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Abstract

In this paper, a novel population-based, nature-inspired optimization paradigm is proposed, which
is called Harris Hawks Optimizer (HHO). The main inspiration of HHO is the cooperative behavior
and chasing style of Harris’ hawks in nature called surprise pounce. In this intelligent strategy,
several hawks cooperatively pounce a prey from different directions in an attempt to surprise it.
Harris hawks can reveal a variety of chasing patterns based on the dynamic nature of scenarios
and escaping patterns of the prey. This work mathematically mimics such dynamic patterns and
behaviors to develop an optimization algorithm. The effectiveness of the proposed HHO optimizer
is checked, through a comparison with other nature-inspired techniques, on 29 benchmark problems
and several real-world engineering problems. The statistical results and comparisons show that
the HHO algorithm provides very promising and occasionally competitive results compared to
well-established metaheuristic techniques.

Keywords:
Nature-inspired computing, Harris hawks optimization algorithm, Swarm intelligence,
Optimization, Metaheuristic

1 Introduction

Many real-world problems in machine learning and artificial intelligence have generally a con-1

tinuous, discrete, constrained or unconstrained nature [1, 2]. Due to these characteristics, it is2

hard to tackle some classes of problems using conventional mathematical programming approaches3

such as conjugate gradient, sequential quadratic programming, fast steepest, and quasi-Newton4

methods [3, 4]. Several types of research have verified that these methods are not efficient enough5

or always efficient in dealing with many larger-scale real-world multimodal, non-continuous, and6

non-differentiable problems [5]. Accordingly, metaheuristic algorithms have been designed and7

utilized for tackling many problems as competitive alternative solvers, which is because of their8
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simplicity and easy implementation process. In addition, the core operations of these methods do9

not rely on gradient information of the objective landscape or its mathematical traits. However,10

the common shortcoming for the majority of metaheuristic algorithms is that they often show11

a delicate sensitivity to the tuning of user-defined parameters. Another drawback is that the12

metaheuristic algorithms may not always converge to the global optimum. [6]13

In general, metaheuristic algorithms have two types [7]; single solution based (i.g. Simulated14

Annealing (SA) [8]) and population-based (i.g. Genetic Algorithm (GA) [9]). As the name indi-15

cates, in the former type, only one solution is processed during the optimization phase, while in16

the latter type, a set of solutions (i.e. population) are evolved in each iteration of the optimiza-17

tion process. Population-based techniques can often find an optimal or suboptimal solution that18

may be same with the exact optimum or located in its neighborhood. Population-based meta-19

heuristic (P-metaheuristics) techniques mostly mimic natural phenomena [10, 11, 12, 13]. These20

algorithms start the optimization process by generating a set (population) of individuals, where21

each individual in the population represents a candidate solution to the optimization problem. The22

population will be evolved iteratively by replacing the current population with a newly generated23

population using some often stochastic operators [14, 15]. The optimization process is proceeded24

until satisfying a stopping criteria (i.e. maximum number of iterations) [16, 17].25

Based on the inspiration, P-metaheuristics can be categorized in four main groups [18, 19] (see26

Fig. 1): Evolutionary Algorithms (EAs), Physics-based, Human-based, and Swarm Intelligence27

(SI) algorithms. EAs mimic the biological evolutionary behaviors such as recombination, mutation,28

and selection. The most popular EA is the GA that mimics the Darwinian theory of evolution [20].29

Other popular examples of EAs are Differential Evolution (DE) [21], Genetic Programming (GP)30

[20], and Biogeography-Based Optimizer (BBO) [22]. Physics-based algorithms are inspired by the31

physical laws. Some examples of these algorithms are Big-Bang Big-Crunch (BBBC) [23], Central32

Force Optimization (CFO) [24], and Gravitational Search Algorithm (GSA) [25]. Salcedo-Sanz33

[26] has deeply reviewed several physic-based optimizers. The third category of P-metaheuristics34

includes the set of algorithms that mimic some human behaviors. Some examples of the human-35

based algorithms are Tabu Search (TS) [27], Socio Evolution and Learning Optimization (SELO)36

[28], and Teaching Learning Based Optimization(TLBO) [29]. As the last class of P-metaheuristics,37

SI algorithms mimic the social behaviors (e.g. decentralized, self-organized systems) of organisms38

living in swarms, flocks, or herds [30, 31]. For instance, the birds flocking behaviors is the main39

inspiration of the Particle Swarm Optimization (PSO) proposed by Eberhart and Kennedy [32].40

In PSO, each particle in the swarm represents a candidate solution to the optimization problem.41

In the optimization process, each particle is updated with regard to the position of the global best42

particle and its own (local) best position. Ant Colony Optimization (ACO) [33], Cuckoo Search43

(CS) [34], and Artificial Bee Colony (ABC) are other examples of the SI techniques.44

Regardless of the variety of these algorithms, there is a common feature: the searching steps45

have two phases: exploration (diversification) and exploitation (intensification) [26]. In the ex-46

ploration phase, the algorithm should utilize and promote its randomized operators as much as47

possible to deeply explore various regions and sides of the feature space. Hence, the exploratory48

behaviors of a well-designed optimizer should have an enriched-enough random nature to effi-49

ciently allocate more randomly-generated solutions to different areas of the problem topography50

during early steps of the searching process [35]. The exploitation stage is normally performed after51

the exploration phase. In this phase, the optimizer tries to focus on the neighborhood of better-52

quality solutions located inside the feature space. It actually intensifies the searching process in53

a local region instead of all-inclusive regions of the landscape. A well-organized optimizer should54

be capable of making a reasonable, fine balance between the exploration and exploitation tenden-55
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Figure 1: Classification of meta-heuristic techniques (meta-heuristic diamond)

cies. Otherwise, the possibility of being trapped in local optima (LO) and immature convergence56

drawbacks increases.57

We have witnessed a growing interest and awareness in the successful, inexpensive, efficient58

application of EAs and SI algorithms in recent years. However, referring to No Free Lunch (NFL)59

theorem [36], all optimization algorithms proposed so-far show an equivalent performance on60

average if we apply them to all possible optimization tasks. According to NFL theorem, we cannot61

theoretically consider an algorithm as a general-purpose universally-best optimizer. Hence, NFL62

theorem encourages searching for developing more efficient optimizers. As a result of NFL theorem,63

besides the widespread studies on the efficacy, performance aspects and results of traditional EAs64

and SI algorithms, new optimizers with specific global and local searching strategies are emerging65

in recent years to provide more variety of choices for researchers and experts in different fields.66

In this paper, a new nature-inspired optimization technique is proposed to compete with other67

optimizers. The main idea behind the proposed optimizer is inspired from the cooperative be-68

haviors of one of the most intelligent birds, Harris’ Hawks, in hunting escaping preys (rabbits in69

most cases) [37]. For this purpose, a new mathematical model is developed in this paper. Then, a70

stochastic metaheuristic is designed based on the proposed mathematical model to tackle various71

optimization problems.72

The rest of this research is organized as follows. Section 2 represents the background inspiration73

and info about the cooperative life of Harris’ hawks. Section 3 represents the mathematical model74

and computational procedures of the HHO algorithm. The results of HHO in solving different75

benchmark and real-world case studies are presented in Section 4 Finally, Section 6 concludes the76

work with some useful perspectives.77

2 Background78

In 1997, Louis Lefebvre proposed an approach to measure the avian “IQ” based on the observed79

innovations in feeding behaviors [38]. Based on his studies [38, 39, 40, 41], the hawks can be listed80

amongst the most intelligent birds in nature. The Harris’ hawk (Parabuteo unicinctus) is a well-81

known bird of prey that survives in somewhat steady groups found in southern half of Arizona,82

USA [37]. Harmonized foraging involving several animals for catching and then, sharing the slain83
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animal has been persuasively observed for only particular mammalian carnivores. The Harris’s84

hawk is distinguished because of its unique cooperative foraging activities together with other85

family members living in the same stable group while other raptors usually attack to discover86

and catch a quarry, alone. This avian desert predator shows evolved innovative team chasing87

capabilities in tracing, encircling, flushing out, and eventually attacking the potential quarry.88

These smart birds can organize dinner parties consisting of several individuals in the non-breeding89

season. They are known as truly cooperative predators in the raptor realm. As reported by90

Bednarz [37] in 1998, they begin the team mission at morning twilight, with leaving the rest91

roosts and often perching on giant trees or power poles inside their home realm. They know their92

family members and try to be aware of their moves during the attack. When assembled and party93

gets started, some hawks one after the other make short tours and then, land on rather high94

perches. In this manner, the hawks occasionally will perform a “leapfrog” motion all over the95

target site and they rejoin and split several times to actively search for the covered animal, which96

is usually a rabbit2 .97

The main tactic of Harris’ hawks to capture a prey is “surprise pounce”, which is also known98

as “seven kills” strategy. In this intelligent strategy, several hawks try to cooperatively attack99

from different directions and simultaneously converge on a detected escaping rabbit outside the100

cover. The attack may rapidly be completed by capturing the surprised prey in few seconds, but101

occasionally, regarding the escaping capabilities and behaviors of the prey, the seven kills may102

include multiple, short-length, quick dives nearby the prey during several minutes. Harris’ hawks103

can demonstrate a variety of chasing styles dependent on the dynamic nature of circumstances104

and escaping patterns of a prey. A switching tactic occurs when the best hawk (leader) stoops105

at the prey and get lost, and the chase will be continued by one of the party members. These106

switching activities can be observed in different situations because they are beneficial for confusing107

the escaping rabbit. The main advantage of these cooperative tactics is that the Harris’ hawks108

can pursue the detected rabbit to exhaustion, which increases its vulnerability. Moreover, by109

perplexing the escaping prey, it cannot recover its defensive capabilities and finally, it cannot110

escape from the confronted team besiege since one of the hawks, which is often the most powerful111

and experienced one, effortlessly captures the tired rabbit and shares it with other party members.112

Harris’ hawks and their main behaviors can be seen in nature, as captured in Fig. 2.113

(a) Parabuteo unicinctus (b) Surprise pounce

Figure 2: Harris’s hawk and their behaviors3

2Interested readers can refer to the following documentary videos: (a) https://bit.ly/2Qew2qN, (b) https:

//bit.ly/2qsh8Cl, (c) https://bit.ly/2P7OMvH, (d) https://bit.ly/2DosJdS
3These images were obtained from (a) https://bit.ly/2qAsODb (b) https://bit.ly/2zBFo9l
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3 Harris hawks optimization (HHO)114

In this section, we model the exploratory and exploitative phases of the proposed HHO in-115

spired by the exploring a prey, surprise pounce, and different attacking strategies of Harris hawks.116

HHO is a population-based, gradient-free optimization technique; hence, it can be applied to any117

optimization problem subject to a proper formulation. Figure 3 shows all phases of HHO, which118

are described in the next subsections.119

|E 1=|

E

Figure 3: Different phases of HHO

3.1 Exploration phase120

In this part, the exploration mechanism of HHO is proposed. If we consider the nature of121

Harris’ hawks, they can track and detect the prey by their powerful eyes, but occasionally the122

prey cannot be seen easily. Hence, the hawks wait, observe, and monitor the desert site to detect123

a prey maybe after several hours. In HHO, the Harris’ hawks are the candidate solutions and the124

best candidate solution in each step is considered as the intended prey or nearly the optimum. In125

HHO, the Harris’ hawks perch randomly on some locations and wait to detect a prey based on two126

strategies. If we consider an equal chance q for each perching strategy, they perch based on the127

positions of other family members (to be close enough to them when attacking) and the rabbit,128

which is modeled in Eq. (1) for the condition of q < 0.5, or perch on random tall trees (random129

locations inside the group’s home range), which is modeled in Eq. (1) for condition of q ≥ 0.5.130

X(t + 1) =

{
Xrand(t) − r1 |Xrand(t) − 2r2X(t)| q ≥ 0.5

(Xrabbit(t) − Xm(t)) − r3(LB + r4(UB − LB)) q < 0.5
(1)

where X(t + 1) is the position vector of hawks in the next iteration t, Xrabbit(t) is the position
of rabbit, X(t) is the current position vector of hawks, r1, r2, r3, r4, and q are random numbers
inside (0,1), which are updated in each iteration, LB and UB show the upper and lower bounds of
variables, Xrand(t) is a randomly selected hawk from the current population, and Xm is the average
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position of the current population of hawks. We proposed a simple model to generate random
locations inside the group’s home range (LB, UB). The first rule generates solutions based on a
random location and other hawks. In second rule of Eq. (1), we have the difference of the location
of best so far and the average position of the group plus a randomly-scaled component based on
range of variables, while r3 is a scaling coefficient to further increase the random nature of rule
once r4 takes close values to 1 and similar distribution patterns may occur. In this rule, we add a
randomly scaled movement length to the LB. Then, we considered a random scaling coefficient for
the component to provide more diversification trends and explore different regions of the feature
space. It is possible to construct different updating rules, but we utilized the simplest rule, which
is able to mimic the behaviors of hawks. The average position of hawks is attained using Eq. (2):

