g = (-0.0739, -0.1979, -0.4991, -0.9046, -9.089E - 12, -2.459E - 12, -0.7025, -6.08E - 13, -0.7958, -0.0513, -1.3095E - 11).

| Statistical results |             |             |             |          |        |  |  |  |  |  |
|---------------------|-------------|-------------|-------------|----------|--------|--|--|--|--|--|
| Algo                | Worst       | Mean        | Best        | Std      | NFEs   |  |  |  |  |  |
| SC                  | 3009.964736 | 3001.758264 | 2994.744241 | 4.000000 | 54,456 |  |  |  |  |  |
| PSO-DE              | 2996.348204 | 2996.348174 | 2996.348167 | 0.000006 | 54,350 |  |  |  |  |  |
| DELC                | 2994.471066 | 2994.471066 | 2994.471066 | 0.000000 | 30,000 |  |  |  |  |  |
| DEDS                | 2994.471066 | 2994.471066 | 2994.471066 | 0.000000 | 30,000 |  |  |  |  |  |
| HEAA                | 2994.752311 | 2994.613368 | 2994.499107 | 0.070000 | 40,000 |  |  |  |  |  |
| MDE                 | NA          | 2996.367220 | 2996.356689 | 0.008200 | 24,000 |  |  |  |  |  |
| ABC                 | NA          | 2997.058000 | 2997.058000 | 0.000000 | 30,000 |  |  |  |  |  |
| WCA                 | 2994.505578 | 2994.474392 | 2994.471066 | 0.007400 | 15,150 |  |  |  |  |  |
| HBO                 | 2994.471066 | 2994.471066 | 2994.471066 | 0.000000 | 9,010  |  |  |  |  |  |

Table 13: Comparison of statistical results obtained from various algorithms for the speed reducer design problem.

Table 14: Comparison of the best solution obtained by all algorithms for speed reducer design problem.

| DV   | DEDS        | DELC        | HEAA        | MDE         | PSO-DE      | WCA         | HBO         |
|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| X1   | 3.50000     | 3.50000     | 3.50002     | 3.50001     | 3.50000     | 3.50000     | 3.50000     |
| X2   | 0.70000     | 0.70000     | 0.70000     | 0.70000     | 0.70000     | 0.70000     | 0.70000     |
| X3   | 17.00000    | 17.00000    | 17.00001    | 17.00000    | 17.00000    | 17.00000    | 17.00000    |
| X4   | 7.3+9       | 7.3+9       | 7.30043     | 7.30016     | 7.30000     | 7.30000     | 7.30000     |
| X5   | 7.71532     | 7.71532     | 7.71538     | 7.80003     | 7.80000     | 7.71532     | 7.71532     |
| X6   | 3.35021     | 3.35021     | 3.35023     | 3.35022     | 3.35021     | 3.35021     | 3.35021     |
| X7   | 5.28665     | 5.28665     | 5.28666     | 5.28669     | 5.28668     | 5.28665     | 5.28665     |
| f(X) | 2994.471066 | 2994.471066 | 2994.499107 | 2996.356689 | 2996.348167 | 2994.471066 | 2994.471066 |

Figure 20: Schematic views of multiple disc clutch brake design problem .

#### 5.2. Multiple disc clutch brake design problem

This problem deals with minimizing the mass of a multiple disc clutch brake. The problem belongs to the category of discrete optimization, which involves 5 discrete design variables: inner radius  $r_i \in \{60, 61, ..., 80\}$ , outer radius  $r_o \in \{90, 91, ..., 110\}$ , thickness of the disc  $t \in \{1, 1.5, ..., 3\}$ , actuating force  $F \in \{6000, 610, ..., 1000\}$  and number of friction surfaces  $Z \in \{2, 3, ..., 9\}$ . The schematic view of the problem is illustrated in Figure 20 and the mathematical definition of the problem is given below:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(\vec{z}) = \pi (r_0^2 - r_i^2)t(Z+1)p \\ \text{subject to} & g_1(\vec{z}) = r_0 - r_i - \Delta r \geq 0, \quad g_2(\vec{z}) = l_{max} - (Z+1)(t+\delta) \geq 0 \\ & g_3(\vec{z}) = p_{max} - p_{rz} \geq 0, \quad g_4(\vec{z}) = p_{max}v_{st} \max - p_r zv_{st} \geq 0 \\ & g_5(\vec{z}) = v_{st} \max - v_{st} \geq 0, \quad g_6(\vec{z}) = T_{max} - T \geq 0 \\ & g_7(\vec{z}) = M_h - sM_s \geq 0, \quad g_8(\vec{z}) = T \geq 0 \\ & \text{where} & \mu = 0.5, l_z = 55kgmm^2, n = 250rpm, \Delta r = 20mm, M_s = 40Nm, p_{max} = 1MP_a, \\ & T_{max} 15s, F_{max} = 1000N, s = 1.5, M_f = 3Nm, v_{sr} \max = 10, I_{max} = 30mm, \\ & r_i \min = 60\frac{m}{s}, r_0 \min = 90, r_0 \max = 110, r_i \max = 80, I_{max} = 3, F_{min} = 600, \\ & Z_{min} = 2, Z_{max} = 9, I_{min} = 1.5 \\ \end{array}$$