Xm(t) =
1

N

N∑

i=1

Xi(t) (2)

where Xi(t) indicates the location of each hawk in iteration t and N denotes the total number of131

hawks. It is possible to obtain the average location in different ways, but we utilized the simplest132

rule.133

3.2 Transition from exploration to exploitation134

The HHO algorithm can transfer from exploration to exploitation and then, change between
different exploitative behaviors based on the escaping energy of the prey. The energy of a prey
decreases considerably during the escaping behavior. To model this fact, the energy of a prey is
modeled as:

E = 2E0(1 − t

T
) (3)

where E indicates the escaping energy of the prey, T is the maximum number of iterations, and135

E0 is the initial state of its energy. In HHO, E0 randomly changes inside the interval (-1, 1) at136

each iteration. When the value of E0 decreases from 0 to -1, the rabbit is physically flagging,137

whilst when the value of E0 increases from 0 to 1, it means that the rabbit is strengthening.138

The dynamic escaping energy E has a decreasing trend during the iterations. When the escaping139

energy |E| ≥1, the hawks search different regions to explore a rabbit location, hence, the HHO140

performs the exploration phase, and when |E| <1, the algorithm try to exploit the neighborhood141

of the solutions during the exploitation steps. In short, exploration happens when |E| ≥1, while142

exploitation happens in later steps when |E| <1. The time-dependent behavior of E is also143

demonstrated in Fig. 4.144

3.3 Exploitation phase145

In this phase, the Harris’ hawks perform the surprise pounce (seven kills as called in [37])146

by attacking the intended prey detected in the previous phase. However, preys often attempt147

to escape from dangerous situations. Hence, different chasing styles occur in real situations.148

According to the escaping behaviors of the prey and chasing strategies of the Harris’ hawks, four149

possible strategies are proposed in the HHO to model the attacking stage.150

The preys always try to escape from threatening situations. Suppose that r is the chance of a151

prey in successfully escaping (r <0.5) or not successfully escaping (r ≥0.5) before surprise pounce.152

Whatever the prey does, the hawks will perform a hard or soft besiege to catch the prey. It means153

that they will encircle the prey from different directions softly or hard depending on the retained154

energy of the prey. In real situations, the hawks get closer and closer to the intended prey to155
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increase their chances in cooperatively killing the rabbit by performing the surprise pounce. After156

several minutes, the escaping prey will lose more and more energy; then, the hawks intensify the157

besiege process to effortlessly catch the exhausted prey. To model this strategy and enable the158

HHO to switch between soft and hard besiege processes, the E parameter is utilized.159

In this regard, when |E| ≥0.5, the soft besiege happens, and when |E| <0.5, the hard besiege160

occurs.161

3.3.1 Soft besiege162

When r ≥ 0.5 and |E| ≥ 0.5, the rabbit still has enough energy, and try to escape by some163

random misleading jumps but finally it cannot. During these attempts, the Harris’ hawks encircle164

it softly to make the rabbit more exhausted and then perform the surprise pounce. This behavior165

is modeled by the following rules:166

X(t + 1) = ∆X(t) − E |JXrabbit(t) − X(t)| (4)

∆X(t) = Xrabbit(t) − X(t) (5)

where ∆X(t) is the difference between the position vector of the rabbit and the current location167

in iteration t, r5 is a random number inside (0,1), and J = 2(1 − r5) represents the random jump168

strength of the rabbit throughout the escaping procedure. The J value changes randomly in each169

iteration to simulate the nature of rabbit motions.170

3.3.2 Hard besiege171

When r ≥0.5 and |E| <0.5, the prey is so exhausted and it has a low escaping energy. In
addition, the Harris’ hawks hardly encircle the intended prey to finally perform the surprise pounce.
In this situation, the current positions are updated using Eq. (6):

X(t + 1) = Xrabbit(t) − E |∆X(t)| (6)

A simple example of this step with one hawk is depicted in Fig. 5.172

3.3.3 Soft besiege with progressive rapid dives173

When still |E| ≥0.5 but r <0.5, the rabbit has enough energy to successfully escape and still174

a soft besiege is constructed before the surprise pounce. This procedure is more intelligent than175

the previous case.176
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To mathematically model the escaping patterns of the prey and leapfrog movements (as called in177

[37]), the levy flight (LF) concept is utilized in the HHO algorithm. The LF is utilized to mimic the178

real zigzag deceptive motions of preys (particularity rabbits) during escaping phase and irregular,179

abrupt, and rapid dives of hawks around the escaping prey. Actually, hawks perform several team180

rapid dives around the rabbit and try to progressively correct their location and directions with181

regard to the deceptive motions of prey. This mechanism is also supported by real observations182

in other competitive situations in nature. It has been confirmed that LF-based activities are the183

optimal searching tactics for foragers/predators in non-destructive foraging conditions [42, 43].184

In addition, it has been detected the LF-based patterns can be detected in the chasing activities185

of animals like monkeys and sharks [44, 45, 46, 47]. Hence, the LF-based motions were utilized186

within this phase of HHO technique.187

Inspired by real behaviors of hawks, we supposed that they can progressively select the best
possible dive toward the prey when they wish to catch the prey in the competitive situations.
Therefore, to perform a soft besiege, we supposed that the hawks can evaluate (decide) their next
move based on the following rule in Eq. (7):

Y = Xrabbit(t) − E |JXrabbit(t) − X(t)| (7)

Then, they compare the possible result of such a movement to the previous dive to detect that will
it be a good dive or not. If it was not reasonable (when they see that the prey is performing more
deceptive motions), they also start to perform irregular, abrupt, and rapid dives when approaching
the rabbit. We supposed that they will dive based on the LF-based patterns using the following
rule:

Z = Y + S × LF (D) (8)

where D is the dimension of problem and S is a random vector by size 1 × D and LF is the levy
flight function, which is calculated using Eq. (9) [48]:

LF (x) = 0.01 × u × σ

|v| 1
β

, σ =

(
Γ(1 + β) × sin(πβ

2
)

Γ(1+β
2

) × β × 2(β−1
2

))

) 1
β

(9)

where u, v are random values inside (0,1), β is a default constant set to 1.5.188

Hence, the final strategy for updating the positions of hawks in the soft besiege phase can be
performed by Eq. (10):

X(t + 1) =

{
Y ifF (Y ) < F (X(t))
Z ifF (Z) < F (X(t))

(10)

8



where Y and Z are obtained using Eqs.(7) and (8).189

A simple illustration of this step for one hawk is demonstrated in Fig. 6. Note that the190

position history of LF-based leapfrog movement patterns during some iterations are also recorded191

and shown in this illustration. The colored dots are the location footprints of LF-based patterns192

in one trial and then, the HHO reaches to the location Z. In each step, only the better position193

Y or Z will be selected as the next location. This strategy is applied to all search agents.194

E

Z

X

ΔX

Xrabbit

Xrabbit − E |JXrabbit − X|
S×LF(D)

Y

Figure 6: Example of overall vectors in the case of soft besiege with progressive rapid dives

3.3.4 Hard besiege with progressive rapid dives195

When |E| <0.5 and r <0.5, the rabbit has not enough energy to escape and a hard besiege is
constructed before the surprise pounce to catch and kill the prey. The situation of this step in the
prey side is similar to that in the soft besiege, but this time, the hawks try to decrease the distance
of their average location with the escaping prey. Therefore, the following rule is performed in hard
besiege condition:

X(t + 1) =

{
Y ifF (Y ) < F (X(t))
Z ifF (Z) < F (X(t))

(11)

where Y and Z are obtained using new rules in Eqs.(12) and (13).196

Y = Xrabbit(t) − E |JXrabbit(t) − Xm(t)| (12)

Z = Y + S × LF (D) (13)

where Xm(t) is obtained using Eq. (2). A simple example of this step is demonstrated in Fig. 7.197

Note that the colored dots are the location footprints of LF-based patterns in one trial and only198

Y or Z will be the next location for the new iteration.199

3.4 Pseudocode of HHO200

The pseudocode of the proposed HHO algorithm is reported in Algorithm 1.201
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10



Algorithm 1 Pseudo-code of HHO algorithm

Inputs: The population size N and maximum number of iterations T
Outputs: The location of rabbit and its fitness value
Initialize the random population Xi(i = 1, 2, . . . , N)
while (stopping condition is not met) do

Calculate the fitness values of hawks
Set Xrabbit as the location of rabbit (best location)
for (each hawk (Xi)) do

Update the initial energy E0 and jump strength J ▷ E0=2rand()-1, J=2(1-rand())

Update the E using Eq. (3)
if (|E| ≥ 1) then ▷ Exploration phase

Update the location vector using Eq. (1)

if (|E| < 1) then ▷ Exploitation phase

if (r ≥0.5 and |E| ≥ 0.5 ) then ▷ Soft besiege
Update the location vector using Eq. (4)

else if (r ≥0.5 and |E| < 0.5 ) then ▷ Hard besiege
Update the location vector using Eq. (6)

else if (r <0.5 and |E| ≥ 0.5 ) then ▷ Soft besiege with progressive rapid dives
Update the location vector using Eq. (10)

else if (r <0.5 and |E| < 0.5 ) then ▷ Hard besiege with progressive rapid dives
Update the location vector using Eq. (11)

Return Xrabbit

3.5 Computational complexity202

Note that the computational complexity of the HHO mainly depends on three processes: initial-203

ization, fitness evaluation, and updating of hawks. Note that with N hawks, the computational204

complexity of the initialization process is O(N). The computational complexity of the updat-205

ing mechanism is O(T×N)+O(T×N×D), which is composed of searching for the best location206

and updating the location vector of all hawks, where T is the maximum number of iterations207

and D is the dimension of specific problems. Therefore, computational complexity of HHO is208

O(N×(T + TD + 1)).209

4 Experimental results and discussions210

4.1 Benchmark set and compared algorithms211

In order to investigate the efficacy of the proposed HHO optimizer, a well-studied set of diverse212

benchmark functions are selected from literature [49, 50]. This benchmark set covers three main213

groups of benchmark landscapes: unimodal (UM), multimodal (MM), and composition (CM).214

The UM functions (F1-F7) with unique global best can reveal the exploitative (intensification)215

capacities of different optimizers, while the MM functions (F8-F23) can disclose the exploration216

(diversification) and LO avoidance potentials of algorithms. The mathematical formulation and217

characteristics of UM and MM problems are shown in Tables 16, 17, and 18 in Appendix A. The218

third group problems (F24-F29) are selected from IEEE CEC 2005 competition [51] and covers219

hybrid composite, rotated and shifted MM test cases. These CM cases are also utilized in many220

papers and can expose the performance of utilized optimizers in well balancing the exploration221
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and exploitation inclinations and escaping from LO in dealing with challenging problems. Details222

of the CM test problems are also reported in Table 19 in Appendix A. Figure 8 demonstrates three223

of composition test problems.224

The results and performance of the proposed HHO is compared with other well-established225

optimization techniques such as the GA [22], BBO [22], DE [22], PSO [22], CS [34], TLBO [29],226

BA/BAT [52], FPA [53], FA [54], GWO [55], and MFO [56] algorithms based on the best, worst,227

standard deviation (STD) and average of the results (AVG). These algorithms cover both recently228

proposed techniques such as MFO, GWO, CS, TLBO, BAT, FPA, and FA and also, relatively the229

most utilized optimizers in the field like the GA, DE, PSO, and BBO algorithms.230

As recommended by Derrac et al. [57], the non-parametric Wilcoxon statistical test with 5% de-231

gree of significance is also performed along with experimental assessments to detect the significant232

differences between the attained results of different techniques.233
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Figure 8: Demonstration of composition test functions

4.2 Experimental setup234

All algorithms were implemented under Matlab 7.10 (R2010a) on a computer with a Windows235