In literature, this problem has been solved by using ABC (Karaboga & Basturk, 2007), TLBO (Rao et al., 2011), non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2000) and adaptive particle swarm optimization (APSO) (Zhan et al., 2009). By considering the importance of the number of function evaluations (NFEs) in solving real world problems, two sets of statistical results are obtained. First set of results, labeled as HBO1, is obtained for iterations = 25 and population size = 20, which is to prove the superiority of HBO over the competitors and second set of results is obtained for iterations = 50, which demonstrates the capability of HBO to always converge at the best location. The statistical results are presented and compared in Table 15, which demonstrate the superiority of HBO over the other algorithms. The results of HBO1 shows that our proposed algorithm gives better results using fewest objective function evaluations; however, HBO2 shows that the proposed algorithm can always converge at the best position by evaluating the objective function 970 times.

| Statistical results |           |           |           |          |      |  |  |
|---------------------|-----------|-----------|-----------|----------|------|--|--|
| Algo                | Worst     | Mean      | Best      | Std      | NFEs |  |  |
| ABC                 | 0.3528640 | 0.3247510 | 0.3136570 | 5.40E-01 | >900 |  |  |
| TLBO                | 0.3920710 | 0.3271660 | 0.3136570 | 6.70E-01 | >900 |  |  |
| NSGA-II             | N/A       | N/A       | 0.4704000 | N/A      | N/A  |  |  |
| APSO                | 0.7163130 | 0.5068290 | 0.3371810 | 9.67E-02 | 2000 |  |  |
| HBO1                | 0.3396313 | 0.3164207 | 0.3136566 | 7.36E-03 | 495  |  |  |
| HBO2                | 0.3136566 | 0.3136566 | 0.3136566 | 5.85E-17 | 970  |  |  |

Table 15: Comparison of statistical results obtained from various algorithms for the multiple disc clutch brake design problem.

For the sake of illustration the values of design variables obtained by all algorithms are compared in Table 16. Moreover, HBO fulfills all the constraints with values g = (0, 24, 0.900528161, 9.790581597, 7.89469659, 3.352706711, 60.625, 11.64729329). In order to regenerate the results, it is recommended to use penalty = 1.00E + 07 for both HBO1 and HBO2.

Figure 21: Schematic views of Rolling element bearing design problem.

(16)

|         | Best solution DV |    |     |      |    |           |  |
|---------|------------------|----|-----|------|----|-----------|--|
| DV      | X1               | X2 | X3  | X4   | X5 | f(X)      |  |
| NSGA-II | 70               | 90 | 1.5 | 1000 | 3  | 0.4704    |  |
| TLBO    | 70               | 90 | 1   | 810  | 3  | 0.313656  |  |
| NSGA-II | 70               | 90 | 1.5 | 1000 | 3  | 0.4704    |  |
| APSO    | 76               | 96 | 1   | 840  | 3  | 0.3371821 |  |
| HBO1    | 70               | 90 | 1   | 1000 | 3  | 0.3136566 |  |
| HBO2    | 70               | 90 | 1   | 1000 | 3  | 0.3136566 |  |

Table 16: Comparison of the best solution obtained by all algorithms for multiple disc clutch brake design problem.