7 64-bit professional and 64 GB RAM. The swarm size and maximum iterations of all optimizers236

are set to 30 and 500, respectively. All results are recorded and compared based on the average237

performance of optimizers over 30 independent runs.238

The settings of GA, PSO, DE and BBO algorithms are same with those set by Dan Simon in239

the original work of BBO [22], while for the BA [52], FA [58], TLBO [29], GWO [55], FPA [53],240

CS [34], and MFO [56], the parameters are same with the recommended settings in the original241

works. The used parameters are also reported in Table 1.242

4.3 Qualitative results of HHO243

The qualitative results of HHO for several standard unimodal and multimodal test problems244

are demonstrated in Figs. 9-11. These results include four well-known metrics: search history, the245

trajectory of the first hawk, average fitness of population, and convergence behavior. In addition,246

the escaping energy of the rabbit is also monitored during iterations. The search history diagram247

reveals the history of those positions visited by artificial hawks during iterations. The map of248

the trajectory of the first hawk monitors how the first variable of the first hawk varies during249

the steps of the process. The average fitness of hawks monitors how the average fitness of whole250

population varies during the process of optimization. The convergence metric also reveals how the251

fitness value of the rabbit (best solution) varies during the optimization. Note that the diagram252

of escaping energy demonstrates how the energy of rabbit varies during the simulation.253
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Figure 9: Qualitative results for unimodal F1, F3, and F4 problems
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Figure 10: Qualitative results for F7, F9, and F10 problems

14



Table 1: The parameter settings

Algorithm Parameter Value
DE Scaling factor 0.5

Crossover probability 0.5
PSO Topology fully connected

Inertia factor 0.3
c1 1
c2 1

TLBO Teaching factor T 1, 2
GWO Convergence constant a [2 0]
MFO Convergence constant a [-2 -1]

Spiral factor b 1
CS Discovery rate of alien solutions pa 0.25
BA Qmin Frequency minimum 0

Qmax Frequency maximum 2
A Loudness 0.5
r Pulse rate 0.5

FA α 0.5
β 0.2
γ 1

FPA Probability switch p 0.8
BBO Habitat modification probability 1

Immigration probability limits [0,1]
Step size 1
Max immigration (I) and Max emigration (E) 1
Mutation probability 0.005
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Figure 11: Qualitative results for F13 problem
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From the history of sampled locations in Figs. 9-11, it can be observed that the HHO reveals a254

similar pattern in dealing with different cases, in which the hawks attempts to initially boost the255

diversification and explore the favorable areas of solution space and then exploit the vicinity of256

the best locations. The diagram of trajectories can help us to comprehend the searching behavior257

of the foremost hawk (as a representative of the rest of hawks). By this metric, we can check258

if the foremost hawk faces abrupt changes during the early phases and gradual variations in the259

concluding steps. Referring to Van Den Bergh and Engelbrecht [59], these activities can guarantee260

that a P-metaheuristic finally convergences to a position and exploit the target region.261

As per trajectories in Figs. 9-11, we see that the foremost hawk start the searching procedure262

with sudden movements. The amplitude of these variations covers more than 50% of the solution263

space. This observation can disclose the exploration propensities of the proposed HHO. As times264

passes, the amplitude of these fluctuations gradually decreases. This point guarantees the tran-265

sition of HHO from exploratory trends to exploitative steps. Eventually, the motion pattern of266

the first hawk becomes very stable which shows that the HHO is exploiting the promising regions267

during the concluding steps. By monitoring the average fitness of the population, the next mea-268

sure, we can notice the reduction patterns in fitness values when the HHO enriches the excellence269

of the randomized candidate hawks. Based on the diagrams demonstrated in Figs. 9-11, the HHO270

can enhance the quality of all hawks during half of the iterations and there is an accelerating271

decreasing pattern in all curves. Again, the amplitude of variations of fitness results decreases by272

more iteration. Hence, the HHO can dynamically focus on more promising areas during iterations.273

According to convergence curves in Fig. Figs. 9-11, which shows the average fitness of best hawk274

found so far, we can detect accelerated decreasing patterns in all curves, especially after half of275

the iteration. We can also detect the estimated moment that the HHO shift from exploration to276

exploitation. In this regard, it is observed that the HHO can reveal an accelerated convergence277

trend.278

4.4 Scalability analysis279

In this section, a scalability assessment is utilized to investigate the impact of dimension on the280

results of HHO. This test has been utilized in the previous studies and it can reveal the impact of281

dimensions on the quality of solutions for the HHO optimizer to recognize its efficacy not only for282

problems with lower dimensions but also for higher dimension tasks. In addition, it reveals how a283

P-metaheuristic can preserve its searching advantages in higher dimensions. For this experiment,284

the HHO is utilized to tackle the scalable UM and MM F1-F13 test cases with 30, 100, 500, and285

1000 dimensions. The average error AVG and STD of the attained results of all optimizers over286

30 independent runs and 500 iterations are recorded and compared for each dimension. Table 2287

reveals the results of HHO versus other methods in dealing with F1-F13 problems with different288

dimensions. The scalability results for all techniques are also illustrated in Fig. 12. Note that the289

detailed results of all techniques are reported in the next parts.290

As it can be seen in Table 2, the HHO can expose excellent results in all dimensions and291

its performance remains consistently superior when realizing cases with many variables. As per292

curves in Fig. 12, it is observed that the optimality of results and the performance of other293

methods significantly degrade by increasing the dimensions. This reveals that HHO is capable294

of maintaining a good balance between the exploratory and exploitative tendencies on problems295

with many variables.296
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Figure 12: Scalability results of the HHO versus other methods in dealing with the F1-F13 cases with different
dimensions
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Table 2: Results of HHO for different dimensions of scalable F1-F13 problems

Problem/D Metric 30 100 500 1000

F1
AVG 3.95E-97 1.91E-94 1.46E-92 1.06E-94
STD 1.72E-96 8.66E-94 8.01E-92 4.97E-94

F2
AVG 1.56E-51 9.98E-52 7.87E-49 2.52E-50
STD 6.98E-51 2.66E-51 3.11E-48 5.02E-50

F3
AVG 1.92E-63 1.84E-59 6.54E-37 1.79E-17
STD 1.05E-62 1.01E-58 3.58E-36 9.81E-17

F4
AVG 1.02E-47 8.76E-47 1.29E-47 1.43E-46
STD 5.01E-47 4.79E-46 4.11E-47 7.74E-46

F5
AVG 1.32E-02 2.36E-02 3.10E-01 5.73E-01
STD 1.87E-02 2.99E-02 3.73E-01 1.40E+00

F6
AVG 1.15E-04 5.12E-04 2.94E-03 3.61E-03
STD 1.56E-04 6.77E-04 3.98E-03 5.38E-03

F7
AVG 1.40E-04 1.85E-04 2.51E-04 1.41E-04
STD 1.07E-04 4.06E-04 2.43E-04 1.63E-04

F8
AVG -1.25E+04 -4.19E+04 -2.09E+05 -4.19E+05
STD 1.47E+02 2.82E+00 2.84E+01 1.03E+02

F9
AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10
AVG 8.88E-16 8.88E-16 8.88E-16 8.88E-16
STD 4.01E-31 4.01E-31 4.01E-31 4.01E-31

F11
AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12
AVG 7.35E-06 4.23E-06 1.41E-06 1.02E-06
STD 1.19E-05 5.25E-06 1.48E-06 1.16E-06

F13
AVG 1.57E-04 9.13E-05 3.44E-04 8.41E-04
STD 2.15E-04 1.26E-04 4.75E-04 1.18E-03

4.5 Quantitative results of HHO and discussion297

In this section, the results of HHO are compared with those of other optimizers for different298

dimensions of F1-F13 test problems in addition to the F14-F29 MM and CM test cases. Note299

that the results are presented for 30, 100, 500, and 1000 dimensions of the scalable F1-F13 prob-300

lems. Tables 3-6 show the obtained results for HHO versus other competitors in dealing with301

scalable functions. Table 8 also reveals the performance of algorithms in dealing with F14-F29302

test problems. In order to investigate the significant differences between the results of proposed303

HHO versus other optimizers, Wilcoxon rank-sum test with 5% degree is carefully performed here304

[57]. Tables 20, 21, 22, 23, and 24 in Appendix B show the attained p-values of the Wilcoxon305

rank-sum test with 5% significance.306

As per result in Table 3, the HHO can obtain the best results compared to other competitors307

on F1-F5, F7, and F9-F13 problems. The results of HHO are considerably better than other308

algorithms in dealing with 84.6% of these 30-dimensional functions, demonstrating the superior309

performance of this optimizer. According to p-values in Table 20, it is detected that the observed310

differences in the results are statistically meaningful for all cases. From Table 4, when we have a311

100-dimensional search space, the HHO can considerably outperform other techniques and attain312

the best results for 92.3% of F1-F13 problems. It is observed that the results of HHO are again313

remarkably better than other techniques. With regard to p-values in Table 21, it is detected that314

the solutions of HHO are significantly better than those realized by other techniques in almost315

all cases. From Table 5, we see that the HHO can attain the best results in terms of AVG and316

STD in dealing with 12 test cases with 500 dimensions. By considering p-values in Table 22, it is317

recognized that the HHO can significantly outperform other optimizers in all cases. As per results318

in Table 6, similarly to what we observed in lower dimensions, it is detected that the HHO has319

still a remarkably superior performance in dealing with F1-F13 test functions compared to GA,320

PSO, DE, BBO, CS, GWO, MFO, TLBO, BAT, FA, and FPA optimizers. The statistical results321

in Table 23 also verify the significant gap between the results of HHO and other optimizers in322
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almost all cases. It is seen that the HHO has reached the best global optimum for F9 and F11323

cases in any dimension.324

Table 3: Results of benchmark functions (F1-F13), with 30 dimensions.

Benchmark HHO GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE

F1
AVG 3.95E-97 1.03E+03 1.83E+04 7.59E+01 2.01E+03 1.18E-27 6.59E+04 7.11E-03 9.06E-04 1.01E+03 2.17E-89 1.33E-03
STD 1.72E-96 5.79E+02 3.01E+03 2.75E+01 5.60E+02 1.47E-27 7.51E+03 3.21E-03 4.55E-04 3.05E+03 3.14E-89 5.92E-04

F2
AVG 1.56E-51 2.47E+01 3.58E+02 1.36E-03 3.22E+01 9.71E-17 2.71E+08 4.34E-01 1.49E-01 3.19E+01 2.77E-45 6.83E-03
STD 6.98E-51 5.68E+00 1.35E+03 7.45E-03 5.55E+00 5.60E-17 1.30E+09 1.84E-01 2.79E-02 2.06E+01 3.11E-45 2.06E-03

F3
AVG 1.92E-63 2.65E+04 4.05E+04 1.21E+04 1.41E+03 5.12E-05 1.38E+05 1.66E+03 2.10E-01 2.43E+04 3.91E-18 3.97E+04
STD 1.05E-62 3.44E+03 8.21E+03 2.69E+03 5.59E+02 2.03E-04 4.72E+04 6.72E+02 5.69E-02 1.41E+04 8.04E-18 5.37E+03

F4
AVG 1.02E-47 5.17E+01 4.39E+01 3.02E+01 2.38E+01 1.24E-06 8.51E+01 1.11E-01 9.65E-02 7.00E+01 1.68E-36 1.15E+01
STD 5.01E-47 1.05E+01 3.64E+00 4.39E+00 2.77E+00 1.94E-06 2.95E+00 4.75E-02 1.94E-02 7.06E+00 1.47E-36 2.37E+00

F5
AVG 1.32E-02 1.95E+04 1.96E+07 1.82E+03 3.17E+05 2.70E+01 2.10E+08 7.97E+01 2.76E+01 7.35E+03 2.54E+01 1.06E+02
STD 1.87E-02 1.31E+04 6.25E+06 9.40E+02 1.75E+05 7.78E-01 4.17E+07 7.39E+01 4.51E-01 2.26E+04 4.26E-01 1.01E+02

F6
AVG 1.15E-04 9.01E+02 1.87E+04 6.71E+01 1.70E+03 8.44E-01 6.69E+04 6.94E-03 3.13E-03 2.68E+03 3.29E-05 1.44E-03
STD 1.56E-04 2.84E+02 2.92E+03 2.20E+01 3.13E+02 3.18E-01 5.87E+03 3.61E-03 1.30E-03 5.84E+03 8.65E-05 5.38E-04

F7
AVG 1.40E-04 1.91E-01 1.07E+01 2.91E-03 3.41E-01 1.70E-03 4.57E+01 6.62E-02 7.29E-02 4.50E+00 1.16E-03 5.24E-02
STD 1.07E-04 1.50E-01 3.05E+00 1.83E-03 1.10E-01 1.06E-03 7.82E+00 4.23E-02 2.21E-02 9.21E+00 3.63E-04 1.37E-02

F8
AVG -1.25E+04 -1.26E+04 -3.86E+03 -1.24E+04 -6.45E+03 -5.97E+03 -2.33E+03 -5.85E+03 -5.19E+19 -8.48E+03 -7.76E+03 -6.82E+03
STD 1.47E+02 4.51E+00 2.49E+02 3.50E+01 3.03E+02 7.10E+02 2.96E+02 1.16E+03 1.76E+20 7.98E+02 1.04E+03 3.94E+02

F9
AVG 0.00E+00 9.04E+00 2.87E+02 0.00E+00 1.82E+02 2.19E+00 1.92E+02 3.82E+01 1.51E+01 1.59E+02 1.40E+01 1.58E+02
STD 0.00E+00 4.58E+00 1.95E+01 0.00E+00 1.24E+01 3.69E+00 3.56E+01 1.12E+01 1.25E+00 3.21E+01 5.45E+00 1.17E+01

F10
AVG 8.88E-16 1.36E+01 1.75E+01 2.13E+00 7.14E+00 1.03E-13 1.92E+01 4.58E-02 3.29E-02 1.74E+01 6.45E-15 1.21E-02
STD 4.01E-31 1.51E+00 3.67E-01 3.53E-01 1.08E+00 1.70E-14 2.43E-01 1.20E-02 7.93E-03 4.95E+00 1.79E-15 3.30E-03

F11
AVG 0.00E+00 1.01E+01 1.70E+02 1.46E+00 1.73E+01 4.76E-03 6.01E+02 4.23E-03 4.29E-05 3.10E+01 0.00E+00 3.52E-02
STD 0.00E+00 2.43E+00 3.17E+01 1.69E-01 3.63E+00 8.57E-03 5.50E+01 1.29E-03 2.00E-05 5.94E+01 0.00E+00 7.20E-02

F12
AVG 2.08E-06 4.77E+00 1.51E+07 6.68E-01 3.05E+02 4.83E-02 4.71E+08 3.13E-04 5.57E-05 2.46E+02 7.35E-06 2.25E-03
STD 1.19E-05 1.56E+00 9.88E+06 2.62E-01 1.04E+03 2.12E-02 1.54E+08 1.76E-04 4.96E-05 1.21E+03 7.45E-06 1.70E-03

F13
AVG 1.57E-04 1.52E+01 5.73E+07 1.82E+00 9.59E+04 5.96E-01 9.40E+08 2.08E-03 8.19E-03 2.73E+07 7.89E-02 9.12E-03
STD 2.15E-04 4.52E+00 2.68E+07 3.41E-01 1.46E+05 2.23E-01 1.67E+08 9.62E-04 6.74E-03 1.04E+08 8.78E-02 1.16E-02

Table 4: Results of benchmark functions (F1-F13), with 100 dimensions.

Benchmark HHO GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE

F1
AVG 1.91E-94 5.41E+04 1.06E+05 2.85E+03 1.39E+04 1.59E-12 2.72E+05 3.05E-01 3.17E-01 6.20E+04 3.62E-81 8.26E+03
STD 8.66E-94 1.42E+04 8.47E+03 4.49E+02 2.71E+03 1.63E-12 1.42E+04 5.60E-02 5.28E-02 1.25E+04 4.14E-81 1.32E+03

F2
AVG 9.98E-52 2.53E+02 6.06E+23 1.59E+01 1.01E+02 4.31E-08 6.00E+43 1.45E+01 4.05E+00 2.46E+02 3.27E-41 1.21E+02
STD 2.66E-51 1.41E+01 2.18E+24 3.74E+00 9.36E+00 1.46E-08 1.18E+44 6.73E+00 3.16E-01 4.48E+01 2.75E-41 2.33E+01

F3
AVG 1.84E-59 2.53E+05 4.22E+05 1.70E+05 1.89E+04 4.09E+02 1.43E+06 4.65E+04 6.88E+00 2.15E+05 4.33E-07 5.01E+05
STD 1.01E-58 5.03E+04 7.08E+04 2.02E+04 5.44E+03 2.77E+02 6.21E+05 6.92E+03 1.02E+00 4.43E+04 8.20E-07 5.87E+04

F4
AVG 8.76E-47 8.19E+01 6.07E+01 7.08E+01 3.51E+01 8.89E-01 9.41E+01 1.91E+01 2.58E-01 9.31E+01 6.36E-33 9.62E+01
STD 4.79E-46 3.15E+00 3.05E+00 4.73E+00 3.37E+00 9.30E-01 1.49E+00 3.12E+00 2.80E-02 2.13E+00 6.66E-33 1.00E+00

F5
AVG 2.36E-02 2.37E+07 2.42E+08 4.47E+05 4.64E+06 9.79E+01 1.10E+09 8.46E+02 1.33E+02 1.44E+08 9.67E+01 1.99E+07
STD 2.99E-02 8.43E+06 4.02E+07 2.05E+05 1.98E+06 6.75E-01 9.47E+07 8.13E+02 7.34E+00 7.50E+07 7.77E-01 5.80E+06

F6
AVG 5.12E-04 5.42E+04 1.07E+05 2.85E+03 1.26E+04 1.03E+01 2.69E+05 2.95E-01 2.65E+00 6.68E+04 3.27E+00 8.07E+03
STD 6.77E-04 1.09E+04 9.70E+03 4.07E+02 2.06E+03 1.05E+00 1.25E+04 5.34E-02 3.94E-01 1.46E+04 6.98E-01 1.64E+03

F7
AVG 1.85E-04 2.73E+01 3.41E+02 1.25E+00 5.84E+00 7.60E-03 3.01E+02 5.65E-01 1.21E+00 2.56E+02 1.50E-03 1.96E+01
STD 4.06E-04 4.45E+01 8.74E+01 5.18E+00 2.16E+00 2.66E-03 2.66E+01 1.64E-01 2.65E-01 8.91E+01 5.39E-04 5.66E+00

F8
AVG -4.19E+04 -4.10E+04 -7.33E+03 -3.85E+04 -1.28E+04 -1.67E+04 -4.07E+03 -1.81E+04 -2.84E+18 -2.30E+04 -1.71E+04 -1.19E+04
STD 2.82E+00 1.14E+02 4.75E+02 2.80E+02 4.64E+02 2.62E+03 9.37E+02 3.23E+03 6.91E+18 1.98E+03 3.54E+03 5.80E+02

F9
AVG 0.00E+00 3.39E+02 1.16E+03 9.11E+00 8.47E+02 1.03E+01 7.97E+02 2.36E+02 1.72E+02 8.65E+02 1.02E+01 1.03E+03
STD 0.00E+00 4.17E+01 5.74E+01 2.73E+00 4.01E+01 9.02E+00 6.33E+01 2.63E+01 9.24E+00 8.01E+01 5.57E+01 4.03E+01

F10
AVG 8.88E-16 1.82E+01 1.91E+01 5.57E+00 8.21E+00 1.20E-07 1.94E+01 9.81E-01 3.88E-01 1.99E+01 1.66E-02 1.22E+01
STD 4.01E-31 4.35E-01 2.04E-01 4.72E-01 1.14E+00 5.07E-08 6.50E-02 2.55E-01 5.23E-02 8.58E-02 9.10E-02 8.31E-01

F11
AVG 0.00E+00 5.14E+02 9.49E+02 2.24E+01 1.19E+02 4.87E-03 2.47E+03 1.19E-01 4.56E-03 5.60E+02 0.00E+00 7.42E+01
STD 0.00E+00 1.05E+02 6.00E+01 4.35E+00 2.00E+01 1.07E-02 1.03E+02 2.34E-02 9.73E-04 1.23E+02 0.00E+00 1.40E+01

F12
AVG 4.23E-06 4.55E+06 3.54E+08 3.03E+02 1.55E+05 2.87E-01 2.64E+09 4.45E+00 2.47E-02 2.82E+08 3.03E-02 3.90E+07
STD 5.25E-06 8.22E+06 8.75E+07 1.48E+03 1.74E+05 6.41E-02 2.69E+08 1.32E+00 5.98E-03 1.45E+08 1.02E-02 1.88E+07

F13
AVG 9.13E-05 5.26E+07 8.56E+08 6.82E+04 2.76E+06 6.87E+00 5.01E+09 4.50E+01 5.84E+00 6.68E+08 5.47E+00 7.19E+07
STD 1.26E-04 3.76E+07 2.16E+08 3.64E+04 1.80E+06 3.32E-01 3.93E+08 2.24E+01 1.21E+00 3.05E+08 8.34E-01 2.73E+07

In order to further check the efficacy of HHO, we recorded the running time taken by optimizers325

to find the solutions for F1-F13 problems with 1000 dimensions and the results are exposed in326

Table 7. As per results in Table 7, we detect that the HHO shows a reasonably fast and competitive327

performance in finding the best solutions compared to other well-established optimizers even for328

high dimensional unimodal and multimodal cases. Based on average running time on 13 problems,329

the HHO performs faster than BBO, PSO, GA, CS, GWO, and FA algorithms. These observations330

are also in accordance with the computational complexity of HHO.331

The results in Table 8 verify that HHO provides superior and very competitive results on332

F14-F23 fixed dimension MM test cases. The results on F16-F18 are very competitive and all333

algorithms have attained high-quality results. Based on results in Table 8, the proposed HHO has334
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Table 5: Results of benchmark functions (F1-F13), with 500 dimensions.

Benchmark HHO GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE

F1
AVG 1.46E-92 6.06E+05 6.42E+05 1.60E+05 8.26E+04 1.42E-03 1.52E+06 6.30E+04 6.80E+00 1.15E+06 2.14E-77 7.43E+05
STD 8.01E-92 7.01E+04 2.96E+04 9.76E+03 1.32E+04 3.99E-04 3.58E+04 8.47E+03 4.93E-01 3.54E+04 1.94E-77 3.67E+04

F2
AVG 7.87E-49 1.94E+03 6.08E+09 5.95E+02 5.13E+02 1.10E-02 8.34E+09 7.13E+02 4.57E+01 3.00E+08 2.31E-39 3.57E+09
STD 3.11E-48 7.03E+01 1.70E+10 1.70E+01 4.84E+01 1.93E-03 1.70E+10 3.76E+01 2.05E+00 1.58E+09 1.63E-39 1.70E+10

F3
AVG 6.54E-37 5.79E+06 1.13E+07 2.98E+06 5.34E+05 3.34E+05 3.37E+07 1.19E+06 2.03E+02 4.90E+06 1.06E+00 1.20E+07
STD 3.58E-36 9.08E+05 1.43E+06 3.87E+05 1.34E+05 7.95E+04 1.41E+07 1.88E+05 2.72E+01 1.02E+06 3.70E+00 1.49E+06

F4
AVG 1.29E-47 9.59E+01 8.18E+01 9.35E+01 4.52E+01 6.51E+01 9.82E+01 5.00E+01 4.06E-01 9.88E+01 4.02E-31 9.92E+01
STD 4.11E-47 1.20E+00 1.49E+00 9.05E-01 4.28E+00 5.72E+00 3.32E-01 1.73E+00 3.03E-02 4.15E-01 2.67E-31 2.33E-01

F5
AVG 3.10E-01 1.79E+09 1.84E+09 2.07E+08 3.30E+07 4.98E+02 6.94E+09 2.56E+07 1.21E+03 5.01E+09 4.97E+02 4.57E+09
STD 3.73E-01 4.11E+08 1.11E+08 2.08E+07 8.76E+06 5.23E-01 2.23E+08 6.14E+06 7.04E+01 2.50E+08 3.07E-01 1.25E+09

F6
AVG 2.94E-03 6.27E+05 6.57E+05 1.68E+05 8.01E+04 9.22E+01 1.53E+06 6.30E+04 8.27E+01 1.16E+06 7.82E+01 7.23E+05
STD 3.98E-03 7.43E+04 3.29E+04 8.23E+03 9.32E+03 2.15E+00 3.37E+04 8.91E+03 2.24E+00 3.48E+04 2.50E+00 3.28E+04