#### 5.3. Rolling element bearing design problem

This problem deals with maximizing the dynamic load bearing capacity of rotating machinery. The design of rolling element bearing involves ten variables. Five of them are used in the objective function, known as the diameter of the balls  $D_b$ , mean diameter  $D_m$ , number of balls Z (a discrete variable), curvature radius coefficient of inner raceway groove  $fi = \frac{r_i}{D_b}$  and curvature radius coefficient of outer raceway groove  $fo = \frac{r_o}{D_b}$ , where  $r_i$  and  $r_o$  represent the inner and outer ring groove curvature radii, respectively. Rest of the five parameters ( $K_{D_{min}}, K_{D_{max}}, \varepsilon, e, \eta$ ) are used in constraints. The schematic diagram of rolling element bearing design is given in Figure 21 and its mathematical definition is presented below:

$$\begin{array}{ll} \text{maximize} & f(\vec{x}) = C_d = \begin{cases} f_c Z^{2/3} D_b^{1.8} & if D_b, \leq 25.4mm \\ 3.467 f_c Z^{2/3} D_b^{1.4}, & otherwise \end{cases} \\ \text{subject to} & g_1(\vec{x}) = \frac{\phi_0}{2Sin^{-1}(D_b/D_m)} - Z + 1 \geq 0, \quad g_2(\vec{x}) = 2D_b - K_{D_{min}}(D-d) \geq 0 \\ & g_3(\vec{x}) = K_{D_{min}}(D-d) - 2D_b \geq 0, \quad g_4(\vec{x}) = \eta B_w - D_b \leq 0 \\ & g_5(\vec{x}) = D_m - 0.5(D+d) \geq 0, \quad g_6(\vec{x}) = (0.5+e)(D+d) \geq 0 \\ & g_7(\vec{x}) = 0.5(D-D_m - D_b) - eD_b \geq 0 \\ & g_8(\vec{x}) = f_i - 0.515 \geq 0, g_9(\vec{x}) = f_0 - 0.515 \geq 0 \end{cases} \\ \text{where} & f_c = 37.91\{1 + [1.04(\frac{1-\gamma}{1+\gamma})^{1.72}(\frac{f_i(2f_0-1)}{f_0(2f_i-1)})^{0.41}]^{10/3}\}^{-0.3}[\frac{\gamma^{0.3}(1-\gamma)^{1.39}}{(1+\gamma)^{1/3}}](\frac{2f_i}{2f_i-1})^{0.41} \\ & \phi_0 = 2\pi - 2\cos^{-1}(\frac{[(D-d)/2 - 3T/4]^2 + (D/2 - T/4 - D_b)^2 - (d/2 + T/4)^2}{2[(D-d)/2 - 3T/4](D/2 - T/4 - D_b)}), \\ & \gamma = D_b/D_m, f_i = r_i/D_b, f_0 = r_0/D_b, T = D - d - 2D_b, D = 160, d = 90, B_w = 30, \\ & 0.4 \leq K_{D_{min}} \leq 0.5, 0.6 \leq K_{D_{max}} \leq 0.7, 0.3 \leq \epsilon \leq 0.4, 0.02 \leq e \leq 0.1, 0.6 \leq \eta \leq 0.85, \\ & 0.5(D+d) \leq D_w \leq 0.6(D+d), 0.15(D-d) \leq D_b \leq 0.5(D-d) \end{cases}$$

This problem has been solved in the literature by using GA4 (Gupta et al., 2007), ABC (Karaboga & Basturk, 2007), TLBO (Rao et al., 2011), WCA (Eskandar et al., 2012), MBA (Sadollah et al., 2013), PSO-TVAC (Muneender & Vinodkumar, 2012) and DAPSO-GA (Zhu et al., 2019b). The performance of HBO is compared with these algorithms in Table 17. Two sets of outcomes are produced, one showing the superiority over the competitors and the other showing the capacity to converge in the best position. First set of outcomes (HBO1) is generated by setting population size = 20 and iterations = 100; however, for second set of results (HBO2) the iterations are increased to 400 to achieve best results. The results demonstrate that HBO1

gives best statistics by evaluating the objective function fewer times than the others. In order to further improve the results and always converge at the same best position, the number of functions evaluations are increased to 7620. It is important to highlight here, the best objective value found by WCA is infeasible because Z denoted as  $x_3$  is a discrete variable and represents the number of balls; however; WCA treats it as a continuous variable and finds its value as 11.00103, which is not possible. The values of design variables found by all algorithms and their comparison is presented in Table 18.

Table 17: Comparison of statistical results obtained from various algorithms for the rolling element bearing design problem.

| Statistical results |           |           |             |          |         |  |  |  |
|---------------------|-----------|-----------|-------------|----------|---------|--|--|--|
| Algo                | Worst     | Mean      | Best        | Std      | NFEs    |  |  |  |
| MBA                 | NA        | NA        | 81843.68625 | 2.12E+02 | 15100   |  |  |  |
| PSO-TVAC            | 41,130.57 | 76,442.50 | 81,859.74   | 1.19E+04 | 3750    |  |  |  |
| DAPSO-GA            | 79,834.78 | 81,066.43 | 81,859.81   | 7.43E+02 | 3650    |  |  |  |
| GA4                 | NA        | NA        | 81843.3     | NA       | 225,000 |  |  |  |
| ABC                 | 78897.81  | 81496     | 81859.74    | 6.90E-01 | 10,000  |  |  |  |
| TLBO                | 80807.85  | 81438.98  | 81859.74    | 6.60E-01 | 10,000  |  |  |  |
| WCA                 | 83942.71  | 83847.16  | 85538.48    | 4.88E+02 | 3,950   |  |  |  |
| HBO1                | 84433.04  | 85197.34  | 85532.57    | 4.02E+02 | 1,920   |  |  |  |
| HBO2                | 85533.18  | 85533.18  | 85533.18    | 2.15E-06 | 7,620   |  |  |  |

Both sets of results fully satisfy the constraints. The values of constraints for the best solution obtained by HBO1 is as g = (0.000921088, 8.682122802, 4.709300943, -3.17371473, 0.719391861, 16.53579039, 0.001450935, 0, 8.00457E - 07, 3.93907E - 05, 2.22423E - 05) and for the best solution obtained by HBO2 is as <math>g = (0.001159423, 12.1532798, 6.153256824, -3.390871387, 0.722718447, 11.16033474, 1.3E - 14, 0, 0, 0, 0). Please note the value of the 4<sup>th</sup> constraint is negative because it has to be lesser or equal to 0. In order to regenerate the results, it is recommended to use penalty 1E + 12 for HBO1 and 1E + 21 for HBO2 (if the problem is transformed into a minimization problem).

Table 18: Comparison of the best solution obtained by all algorithms for rolling element bearing design problem.

|          | Best solution DV |          |         |        |          |          |          |          |          |          |           |
|----------|------------------|----------|---------|--------|----------|----------|----------|----------|----------|----------|-----------|
| Algo     | X1               | X2       | X3      | X4     | X5       | X6       | X7       | X8       | X9       | X10      | f(x)      |
| MBA      | 125.7153         | 21.4233  | 11      | 0.515  | 0.515    | 0.488805 | 0.627829 | 0.300149 | 0.097305 | 0.64095  | 81,843.69 |
| PSO-TVAC | 125.7191         | 21.4256  | 11      | 0.515  | 0.515    | 0.4169   | 0.7      | 0.3      | 0.1      | 0.6001   | 81,859.74 |
| DAPSO-GA | 125.7191         | 21.4256  | 11      | 0.515  | 0.515    | 0.4      | 0.7      | 0.3      | 0.0474   | 0.6      | 81,859.81 |
| GA4      | 125.7171         | 21.4230  | 11      | 0.5150 | 0.5150   | 0.4159   | 0.6510   | 0.3000   | 0.0223   | 0.7510   | 81843.3   |
| TLBO     | 125.7191         | 21.4256  | 11      | 0.5150 | 0.5150   | 0.4243   | 0.6339   | 0.3000   | 0.0689   | 0.7995   | 81859.74  |
| WCA      | 125.7212         | 21.4233  | 11.0010 | 0.5150 | 0.5150   | 0.4015   | 0.6590   | 0.3000   | 0.0400   | 0.6000   | 85538.48  |
| HBO1     | 125.7193919      | 21.42322 | 11      | 0.515  | 0.515001 | 0.488062 | 0.679368 | 0.300013 | 0.069021 | 0.608317 | 85532.57  |
| HBO2     | 125.7227184      | 21.4233  | 11      | 0.515  | 0.515    | 0.438476 | 0.699998 | 0.3      | 0.047532 | 0.601081 | 85533.18  |

#### 6. Optimization capabilities, practical implications, and research directions

In this study, a novel meta-heuristic inspired by corporate rank hierarchy and the interaction between the individuals in that hierarchy is proposed. Unlike many other meta-heuristics, the relative difference in the fitness of the search agents is utilized to arrange them in a hierarchy and the concept of min/max heap is utilized to make interaction possible between them and preserve their relative difference. Moreover, a parameter called Gamma ( $\gamma$ ) is designed, which helps to avoid premature convergence by enabling the algorithm to escape local optima. The proposed algorithm has demonstrated very good optimization capabilities, such as:

- **High exploration in early iterations**: It is due to the higher probability of selection of the self-contribution equation (Eq. 6) and diversity incorporation by updating the position of a search agent with respect to a randomly selected colleague (node at the same level in heap) through the Eq. (5).
- Emergence of exploitation capability: HBO emerges exploitative behavior with the course of iterations due to the linear increase in the probability of selection of Eq. (8) designed for interaction with immediate boss/parent node (node in the upper level in heap).
- Mechanism to balance the exploration and exploitation: The balance between exploration and exploitation is attained by decreasing the probability of selection (Eq. 7) of the self-contribution equation and increasing the probability of selection (Eq. 8) of the equation for interaction with the parent node.
- **Convergence assurance**: The convergence is assured by leading all solutions directly or indirectly towards the root node of the heap. Moreover, the step towards a random colleague is only accepted if it improves the current position of the search agent.
- Escaping local optima and premature convergence avoidance: In addition to the controlled applicability of equations, the parameter gamma (Eq. 3) helps search agents to escape local optima and avoid premature convergence by cyclically rotating in the range [0, 2] because when its value ranges in [1, 2] the search agent may jump out of the local vicinity.

In addition to above good optimization capabilities, we find through experiments that the convergence speed of HBO compromises for some functions, which is due to the nature of the parameter  $\gamma$  and looking for a good balance between the exploration and exploitation. As a part of our future work, we plan to work on the improvement of the convergence speed without compromising the above-stated qualities of the proposed algorithm. However, a few suggestions for the researchers to come up with an improved variant are presented below:

- The range of the parameter  $\gamma$  can be squeezed to [0, 1] with the course of iterations. This may increase the convergence speed but at the expense of poor premature convergence avoidance capability in the later iterations.
- In HBO, the self-contribution phase is kept very simple in which the current position of the search agent is retained; however, one may improve it by giving random walk to the search agent or incorporating the concept of levy flight etc. It is also possible to model the concept of self-contribution differently.

- Every search agent updates its position in each iteration except the search agent associated with the root node called the boss. The convergence speed or even the overall performance may be improved by giving some kind of movement to the root node as well.
- The probabilities of selection of different equations may be calculated in some other way giving better convergence speed.

The meta-heuristics have demonstrated excellent performance on complex optimization problems. Based on the balanced optimization capabilities, we suggest research community to use HBO for the feature selection to remove redundancy and useless information from the datasets, error minimization in regression problems, optimizing the architecture of a neural network, training of the neural network, maximizing the margin in support vector machines, tuning the parameters for several machine learning algorithms, solving the engineering optimization problems such as welded beam design problem, reinforced concrete beam problem, pressure vessel design problem, tension-compression spring problem, three-bar truss design problem, speed-reducer design problem, and stepped cantilever beam problem etc. However, the practical implications would include the slower convergence speed which might not be afforded in real-time optimization or time-constrained optimization problems.

The mapping of HBO is kept very simple in this paper. However, there are a lot of potential areas, which should be worked on to come up with a variant of the proposed algorithm. A few directions are given below:

- It is possible to try binary or higher degree heaps.
- One can investigate the interaction with random officials or interaction between the subordinates of the same boss rather than the colleagues.
- The heap can be reconstructed after updating the entire population instead of calling heapify right after updating each search agent.

Hybridization of HBO with other well-known existing optimization algorithms and development of a multi-objective version of HBO would also be the good directions for the researchers. Finding real-world applications where the advantages of applying HBO are evident and taking into account their strengths and limitations can also be a significant future direction.

# 7. Conclusion

This paper proposes a novel human-behaviour based metaheuristic, which utilizes a heap data structure to map the concept of corporate rank hierarchy (CRH) to solve optimization problems. In the area of nature-inspired optimization algorithms, the use of heap data structure to map an inspiration is a unique idea in itself. To promote and maintain an appropriate balance between exploration and exploitation, the mathematical equations are carefully derived from three major CRH activities. Moreover, to escape local optima and avoid premature convergence without compromising the exploitation capability of the proposed algorithm, a self-adaptive parameter