F7
AVG 2.51E-04 9.10E+03 1.43E+04 2.62E+03 2.53E+02 4.67E-02 2.23E+04 3.71E+02 8.05E+01 3.84E+04 1.71E-03 2.39E+04
STD 2.43E-04 2.20E+03 1.51E+03 3.59E+02 6.28E+01 1.12E-02 1.15E+03 6.74E+01 1.37E+01 2.24E+03 4.80E-04 2.72E+03

F8
AVG -2.09E+05 -1.31E+05 -1.65E+04 -1.42E+05 -3.00E+04 -5.70E+04 -9.03E+03 -7.27E+04 -2.10E+17 -6.29E+04 -5.02E+04 -2.67E+04
STD 2.84E+01 2.31E+04 9.99E+02 1.98E+03 1.14E+03 3.12E+03 2.12E+03 1.15E+04 1.14E+18 5.71E+03 1.00E+04 1.38E+03

F9
AVG 0.00E+00 3.29E+03 6.63E+03 7.86E+02 4.96E+03 7.84E+01 6.18E+03 2.80E+03 2.54E+03 6.96E+03 0.00E+00 7.14E+03
STD 0.00E+00 1.96E+02 1.07E+02 3.42E+01 7.64E+01 3.13E+01 1.20E+02 1.42E+02 5.21E+01 1.48E+02 0.00E+00 1.05E+02

F10
AVG 8.88E-16 1.96E+01 1.97E+01 1.44E+01 8.55E+00 1.93E-03 2.04E+01 1.24E+01 1.07E+00 2.03E+01 7.62E-01 2.06E+01
STD 4.01E-31 2.04E-01 1.04E-01 2.22E-01 8.66E-01 3.50E-04 3.25E-02 4.46E-01 6.01E-02 1.48E-01 2.33E+00 2.45E-01

F11
AVG 0.00E+00 5.42E+03 5.94E+03 1.47E+03 6.88E+02 1.55E-02 1.38E+04 5.83E+02 2.66E-02 1.03E+04 0.00E+00 6.75E+03
STD 0.00E+00 7.32E+02 3.19E+02 8.10E+01 8.17E+01 3.50E-02 3.19E+02 7.33E+01 2.30E-03 4.43E+02 0.00E+00 2.97E+02

F12
AVG 1.41E-06 2.79E+09 3.51E+09 1.60E+08 4.50E+06 7.42E-01 1.70E+10 8.67E+05 3.87E-01 1.20E+10 4.61E-01 1.60E+10
STD 1.48E-06 1.11E+09 4.16E+08 3.16E+07 3.37E+06 4.38E-02 6.29E+08 6.23E+05 2.47E-02 6.82E+08 2.40E-02 2.34E+09

F13
AVG 3.44E-04 8.84E+09 6.82E+09 5.13E+08 3.94E+07 5.06E+01 3.17E+10 2.29E+07 6.00E+01 2.23E+10 4.98E+01 2.42E+10
STD 4.75E-04 2.00E+09 8.45E+08 6.59E+07 1.87E+07 1.30E+00 9.68E+08 9.46E+06 1.13E+00 1.13E+09 9.97E-03 6.39E+09

Table 6: Results of benchmark functions (F1-F13), with 1000 dimensions.

Benchmark HHO GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE

F1
AVG 1.06E-94 1.36E+06 1.36E+06 6.51E+05 1.70E+05 2.42E-01 3.12E+06 3.20E+05 1.65E+01 2.73E+06 2.73E-76 2.16E+06
STD 4.97E-94 1.79E+05 6.33E+04 2.37E+04 2.99E+04 4.72E-02 4.61E+04 2.11E+04 1.27E+00 4.70E+04 7.67E-76 3.39E+05

F2
AVG 2.52E-50 4.29E+03 1.79E+10 1.96E+03 8.34E+02 7.11E-01 1.79E+10 1.79E+10 1.02E+02 1.79E+10 1.79E+10 1.79E+10
STD 5.02E-50 8.86E+01 1.79E+10 2.18E+01 8.96E+01 4.96E-01 1.79E+10 1.79E+10 3.49E+00 1.79E+10 1.79E+10 1.79E+10

F3
AVG 1.79E-17 2.29E+07 3.72E+07 9.92E+06 1.95E+06 1.49E+06 1.35E+08 4.95E+06 8.67E+02 1.94E+07 8.61E-01 5.03E+07
STD 9.81E-17 3.93E+06 1.16E+07 1.48E+06 4.20E+05 2.43E+05 4.76E+07 7.19E+05 1.10E+02 3.69E+06 1.33E+00 4.14E+06

F4
AVG 1.43E-46 9.79E+01 8.92E+01 9.73E+01 5.03E+01 7.94E+01 9.89E+01 6.06E+01 4.44E-01 9.96E+01 1.01E-30 9.95E+01
STD 7.74E-46 7.16E-01 2.39E+00 7.62E-01 5.37E+00 2.77E+00 2.22E-01 2.69E+00 2.24E-02 1.49E-01 5.25E-31 1.43E-01

F5
AVG 5.73E-01 4.73E+09 3.72E+09 1.29E+09 7.27E+07 1.06E+03 1.45E+10 2.47E+08 2.68E+03 1.25E+10 9.97E+02 1.49E+10
STD 1.40E+00 9.63E+08 2.76E+08 6.36E+07 1.84E+07 3.07E+01 3.20E+08 3.24E+07 1.27E+02 3.15E+08 2.01E-01 3.06E+08

F6
AVG 3.61E-03 1.52E+06 1.38E+06 6.31E+05 1.60E+05 2.03E+02 3.11E+06 3.18E+05 2.07E+02 2.73E+06 1.93E+02 2.04E+06
STD 5.38E-03 1.88E+05 6.05E+04 1.82E+04 1.86E+04 2.45E+00 6.29E+04 2.47E+04 4.12E+00 4.56E+04 2.35E+00 2.46E+05

F7
AVG 1.41E-04 4.45E+04 6.26E+04 3.84E+04 1.09E+03 1.47E-01 1.25E+05 4.44E+03 4.10E+02 1.96E+05 1.83E-03 2.27E+05
STD 1.63E-04 8.40E+03 4.16E+03 2.91E+03 3.49E+02 3.28E-02 3.93E+03 4.00E+02 8.22E+01 6.19E+03 5.79E-04 3.52E+04

F8
AVG -4.19E+05 -1.94E+05 -2.30E+04 -2.29E+05 -4.25E+04 -8.64E+04 -1.48E+04 -1.08E+05 -9.34E+14 -9.00E+04 -6.44E+04 -3.72E+04
STD 1.03E+02 9.74E+03 1.70E+03 3.76E+03 1.47E+03 1.91E+04 3.14E+03 1.69E+04 2.12E+15 7.20E+03 1.92E+04 1.23E+03

F9
AVG 0.00E+00 8.02E+03 1.35E+04 2.86E+03 1.01E+04 2.06E+02 1.40E+04 7.17E+03 6.05E+03 1.56E+04 0.00E+00 1.50E+04
STD 0.00E+00 3.01E+02 1.83E+02 9.03E+01 1.57E+02 4.81E+01 1.85E+02 1.88E+02 1.41E+02 1.94E+02 0.00E+00 1.79E+02

F10
AVG 8.88E-16 1.95E+01 1.98E+01 1.67E+01 8.62E+00 1.88E-02 2.07E+01 1.55E+01 1.18E+00 2.04E+01 5.09E-01 2.07E+01
STD 4.01E-31 2.55E-01 1.24E-01 8.63E-02 9.10E-01 2.74E-03 2.23E-02 2.42E-01 5.90E-02 2.16E-01 1.94E+00 1.06E-01

F11
AVG 0.00E+00 1.26E+04 1.23E+04 5.75E+03 1.52E+03 6.58E-02 2.83E+04 2.87E+03 3.92E-02 2.47E+04 1.07E-16 1.85E+04
STD 0.00E+00 1.63E+03 5.18E+02 1.78E+02 2.66E+02 8.82E-02 4.21E+02 1.78E+02 3.58E-03 4.51E+02 2.03E-17 2.22E+03

F12
AVG 1.02E-06 1.14E+10 7.73E+09 1.56E+09 8.11E+06 1.15E+00 3.63E+10 6.76E+07 6.53E-01 3.04E+10 6.94E-01 3.72E+10
STD 1.16E-06 1.27E+09 6.72E+08 1.46E+08 3.46E+06 1.82E-01 1.11E+09 1.80E+07 2.45E-02 9.72E+08 1.90E-02 7.67E+08

F13
AVG 8.41E-04 1.91E+10 1.58E+10 4.17E+09 8.96E+07 1.21E+02 6.61E+10 4.42E+08 1.32E+02 5.62E+10 9.98E+01 6.66E+10
STD 1.18E-03 4.21E+09 1.56E+09 2.54E+08 3.65E+07 1.11E+01 1.40E+09 7.91E+07 1.48E+00 1.76E+09 1.31E-02 2.26E+09
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Table 7: Comparison of average running time results (seconds) over 30 runs for larger-scale problems with 1000
variables

ID Mertic HHO GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE

F1 AVG 2.03E+00 8.27E+01 8.29E+01 1.17E+02 2.13E+00 4.47E+00 1.60E+00 5.62E+00 5.47E+00 3.23E+00 2.21E+00 2.38E+00
STD 4.04E-01 5.13E+00 4.04E+00 6.04E+00 2.62E-01 2.64E-01 2.08E-01 4.42E-01 4.00E-01 2.06E-01 3.62E-01 2.70E-01

F2 AVG 1.70E+00 8.41E+01 8.28E+01 1.16E+02 2.09E+00 4.37E+00 1.61E+00 2.57E+00 5.50E+00 3.25E+00 1.99E+00 2.28E+00
STD 7.37E-02 4.65E+00 4.08E+00 6.28E+00 8.64E-02 1.29E-01 1.02E-01 3.93E-01 3.48E-01 1.56E-01 1.19E-01 1.16E-01

F3 AVG 1.17E+02 1.32E+02 1.30E+02 1.65E+02 5.10E+01 5.20E+01 5.23E+01 3.70E+01 1.02E+02 5.11E+01 9.76E+01 5.04E+01
STD 5.28E+00 5.68E+00 5.73E+00 7.56E+00 2.01E+00 1.93E+00 2.25E+00 1.49E+00 3.73E+00 2.00E+00 3.87E+00 1.98E+00

F4 AVG 2.05E+00 8.14E+01 8.24E+01 1.18E+02 1.90E+00 4.27E+00 1.44E+00 5.43E+00 5.14E+00 3.14E+00 1.87E+00 2.21E+00
STD 7.40E-02 3.73E+00 3.91E+00 5.48E+00 5.83E-02 1.36E-01 1.02E-01 2.76E-01 2.33E-01 9.28E-02 1.05E-01 8.73E-02

F5 AVG 2.95E+00 8.16E+01 8.33E+01 1.17E+02 2.04E+00 4.46E+00 1.65E+00 5.61E+00 5.49E+00 3.31E+00 2.23E+00 2.38E+00
STD 8.36E-02 4.13E+00 4.36E+00 5.91E+00 7.79E-02 1.39E-01 1.16E-01 3.01E-01 2.74E-01 1.27E-01 1.09E-01 1.30E-01

F6 AVG 2.49E+00 8.08E+01 8.26E+01 1.17E+02 1.88E+00 4.29E+00 1.47E+00 5.51E+00 5.17E+00 3.13E+00 1.89E+00 2.19E+00
STD 8.25E-02 3.96E+00 3.95E+00 5.69E+00 4.98E-02 1.07E-01 1.03E-01 2.87E-01 2.35E-01 1.00E-01 9.33E-02 1.02E-01

F7 AVG 8.20E+00 8.26E+01 8.52E+01 1.18E+02 4.79E+00 7.08E+00 4.22E+00 6.89E+00 1.08E+01 5.83E+00 7.23E+00 4.95E+00
STD 1.69E-01 4.56E+00 3.94E+00 6.10E+00 1.02E-01 7.56E-02 8.98E-02 2.02E-01 3.86E-01 1.01E-01 1.31E-01 1.43E-01

F8 AVG 4.86E+00 8.47E+01 8.36E+01 1.18E+02 3.18E+00 5.21E+00 2.45E+00 6.04E+00 7.69E+00 4.05E+00 3.84E+00 3.23E+00
STD 1.03E+00 3.68E+00 3.80E+00 5.52E+00 4.73E-01 1.78E-01 2.88E-01 2.69E-01 3.86E-01 1.20E-01 4.12E-01 8.69E-02