is designed, which periodically incorporates the exploration and exploitation capabilities. To verify the effectiveness of the proposed algorithm, we have compared it with 7 state-of-the-art and high-performance optimization algorithms including the winner of CEC-BC-2017 for solving a wide set of diverse benchmark functions including unimodal, multimodal, and CEC-BC-2017 benchmark functions. The experimental results for the unimodal and multimodal functions show that HBO outperforms the comparative algorithms in most cases and attains 1<sup>st</sup> rank according to Friedman mean rank test. Moreover, the performance of HBO for CEC-BC-2017 is shown to be comparable to EBO-CMAR and better than the other algorithms. Although, HBO attains  $2^{nd}$ rank for CEC-BC-2017 functions it is shown by using the Bonferroni method that the rank of HBO is not significantly different from EBO-CMAR. Furthermore, the overall rank of HBO for all 97 benchmark functions is shown to be 1<sup>st</sup> according to the Friedman mean rank test. Finally, the ability to solve real-world problems is demonstrated by solving three mechanical constrained engineering problems. The results provide some evidence that HBO can be used effectively to solve real-world optimization problems. Given the preliminary nature of the proposed algorithm, we firmly believe that many extensions, improvements and evaluations are anticipated in the future. The superiority of HBO nominates it for solving real-world optimization problems with challenging landscapes arising in intelligent and expert systems.

- Ahmadi-Javid, A. (2011). Anarchic society optimization: A human-inspired method. In 2011 IEEE Congress of Evolutionary Computation (CEC). IEEE IEEE.
- Ahmady, G. A., Mehrpour, M., & Nikooravesh, A. (2016). Organizational structure. *Procedia Social and Behavioral Sciences*, 230, 455–462.
- Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2019). Novel meta-heuristic bald eagle search optimisation algorithm. *Artificial Intelligence Review*, .
- Arora, S., & Singh, S. (2018). Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing, 23(3), 715–734.
- Askari, Q., Younas, I., & Saeed, M. (2020). Political optimizer: A novel socio-inspired meta-heuristic for global optimization. *Knowledge-Based Systems*, (p. 105709).
- Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation. IEEE.
- Balochian, S., & Baloochian, H. (2019). Social mimic optimization algorithm and engineering applications. *Expert Systems with Applications*, 134, 178–191.
- Borji, A. (2007). A new global optimization algorithm inspired by parliamentary political competitions. In *Mexican International Conference on Artificial Intelligence* (pp. 61–71). Springer Berlin Heidelberg.
- Brammya, G., Praveena, S., Preetha, N. S. N., Ramya, R., Rajakumar, B. R., & Binu, D. (2019). Deer hunting optimization algorithm: A new nature-inspired meta-heuristic paradigm. *The Computer Journal*, .
- Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. *Computer Methods in Applied Mechanics and Engineering*, 191(11-12), 1245–1287.
- Crawford, B., Soto, R., Cabrera, G., Salas-Fernández, A., & Paredes, F. (2019). Using a social media inspired optimization algorithm to solve the set covering problem. In *International Conference on Human-Computer Interaction* (pp. 43–52). Springer.
- Daskin, A., & Kais, S. (2011). Group leaders optimization algorithm. Molecular Physics, 109(5), 761–772.
- Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In *Parallel Problem Solving from Nature PPSN VI* (pp. 849–858). Springer Berlin Heidelberg.
- Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. *Knowledge-Based Systems*, *165*, 169–196.

- Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In *Proceedings of the 1999* congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (pp. 1470–1477). IEEE volume 2.
- Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In *Proceedings of the IEEE international conference* on neural networks (pp. 1942–1948). IEEE volume 4.
- Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang–big crunch. *Advances in Engineering Software*, 37(2), 106–111.
- Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm a novel metaheuristic optimization method for solving constrained engineering optimization problems. *Computers & Structures*, *110-111*, 151–166.
- Fadakar, E., & Ebrahimi, M. (2016). A new metaheuristic football game inspired algorithm. In 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). IEEE.
- Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. *Knowledge-Based Systems*, 191, 105190.
- Flores, J. J., López, R., & Barrera, J. (2011). Gravitational interactions optimization. In *Lecture Notes in Computer Science* (pp. 226–237). Springer Berlin Heidelberg.
- Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. *Journal of the american statistical association*, *32*(200), 675–701.
- Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. *The Annals of Mathematical Statistics*, 11(1), 86–92.
- Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.
- Golinski, J. (1970). Optimal synthesis problems solved by means of nonlinear programming and random methods. *Journal of Mechanisms*, 5(3), 287–309.
- Gupta, S., Tiwari, R., & Nair, S. B. (2007). Multi-objective design optimisation of rolling bearings using genetic algorithms. *Mechanism and Machine Theory*, 42(10), 1418–1443.
- Han, K.-H., & Kim, J.-H. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. *IEEE Transactions on Evolutionary Computation*, *6*(6), 580–593.
- Harifi, S., Khalilian, M., Mohammadzadeh, J., & Ebrahimnejad, S. (2019). Emperor penguins colony: a new metaheuristic algorithm for optimization. *Evolutionary Intelligence*, 12(2), 211–226.
- Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. *Future Generation Computer Systems*, 101, 646–667.
- Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. *Future Generation Computer Systems*, 97, 849–872.
- Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73.
- Huning, A. (1976). ARSP: Archiv für Rechts- und Sozialphilosophie / Archives for Philosophy of Law and Social Philosophy, 62(2), 298–300.
- Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation, 44, 148–175.
- Jones, G. R. (2019). Organizational Theory, Design, and Change. Upper Saddle River, NJ: Pearson,.
- Karaboga, D., & Basturk, B. (2007). Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In *Lecture Notes in Computer Science* (pp. 789–798). Springer Berlin Heidelberg.
- Kashan, A. H. (2014). League championship algorithm (LCA): An algorithm for global optimization inspired by sport championships. *Applied Soft Computing*, *16*, 171–200.
- Khishe, M., & Mosavi, M. (2020). Chimp optimization algorithm. Expert Systems with Applications, (p. 113338).
- Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. *Science*, 220(4598), 671–680.
- Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). A Bradford Book.
- Kumar, A., Misra, R. K., & Singh, D. (2017). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 1835–1842). IEEE.

- Kumar, M., Kulkarni, A. J., & Satapathy, S. C. (2018). Socio evolution & learning optimization algorithm: A socioinspired optimization methodology. *Future Generation Computer Systems*, 81, 252–272.
- Lampinen, J., & Storn, R. (2004). Differential evolution. In *New Optimization Techniques in Engineering* (pp. 123–166). Springer Berlin Heidelberg.
- Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. *Future Generation Computer Systems*, .
- Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. *Applied Soft Computing*, *10*(2), 629–640.
- Lv, W., Xie, Q., Liu, Z., Zhang, X., Luo, S., & Cheng, S. (2010). Election campaign algorithm. In 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). IEEE.
- Mahmoodabadi, M., Rasekh, M., & Zohari, T. (2018). Tga: Team game algorithm. *Future Computing and Informatics Journal*, *3*(2), 191–199.
- Masadeh, R., A., B., & Sharieh, A. (2019). Sea lion optimization algorithm. International Journal of Advanced Computer Science and Applications, 10(5).
- Melvix, J. L. (2014). Greedy politics optimization: Metaheuristic inspired by political strategies adopted during state assembly elections. In 2014 IEEE International Advance Computing Conference (IACC). IEEE.
- Mezura-Montes, E., Velázquez-Reyes, J., & Coello, C. C. (2006). Modified differential evolution for constrained optimization. In 2006 IEEE International Conference on Evolutionary Computation (pp. 25–32). IEEE.
- Milton, F. (1939). A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. *Journal of the American Statistical Association. American Statistical Association*, 34(205), 109.
- Mirjalili, S. (2015a). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.
- Mirjalili, S. (2015b). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. *Knowledge-Based Systems*, 89, 228–249.
- Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. *Knowledge-Based Systems*, 96, 120–133.
- Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67.
- Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2015). Multi-verse optimizer: a nature-inspired algorithm for global optimization. *Neural Computing and Applications*, 27(2), 495–513.
- Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61.
- Moosavi, S. H. S., & Bardsiri, V. K. (2019). Poor and rich optimization algorithm: A new human-based and multi populations algorithm. *Engineering Applications of Artificial Intelligence*, *86*, 165–181.
- Moosavian, N., & Roodsari, B. K. (2014). Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks. *Swarm and Evolutionary Computation*, *17*, 14–24.
- Morais, R. G., Mourelle, L. M., & Nedjah, N. (2018). Hitchcock birds inspired algorithm. In Computational Collective Intelligence (pp. 169–180). Springer International Publishing.
- Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts towards memetic algorithms.
- Muneender, E., & Vinodkumar, D. M. (2012). Particle swarm optimization with time varying acceleration coefficients for congestion management. In 2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT). IEEE.
- Nabil, E. (2016). A modified flower pollination algorithm for global optimization. *Expert Systems with Applications*, 57, 192–203.
- Narayanan, A., & Moore, M. (1996). Quantum-inspired genetic algorithms. In *Proceedings of IEEE International Conference on Evolutionary Computation*. IEEE.
- N.H. Awad, P. S. J. L. B. Q., M.Z. Ali (2017). Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. In 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE Congr. Evol. Comput.
- Ramezani, F., & Lotfi, S. (2013). Social-based algorithm (SBA). Applied Soft Computing, 13(5), 2837–2856.
- Rao, R., Savsani, V., & Vakharia, D. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. *Computer-Aided Design*, *43*(3), 303–315.