F9 AVG 3.77E+00 8.09E+01 8.33E+01 1.15E+02 2.84E+00 4.72E+00 2.33E+00 5.89E+00 6.90E+00 3.94E+00 2.70E+00 3.20E+00
STD 8.87E-01 3.59E+00 3.88E+00 5.94E+00 4.30E-01 1.19E-01 2.88E-01 2.55E-01 3.34E-01 1.26E-01 4.71E-01 5.50E-01

F10 AVG 3.75E+00 8.24E+01 8.36E+01 1.17E+02 2.96E+00 4.80E+00 2.46E+00 5.98E+00 6.56E+00 4.04E+00 2.84E+00 3.41E+00
STD 8.75E-01 4.02E+00 3.99E+00 5.90E+00 3.74E-01 1.14E-01 4.67E-01 2.91E-01 3.51E-01 1.21E-01 5.39E-01 3.01E-01

F11 AVG 4.17E+00 8.23E+01 8.38E+01 1.18E+02 3.16E+00 4.95E+00 2.61E+00 6.03E+00 6.43E+00 4.22E+00 3.03E+00 3.38E+00
STD 5.56E-01 4.41E+00 3.97E+00 6.02E+00 5.50E-01 8.65E-02 3.95E-01 2.50E-01 3.01E-01 1.20E-01 3.95E-01 9.95E-02

F12 AVG 1.90E+01 8.64E+01 8.85E+01 1.23E+02 9.09E+00 1.06E+01 8.66E+00 9.17E+00 1.90E+01 9.67E+00 1.53E+01 9.14E+00
STD 3.31E+00 4.47E+00 4.42E+00 6.20E+00 1.39E+00 4.33E-01 1.47E+00 3.62E-01 3.53E+00 4.04E-01 2.54E+00 1.14E+00

F13 AVG 1.89E+01 8.64E+01 8.90E+01 1.23E+02 9.28E+00 1.05E+01 8.74E+00 9.24E+00 1.83E+01 9.66E+00 1.46E+01 9.34E+00
STD 1.56E+00 4.40E+00 4.20E+00 6.29E+00 1.50E+00 4.56E-01 1.38E+00 3.94E-01 7.75E-01 3.91E-01 2.24E+00 1.24E+00

always achieved to the best results on F14-F23 problems in comparison with other approaches.335

Based on results for F24-F29 hybrid CM functions in Table 8, the HHO is capable of achieving to336

high-quality solutions and outperforming other competitors. The p-values in Table 24 also confirm337

the meaningful advantage of HHO compared to other optimizers for the majority of cases.338

Table 8: Results of benchmark functions (F14-F29)

Benchmark HHO GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE

F14
AVG 9.98E-01 9.98E-01 1.39E+00 9.98E-01 9.98E-01 4.17E+00 1.27E+01 3.51E+00 1.27E+01 2.74E+00 9.98E-01 1.23E+00
STD 9.23E-01 4.52E-16 4.60E-01 4.52E-16 2.00E-04 3.61E+00 6.96E+00 2.16E+00 1.81E-15 1.82E+00 4.52E-16 9.23E-01

F15
AVG 3.10E-04 3.33E-02 1.61E-03 1.66E-02 6.88E-04 6.24E-03 3.00E-02 1.01E-03 3.13E-04 2.35E-03 1.03E-03 5.63E-04
STD 1.97E-04 2.70E-02 4.60E-04 8.60E-03 1.55E-04 1.25E-02 3.33E-02 4.01E-04 2.99E-05 4.92E-03 3.66E-03 2.81E-04

F16
AVG -1.03E+00 -3.78E-01 -1.03E+00 -8.30E-01 -1.03E+00 -1.03E+00 -6.87E-01 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
STD 6.78E-16 3.42E-01 2.95E-03 3.16E-01 6.78E-16 6.78E-16 8.18E-01 6.78E-16 6.78E-16 6.78E-16 6.78E-16 6.78E-16

F17
AVG 3.98E-01 5.24E-01 4.00E-01 5.49E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
STD 2.54E-06 6.06E-02 1.39E-03 6.05E-02 1.69E-16 1.69E-16 1.58E-03 1.69E-16 1.69E-16 1.69E-16 1.69E-16 1.69E-16

F18
AVG 3.00E+00 3.00E+00 3.10E+00 3.00E+00 3.00E+00 3.00E+00 1.47E+01 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
STD 0.00E+00 0.00E+00 7.60E-02 0.00E+00 0.00E+00 4.07E-05 2.21E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F19
AVG -3.86E+00 -3.42E+00 -3.86E+00 -3.78E+00 -3.86E+00 -3.86E+00 -3.84E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
STD 2.44E-03 3.03E-01 1.24E-03 1.26E-01 3.16E-15 3.14E-03 1.41E-01 3.16E-15 3.16E-15 1.44E-03 3.16E-15 3.16E-15

F20
AVG -3.322 -1.61351 -3.11088 -2.70774 -3.2951 -3.25866 -3.2546 -3.28105 -3.322 -3.23509 -3.24362 -3.27048
STD 0.137406 0.46049 0.029126 0.357832 0.019514 0.064305 0.058943 0.063635 1.77636E-15 0.064223 0.15125 0.058919

F21
AVG -10.1451 -6.66177 -4.14764 -8.31508 -5.21514 -8.64121 -4.2661 -7.67362 -5.0552 -6.8859 -8.64525 -9.64796
STD 0.885673 3.732521 0.919578 2.883867 0.008154 2.563356 2.554009 3.50697 1.77636E-15 3.18186 1.76521 1.51572

F22
AVG -10.4015 -5.58399 -6.01045 -9.38408 -5.34373 -10.4014 -5.60638 -9.63827 -5.0877 -8.26492 -10.2251 -9.74807
STD 1.352375 2.605837 1.962628 2.597238 0.053685 0.000678 3.022612 2.293901 8.88178E-16 3.076809 0.007265 1.987703

F23
AVG -10.5364 -4.69882 -4.72192 -6.2351 -5.29437 -10.0836 -3.97284 -9.75489 -5.1285 -7.65923 -10.0752 -10.5364
STD 0.927655 3.256702 1.742618 3.78462 0.356377 1.721889 3.008279 2.345487 1.77636E-15 3.576927 1.696222 8.88E-15

F24
AVG 396.8256 626.8389 768.1775 493.0129 518.7886 486.5743 1291.474 471.9752 469.0141 412.4627 612.5569 431.0767
STD 79.58214 101.2255 76.09641 102.6058 47.84199 142.9028 150.4189 252.1018 60.62538 68.38819 123.2403 64.1864

F25
AVG 910 999.4998 1184.819 935.4693 1023.799 985.4172 1463.423 953.8902 910.1008 947.9322 967.088 917.6204
STD 0 29.44366 33.02676 9.61349 31.85965 29.95368 68.41612 11.74911 0.036659 27.06628 27.39906 1.052473

F26
AVG 910 998.9091 1178.34 934.2718 1018.002 973.5362 1480.683 953.5493 910.1252 940.1221 983.774 917.346
STD 0 25.27817 35.20755 8.253209 34.87908 22.45008 45.55006 14.086 0.047205 21.68256 45.32275 0.897882

F27
AVG 910 1002.032 1195.088 939.7644 1010.392 969.8538 1477.919 947.7667 910.1233 945.4266 978.7344 917.3067
STD 0 26.66321 23.97978 23.07814 31.51188 19.51721 60.58827 11.18408 0.049732 26.79031 38.22729 0.861945

F28
AVG 860.8925 1512.467 1711.981 1068.631 1539.357 1337.671 1961.526 1016.389 1340.078 1455.918 1471.879 1553.993
STD 0.651222 94.64553 35.18377 201.9045 42.93441 191.0662 58.46188 270.6854 134.183 36.06884 268.6238 96.35255

F29
AVG 558.9653 1937.396 2101.145 1897.439 2033.614 1909.091 2221.404 1986.206 1903.852 1882.974 1883.773 1897.031
STD 5.112352 11.25913 29.74533 8.823239 30.2875 6.567542 35.54849 18.88722 185.7944 6.528261 3.493192 4.203909

4.6 Engineering benchmark sets339

In this section, the proposed HHO is applied to six well-known benchmark engineering prob-340

lems. Tackling engineering design tasks using P-metaheuristics is a well-regarded research direc-341

tion in the previous works [60, 61]. The results of HHO is compared to various conventional and342

modified optimizers proposed in previous studies. Table 9 tabulates the details of the tackled343

engineering design tasks.344
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Table 9: Brief description of the tackled engineering design tasks. (D: dimension, CV: continuous variables,
DV:Discrete variables, NC: Number of constraints, AC: Active constraints, F/S: ratio of the feasible solutions in
the solution domain (F) to the whole search domain(S), OB: Objective.)

No. Name D CV DV NC AC F/S OB
1 Three-bar truss 2 2 0 3 NA NA Minimize weight
2 Tension/compression spring 3 3 0 4 2 0.01 Minimize weight
3 Pressure vessel 4 2 2 4 2 0.40 Minimize cost
4 Welded beam 4 4 0 7 2 0.035 Minimize cost
5 Multi-plate disc clutch brake 5 0 5 8 1 0.700 Minimize weight
6 Rolling element bearing 10 9 1 9 4 0.015 Maximize dynamic load

4.6.1 Three-bar truss design problem345

This problem can be regarded as one of the most studied cases in previous works [62]. This346

problem can be described mathematically as follows:347

Consider
−→
X = [x1x2] = [A1A2],

Minimise f(
−→
X ) =

(
2
√

2X1 + X2

)
× 1,

Subject to g1(
−→
X ) =

√
2x1 + x2√

2x2
1 + 2x1x2

P − σ ≤ 0,

g2(
−→
X ) =

x2√
2x2

1 + 2x1x2

P − σ ≤ 0,

g3(
−→
X ) =

1√
2x2 + x1

P − σ ≤ 0,

Variable range 0 ≤ x1, x2 ≤ 1,

where 1 = 100 cm, P = 2 KN/ cm2, σ = 2 KN/ cm2

Figure 13 demonstrates the shape of the formulated truss and the related forces on this struc-348

ture. With regard to Fig. 13 and the formulation, we have two parameters: the area of bars 1 and349

3 and area of bar 2. The objective of this task is to minimize the total weight of the structure. In350

addition, this design case has several constraints including stress, deflection, and buckling.351

A1 A3

A2

P

A1=A3

D

1 2 3

4

Figure 13: Three-bar truss design problem

The HHO is applied to this case based on 30 independent runs with 30 hawks and 500 iterations352

in each run. Since this benchmark case has some constraints, we need to integrate the HHO with353
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a constraint handling technique. For the sake of simplicity, we used a barrier penalty approach354

[63] in the HHO. The results of HHO are compared to those reported for DEDS [64], MVO [65],355

GOA [62], MFO [56], PSO-DE [66], SSA [60], MBA [67], Tsa [68], Ray and Sain [69], and CS [34]356

in previous literature. Table 10 shows the detailed results of the proposed HHO compared to other357

techniques. Based on the results in Table 10, it is observed that HHO can reveal very competitive358

results compared to DEDS, PSO-DE, and SSA algorithms. Additionally, the HHO outperforms359

other optimizers significantly. The results obtained show that the HHO is capable of dealing with360

a constrained space.361

Table 10: Comparison of results for three-bar truss design problem.