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information

Sciences, 179(13), 2232-2248.

- Ray, T., & Liew, K. (2003a). Society and civilization: an optimization algorithm based on the simulation of social behavior. *IEEE Transactions on Evolutionary Computation*, 7(4), 386–396.
- Ray, T., & Liew, K. (2003b). Society and civilization: an optimization algorithm based on the simulation of social behavior. *IEEE Transactions on Evolutionary Computation*, 7(4), 386–396.
- Razmjooy, N., Khalilpour, M., & Ramezani, M. (2016). A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: Theory and its application in PID designing for AVR system. *Journal of Control, Automation and Electrical Systems*, 27(4), 419–440.
- Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. *Applied Soft Computing*, 13(5), 2592–2612.
- Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. *Neural Computing and Applications*, *31*(12), 8837–8857.
- Salih, S. Q., & Alsewari, A. A. (2019). A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer. *Neural Computing and Applications*, .
- Satapathy, S., & Naik, A. (2016). Social group optimization (SGO): a new population evolutionary optimization technique. *Complex & Intelligent Systems*, 2(3), 173–203.
- Shadravan, S., Naji, H., & Bardsiri, V. K. (2019). The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. *Engineering Applications of Artificial Intelligence*, 80, 20–34.
- Shastri, A. S., Jagetia, A., Sehgal, A., Patel, M., & Kulkarni, A. J. (2019). Expectation algorithm (exa): A socioinspired optimization methodology. In Socio-cultural Inspired Metaheuristics (pp. 193–214). Springer.
- Simon, D. (2008). Biogeography-based optimization. *IEEE Transactions on Evolutionary Computation*, *12*(6), 702–713.
- Singh, P. R., Elaziz, M. A., & Xiong, S. (2019). Ludo game-based metaheuristics for global and engineering optimization. Applied Soft Computing, 84, 105723.
- Wang, L., & po Li, L. (2009). An effective differential evolution with level comparison for constrained engineering design. *Structural and Multidisciplinary Optimization*, 41(6), 947–963.
- Wang, Y., Cai, Z., Zhou, Y., & Fan, Z. (2008). Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. *Structural and Multidisciplinary Optimization*, 37(4), 395–413.
- Xu, Y., Cui, Z., & Zeng, J. (2010). Social emotional optimization algorithm for nonlinear constrained optimization problems. In Swarm, Evolutionary, and Memetic Computing (pp. 583–590). Springer Berlin Heidelberg.
- Yadav, A. et al. (2019). Aefa: Artificial electric field algorithm for global optimization. Swarm and Evolutionary Computation, 48, 93–108.
- Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In *Stochastic Algorithms: Foundations and Applications* (pp. 169–178). Springer Berlin Heidelberg.
- Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp. 65–74). Springer Berlin Heidelberg.
- Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 210–214). IEEE.
- Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. *IEEE Transactions on Evolutionary Computation*, 3(2), 82–102.
- Zar, J. H. (1999). Biostatistical analysis. Pearson Education India.
- Zaránd, G., Pázmándi, F., Pál, K. F., & Zimányi, G. T. (2002). Using hysteresis for optimization. *Physical Review Letters*, 89(15).
- Zhan, Z.-H., Zhang, J., Li, Y., & Chung, H.-H. (2009). Adaptive particle swarm optimization. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39*(6), 1362–1381.
- Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. *Information Sciences*, 178(15), 3043–3074.
- Zhao, F., Qin, S., Zhang, Y., Ma, W., Zhang, C., & Song, H. (2019a). A two-stage differential biogeography-based optimization algorithm and its performance analysis. *Expert Systems with Applications*, *115*, 329–345.
- Zhao, W., Wang, L., & Zhang, Z. (2019b). Supply-demand-based optimization: a novel economics-inspired algorithm

for global optimization. IEEE Access, 7, 73182-73206.

- Zhu, H., Hu, Y., & Zhu, W. (2019a). A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems. *Advances in Mechanical Engineering*, 11(3), 168781401882493.
- Zhu, H., Hu, Y., & Zhu, W. (2019b). A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems. *Advances in Mechanical Engineering*, 11(3), 168781401882493.