Algorithm Optimal values for variables Optimal weight
x1 x2

HHO 0.788662816 0.408283133832900 263.8958434
DEDS [64] 0.78867513 0.40824828 263.8958434
MVO [65] 0.78860276 0.408453070000000 263.8958499
GOA [62] 0.788897555578973 0.407619570115153 263.895881496069
MFO [56] 0.788244771 0.409466905784741 263.8959797
PSO-DE [66] 0.7886751 0.4082482 263.8958433
SSA [60] 0.788665414 0.408275784444547 263.8958434
MBA [67] 0.7885650 0.4085597 263.8958522
Tsa [68] 0.788 0.408 263.68
Ray and Sain [69] 0.795 0.395 264.3
CS [34] 0.78867 0.40902 263.9716

4.6.2 Tension/compression spring design362

In this case, our intention is to minimize the weight of a spring. Design variables for this363

case are wire diameter (d), mean coil diameter (D), and the number of active coils (N). For this364

case, the constraints on shear stress, surge frequency, and minimum deflection should be satisfied365

during the weight optimization. The objective and constraints of this problem can be formulated366

as follows:367

Consider−→z = [z1z2z3] = [dDN ],

Minimizef(−→z ) = (z3 + 2)z2z
2
1 ,

Subject to

g1(
−→z ) = 1 − z3

2z3

71785z4
1

≤ 0,

g2(
−→z ) =

4z2
2 − z1z2

12566(z2z3
1 − z4

1)
+

1

5108z2
1

≤ 0,

g3(
−→z ) = 1 − 140.45z1

z2
2z3

≤ 0

g4(
−→z ) =

z1 + z2

1.5
− 1 ≤ 0,

There are several optimizers previously applied to this case such as the SSA [60], TEO [70],368

MFO [56], SFS [71], GWO [55], WOA [18], method presented by Arora [72], GA2 [73], GA3 [74],369

method presented by Belegundu [75], CPSO [76], DEDS [64], GSA [25], DELC [77], HEAA [78],370

WEO [79], BA [80], ESs [81], Rank-iMDDE [82], CWCA [14], and WCA [61]. The results of HHO371

are compared to the aforementioned techniques in Table 11.372
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Table 11: Comparison of results for tension/compression spring problem.

Algorithms d D N Optimal cost
HHO 0.051796393 0.359305355 11.138859 0.012665443
SSA [60] 0.051207 0.345215 12.004032 0.0126763
TEO [70] 0.051775 0.3587919 11.16839 0.012665
MFO [56] 0.051994457 0.36410932 10.868422 0.0126669
SFS [71] 0.051689061 0.356717736 11.288966 0.012665233
GWO [55] 0.05169 0.356737 11.28885 0.012666
WOA [18] 0 .051207 0 .345215 12 .004032 0 .0126763
Arora [72] 0.053396 0.399180 9.185400 0.012730
GA2 [73] 0.051480 0.351661 11.632201 0.012704
GA3 [74] 0.051989 0.363965 10.890522 0.012681
Belegundu [75] 0.05 0.315900 14.250000 0.012833
CPSO [76] 0.051728 0.357644 11.244543 0.012674
DEDS [64] 0.051689 0.356717 11.288965 0.012665
GSA [25] 0.050276 0.323680 13.525410 0.012702
DELC [77] 0.051689 0.356717 11.288965 0.012665
HEAA [78] 0.051689 0.356729 11.288293 0.012665
WEO [79] 0.051685 0.356630 11.294103 0.012665
BA [80] 0.05169 0.35673 11.2885 0.012665
ESs [81] 0.051643 0.355360 11.397926 0.012698
Rank-iMDDE [82] 0.051689 0.35671718 11.288999 0.012665
CWCA [14] 0.051709 0.35710734 11.270826 0.012672
WCA [61] 0.05168 0.356522 11.30041 0.012665

Table 11 shows that the proposed HHO can achieve to high quality solutions very effectively373

when tackling this benchmark problem and it exposes the best design. It is evident that results374

of HHO are very competitive to those of SFS and TEO.375

4.6.3 Pressure vessel design problem376

In this well-regarded case, we minimize the fabrication cost and it has four parameters and
constraints. The variables of this case are (x1 - x4): Ts (x1, thickness of the shell), Th (x2,
thickness of the head), r (x3, inner radius), L (x4, length of the section without the head). The
overall configuration of this problem is shown in Fig. 14. The formulation of this test case is as

L

 

Th Ts

2rB

O 1 O
A

A
BO

O
1

B

BO 1 O
A

A
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O
1
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Figure 14: Pressure vessel problem

24



follows:

Consider−→z = [z1z2z3z4] = [TsThRL],

Minimizef(−→z ) = 0.6224z1z3z4 + 1.7781z2z
3
2 + 3.1661z2

1z4 + 19.84z2
1z3,

Subject to

g1(
−→z ) = −z1 + 0.0193z3 ≤ 0,

g2(
−→z ) = −z3 + 0.00954z3 ≤ 0,

g3(
−→z ) = −Πz2

3z4 − 4

3
Πz3

3 + 1, 296, 000 ≤ 0,

g4(
−→z ) = z4 − 240 ≤ 0,

The design space for this case is limited to: 0 ≤ z1, z2 ≤ 99, 0 ≤ z3, z4 ≤ 200. The results of377

HHO are compared to those of GWO [55], GA [73], HPSO [83], G-QPSO [84], WEO [79], IACO378

[85], BA [80], MFO [56], CSS [86], ESs [81], CPSO [76], BIANCA [87], MDDE [88], DELC [77],379

WOA [18], GA3 [74], Lagrangian multiplier (Kannan) [18], and Branch-bound (Sandgren) [18].380

Table 12 reports the optimum designs attained by HHO and listed optimizers. Inspecting the381

results in Table 12, we detected that the HHO is the best optimizer in dealing with problems and382

can attain superior results compared to other techniques.383

Table 12: Comparison of results for pressure vessel design problem

Algorithms Ts(x1) Th(x2) R(x3) L(x4) Optimal cost
HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
GWO [55] 0.8125 0.4345 42.089181 176.758731 6051.5639
GA [73] 0.812500 0.437500 42.097398 176.654050 6059.9463
HPSO [83] 0.812500 0.437500 42.0984 176.6366 6059.7143
G-QPSO [84] 0.812500 0.437500 42.0984 176.6372 6059.7208
WEO [79] 0.812500 0.437500 42.098444 176.636622 6059.71
IACO [85] 0.812500 0.437500 42.098353 176.637751 6059.7258
BA [80] 0.812500 0.437500 42.098445 176.636595 6059.7143
MFO [56] 0.8125 0.4375 42.098445 176.636596 6059.7143
CSS [86] 0.812500 0.437500 42.103624 176.572656 6059.0888
ESs [81] 0.812500 0.437500 42.098087 176.640518 6059.7456
CPSO [76] 0.812500 0.437500 42.091266 176.746500 6061.0777
BIANCA [87] 0.812500 0.437500 42.096800 176.6580 0 0 6059.9384
MDDE [88] 0.812500 0.437500 42.098446 176.636047 6059.701660
DELC [77] 0.812500 0.437500 42.0984456 176.6365958 6059.7143
WOA [18] 0 .812500 0 .437500 42 .0982699 176 .638998 6059 .7410
GA3 [74] 0.812500 0.437500 42.0974 176.6540 6059.9463
Lagrangian multiplier (Kannan) [18] 1.125000 0.625000 58.291000 43.6900000 7198 .0428
Branch-bound (Sandgren) [18] 1.125000 0.625000 47.700000 117.701000 8129.1036

4.6.4 Welded beam design problem384

Purpose of the well-known engineering case is to discover the best manufacturing cost with385

regard to a series of design constraints. A schematic view of this problem is illustrated in Fig. 15.386

The design variables are thickness of weld (h), length (l), height (t), and thickness of the bar (b).387

This case can be formulated as follows:388
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Figure 15: Welded beam design problem

Consider−→z = [z1, z2, z3, z4] = [h, l, t, b],

Minimizef(−→z ) = 1.10471z2
1z2 + 0.04811z3z4(14.0 + z2),

Subject to

g1(
−→z ) = τ(−→z ) − τmax ≤ 0,

g2(
−→z ) = σ(−→z ) − σmax ≤ 0,

g3(
−→z ) = δ(−→z ) − δmax ≤ 0,

g4(
−→z ) = z1 − z4 ≤ 0,

g5(
−→z ) = P − Pc(

−→z ) ≤ 0,

g6(
−→z ) = 0.125 − z1 ≤ 0,

g7(
−→z ) = 1.10471z2

1 + 0.04811z3z4(14.0 + z2) − 5.0 ≤ 0,

Variable range

0.05 ≤ z1 ≤ 2.00, 0.25 ≤ z2 ≤ 1.30, 2.00 ≤ z3 ≤ 15.0,

where

τ(−→z ) =

√
τ ′2 + 2τ ′τ ′′ z2

2R
+ τ ′′2, τ ′ =

P√
2z1z2

, τ ′′ =
MR

J
,M = P

(
L +

z2

2

)
,

R =

√
z2
2

4
+ (

z1 + z3

2
)
2

, J = 2

{√
2z1z2

[
z2
2

12
+ (

z1 + z3

2
)
2
]}

, σ(−→z ) =
6PL

z4z2
3

,

δ(−→z ) =
4PL3

Ez3
3z4

, Pc(
−→z ) =

4.013E

√
z2
3z6

4

36

L2

(
1 − z3

2L

√
E

4G

)
,

P = 6000lb, L = 14in, E = 30 × 106psi,G = 12 × 106psi,

The optimal results of HHO versus those attained by RANDOM [89], DAVID [89], SIMPLEX389

[89], APPROX [89], GA1 [73], GA2 [63], HS [90], GSA [18], ESs [81], and CDE [91] are represented390

in Table 13. From Table 13, it can be seen that the proposed HHO can reveal the best design391

settings with the minimum fitness value compared to other optimizers.392

4.6.5 Multi-plate disc clutch brake393

In this discrete benchmark task, the intention is to optimize the total weight of a multiple394

disc clutch brake with regard to five variables: actuating force, inner and outer radius, number of395
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Table 13: Comparison of results for welded beam design problem

Algorithm h l t b Optimal cost
HHO 0.204039 3.531061 9.027463 0.206147 1.73199057
RANDOM [89] 0.4575 4.7313 5.0853 0.66 4.1185
DAVID [89] 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX [89] 0.2792 5.6256 7.7512 0.2796 2.5307
APPROX [89] 0.24 4 4 6.2189 8.2915 0.2444 2.3815
GA1 [73] 0.248900 6.173000 8.178900 0.253300 2.433116
GA2 [63] 0.208800 3.420500 8.997500 0.210000 1.748310
HS [90] 0.2442 6.2231 8.2915 0.2443 2.3807
GSA [18] 0.182129 3.856979 10 0.202376 1.879952
ESs [81] 0.199742 3.61206 9.0375 0.206082 1.7373
CDE [91] 0.203137 3.542998 9.033498 0.206179 1.733462

friction surfaces, and thickness of discs [92].396

This problem has eight constraints according to the conditions of geometry and operating re-397

quirements. The feasible area for this case includes practically 70% of the solution space. However,398

there are few works that considered this problem in their tests. The optimal results of proposed399

HHO in compared to those revealed by TLBO [93], WCA [61], and PVS [92] algorithms. Table400

14 shows the attained results of different optimizers for this test case. From Table 14, we can401

recognize that the HHO attains the best rank and can outperform the well-known TLBO, WCA,402

and PVS in terms of quality of solutions.403

f(x) = Π(r2
o − r2

i )t(Z + 1)ρ

subject to:

g1(x) = ro − ri − ∆r ≥ 0

g2(x) = lmax − (Z + 1)(t + δ) ≥ 0

g3(x) = Pmax − Prz ≥ 0

g4(x) = Pmaxvsr max − Przνsr ≥ 0

g5(x) = vsr max − vsr ≥ 0

g6 = Tmax − T ≥ 0

g7(x) = Mh − sMs ≥ 0

g8(x) = T ≥ 0

where,

Mh =
2

3
µFZ

r3
o − r2

i

r2
o − r3

i

, Prz =
F

Π(r2
o − r2

i )
,

vrz =
2Πn(r3

o − r3
i )

90 (r2
o − r2

i )
, T =

IzΠn

30(Mh + Mf )

∆r = 20 mm, Iz = 55 kgmm2, Pmax = 1 MPa, Fmax = 1000 N,

Tmax = 15 s, µ = 0.5, s = 1.5, Ms = 40 Nm, Mf = 3 Nm, n = 250 rpm,

vsr max = 10m/ s, lmax = 30 mm, ri min = 60, ri max = 80, ro min = 90,

ro max = 110, tmin = 1.5, tmax = 3, Fmin = 600, Fmax = 1000, Zmin = 2, Zmax = 9,
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Table 14: Comparison of results for multi-plate disc clutch brake

Algorithm ri r0 t F Z Optimal cost
HHO 69.9999999992493 90 1 1000 2.312781994 0.259768993
TLBO [93] 70 90 1 810 3 0.313656
WCA [61] 70 90 1 910 3 0.313656
PVS [92] 70 90 1 980 3 0.31366

4.6.6 Rolling element bearing design problem404

This engineering problem has 10 geometric variables, nine constraints considered for assembly
and geometric-based restrictions and our purpose for tackling this case is to optimize (maximize)
the dynamic load carrying capacity. The formulation of this test case is described as follows:

Maximize Cd = fcZ
2/3D1.8

b ifD ≤ 25.4mm

Cd = 3.647fcZ
2/3D1.4

b ifD > 25.4mm

Subject to

g1(
−→z ) =

ϕ0

2 sin−1(Db/Dm)
− Z + 1 ≤ 0,

g2(
−→z ) = 2Db − KD min(D − d) > 0,

g3(
−→z ) = KD max(D − d) − 2Db ≥ 0,

g4(
−→z ) = ζBw − Db ≤ 0,

g5(
−→z ) = Dm − 0.5(D + d) ≥ 0,

g6(
−→z ) = (0.5 + e)(D + d) − Dm ≥ 0,

g7(
−→z ) = 0.5(D − Dm − Db) − ϵDb ≥ 0,

g8(
−→z ) = fi ≥ 0.515,

g9(
−→z ) = fo ≥ 0.515,

where

fc = 37.91


1 +

{
1.04

(
1 − γ

1 + γ

)1.72(
fi (2fo − 1)

fo (2fi − 1)

)0.41
}10/3




−0.3

×
[

γ0.3 (1 − γ)1.39

(1 + γ)1/3

] [
2fi

2fi − 1

]0.41

x =
[
{(D − d)/2 − 3 (T/4)}2 + {D/2 − T/4 − Db}2 − {d/2 + T/4}2

]

y = 2{(D − d)/2 − 3 (T/4)}{D/2 − T/4 − Db}

ϕo = 2Π − cos−1

(
x

y

)

γ =
Db

Dm

, fi =
ri

Db

, fo =
ro

Db

, T = D − d − 2Db D = 160, d = 90,

Bw = 30, ri = ro = 11.033 0.5(D + d) ≤ Dm ≤ 0.6(D + d),

0.15(D − d) ≤ Db ≤ 0.45(D − d), 4 ≤ Z ≤ 50, 0.515 ≤ fi and fo ≤ 0.6,

0.4 ≤ KD min ≤ 0.5,

0.6 ≤ KD max ≤ 0.7, 0.3 ≤ e ≤ 0.4, 0.02 ≤ e ≤ 0.1, 0.6 ≤ ζ ≤ 0.85
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A schematic view of this problem is illustrated in Fig. 16.405

d0

d1

Dh

Bw

D

r0
ri

Figure 16: Rolling element bearing problem

This case covers closely 1.5% of the feasible area of the target space. The results of HHO is406

compared to GA4 [94], TLBO [93], and PVS [92] techniques. Table 15 tabulates the results of407

HHO versus those of other optimizers. From Table 15, we see that the proposed HHO has detected408

the best solution with the maximum cost with a substantial progress compared to GA4, TLBO,409

and PVS algorithms.410

Table 15: Comparison of results for rolling element bearing design problem

Algorithms GA4 [94] TLBO [93] PVS [92] HHO
Dm 125.717100 125.7191 125.719060 125.000000
Db 21.423000 21.42559 21.425590 21.000000
Z 11.000000 11.000000 11.000000 11.092073
fi 0.515000 0.515000 0.515000 0.515000
f0 0.515000 0.515000 0.515000 0.515000
Kdmin 0.415900 0.424266 0.400430 0.400000
Kdmax 0.651000 0.633948 0.680160 0.600000
ϵ 0.300043 0.300000 0.300000 0.300000
e 0.022300 0.068858 0.079990 0.050474
ξ 0.751000 0.799498 0.700000 0.600000
Maximum cost 81843.30 81859.74 81859.741210 83011.88329

5 Discussion on results411

As per results in previous sections, we can recognize that the HHO shows significantly superior412

results for multi-dimensional F1-F13 problems and F14-F29 test cases compared to other well-413

established optimizers such as GA, PSO, BBO, DE, CS, GWO, MFO, FPA, TLBO, BA, and FA414

methods. While the efficacy of methods such as PSO, DE, MFO, and GA significantly degrade415

by increasing the dimensions, the scalability results in Fig. 12 and Table 2 expose that HHO416

is able to maintain a well equilibrium among the exploratory and exploitative propensities on417

problems topographies with many variables. If we observe the results of F1-F7 in Tables 3-6,418

there is a big, significant gap between the results of several methods such as the GA, PSO, DE,419

BBO, GWO, FPA, FA, and BA, with high-quality solutions found by HHO. This observation420

confirms the advanced exploitative merits of the proposed HHO. Based on the solution found for421

multimodal and hybrid composition landscapes in Table 8, we detect that HHO finds superior422
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and competitive solutions based on a stable balance between the diversification and intensification423

inclinations and a smooth transition between the searching modes. The results also support the424

superior exploratory strengths of the HHO. The results for six well-known constrained cases in425

Tables 10-15 also disclose that HHO obtains the best solutions and it is one of the top optimizers426

compared to many state-of-the-art techniques. The results highlight that the proposed HHO has427

several exploratory and exploitative mechanisms and consequently, it has efficiently avoided LO428

and immature convergence drawbacks when solving different classes of problems and in the case429

of any LO stagnation, the proposed HHO has shown a higher potential in jumping out of local430

optimum solutions.431

The following features can theoretically assist us in realizing why the proposed HHO can be432

beneficial in exploring or exploiting the search space of a given optimization problem:433

• Escaping energy E parameter has a dynamic randomized time-varying nature, which can434

further boost the exploration and exploitation patterns of HHO. This factor also requires435

HHO to perform a smooth transition between exploration and exploitation.436

• Different diversification mechanisms with regard to the average location of hawks can boost437

the exploratory behavior of HHO in initial iterations.438

• Different LF-based patterns with short-length jumps enhance the exploitative behaviors of439

HHO when conducting a local search.440

• The progressive selection scheme assists search agents to progressively improve their position441

and only select a better position, which can improve the quality of solutions and intensifica-442

tion powers of HHO during the course of iterations.443

• HHO utilizes a series of searching strategies based on E and r parameters and then, it selects444

the best movement step. This capability has also a constructive impact on the exploitation445

potential of HHO.446

• The randomized jump J strength can assist candidate solutions in balancing the exploration447

and exploitation tendencies.448

• The use of adaptive and time-varying parameters allows HHO to handle difficulties of a449

search space including local optimal solutions, multi-modality, and deceptive optima.450

6 Conclusion and future directions451

In this work, a novel population-based optimization algorithm called HHO is proposed to452

tackle different optimization tasks. The proposed HHO is inspired by the cooperative behaviors453

and chasing styles of predatory birds, Harris’ hawks, in nature. Several equations are designed454

to simulate the social intelligence of Harris’ hawks to solve optimization problems. Twenty nine455

unconstrained benchmark problems were used to evaluate the performance of HHO. Exploitative,456

exploratory, and local optima avoidance of HHO was investigated using unimodal, multi-modal457

and composition problems. The results obtained show that HHO was capable of finding excellent458

solutions compared to other well-regarded optimizers. Additionally, the results of six constrained459

engineering design tasks also revealed that the HHO can show superior results compared to other460

optimizers.461
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We designed the HHO as simple as possible with few exploratory and exploitative mechanisms.462

It is possible to utilize other evolutionary schemes such as mutation and crossover schemes, multi-463

swarm and multi-leader structure, evolutionary updating structures, and chaos-based phases. Such464

operators and ideas are beneficial for future works. In future works, the binary and multi-objective465

versions of HHO can be developed. In addition, it can be employed to tackle various problems466

in engineering and other fields. Another interesting direction is to compare different constraint467

handling strategies in dealing with real-world constrained problems.468

A Appendix A

Table 16: Description of unimodal benchmark functions.

Function Dimensions Range fmin

f1(x) =
∑n

i=1 x2
i 30,100, 500, 1000 [−100,100] 0

f2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30,100, 500, 1000 [−10,10] 0

f3(x) =
∑n

i=1

(∑i
j−1 xj

)2
30,100, 500, 1000 [−100,100] 0

f4 (x) = maxi {|xi|, 1 ≤ i ≤ n} 30,100, 500, 1000 [−100,100] 0

f5(x) =
∑n−1

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30,100, 500, 1000 [−30,30] 0

f6(x) =
∑n

i=1 ([xi + 0.5])2 30,100, 500, 1000 [−100,100] 0

f7(x) =
∑n

i=1 ix4
i + random[0, 1) 30,100, 500, 1000 [−128,128] 0

Table 17: Description of multimodal benchmark functions.

Function Dimensions Range fmin

f8(x) =
∑n

i=1 −xi sin
(√

|xi|
)

30,100, 500, 1000 [−500,500] −418.9829 × n

f9(x)=
∑n

i=1 [x2
i − 10 cos (2πxi) + 10] 30,100, 500, 1000 [−5.12,5.12] 0

f10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x2

i )−exp
(

1
n

∑n
i=1 cos (2πxi)

)
+20+e 30,100, 500, 1000 [−32,32] 0

f11(x) = 1
4000

∑n
i=1 x2

i −∏n
i=1 cos

(
xi√

i

)
+ 1 30,100, 500, 1000 [−600,600] 0

f12(x) =
π
n

{
10 sin (πy1) +

∑n−1
i=1 (yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k, m) =

{
k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

30,100, 500, 1000 [−50,50] 0

f13(x) =
0.1
{
sin2(3πx1) +

∑n
i=1 (xi − 1)2 [1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxn)

]}
+∑n

i=1 u(xi, 5, 100, 4)

30,100, 500, 1000 [−50,50] 0

31



Table 18: Description of fixed-dimension multimodal benchmark functions.

Function Dimensions Range fmin

f14(x) =
(

1
500

+
∑25

j=1
1

j+
∑2

i=1(xi−aij)
6

)−1

2 [−65, 65] 1

f15(x) =
∑11

i=1

[
ai − x1(b2i +bix2)

b2i +bix3+x4

]2

4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17 (x) =
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

f18(x) =[
1 + (x1 + x2 + 1)2 (19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]

×
[
30 + (2x1 − 3x2)

2 × (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
]

2 [−2, 2] 3

f19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij (xj − pij)
2
)

3 [1, 3] −3.86

f20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij (xj − pij)
2
)

6 [0, 1] −3.32

f21(x) = −∑5
i=1

[
(X − ai) (X − ai)

T + ci

]−1

4 [0, 10] −10.1532

f22(x) = −∑7
i=1

[
(X − ai) (X − ai)

T + ci

]−1

4 [0, 10] −10.4028

f23(x) = −∑10
i=1

[
(X − ai) (X − ai)

T + ci

]−1

4 [0.10] −10.5363

Table 19: Details of hybrid composition functions F24-F29 (MM: Multi-modal, R: Rotated, NS: Non-Separable, S:
Scalable, D: Dimension)

ID (CEC5-ID) Description Properties D Range
F24 (C16) Rotated Hybrid Composition Function MM, R, NS, S 30 [−5, 5]D

F25 (C18) Rotated Hybrid Composition Function MM, R, NS, S 30 [−5, 5]D

F26 (C19) Rotated Hybrid Composition Function with narrow basin global optimum MM, NS, S 30 [−5, 5]D

F27 (C20) Rotated Hybrid Composition Function with Global Optimum on the Bounds MM, NS, S 30 [−5, 5]D

F28 (C21) Rotated Hybrid Composition Function MM, R, NS, S 30 [−5, 5]D

F29 (C25) Rotated Hybrid Composition Function without bounds MM, NS, S 30 [−5, 5]D

B Appendix B

Table 20: p-values of the Wilcoxon rank-sum test with 5% significance for F1-F13 with 30 dimensions (p-values ≥
0.05 are shown in bold face, NaN means “Not a Number” returned by the test)

GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE
F1 2.85E-11 2.88E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F2 2.72E-11 2.52E-11 4.56E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F3 2.71E-11 2.63E-11 2.79E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F4 2.62E-11 2.84E-11 2.62E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F5 2.62E-11 2.52E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F6 2.72E-11 2.71E-11 2.62E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.25E-04 3.02E-11
F7 2.52E-11 2.71E-11 9.19E-11 3.02E-11 3.69E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F8 7.83E-09 2.71E-11 7.62E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F9 9.49E-13 1.00E-12 NaN 1.21E-12 4.35E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 4.57E-12 1.21E-12
F10 1.01E-12 1.14E-12 1.05E-12 1.21E-12 1.16E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 4.46E-13 1.21E-12
F11 9.53E-13 9.57E-13 9.54E-13 1.21E-12 2.79E-03 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F12 2.63E-11 2.51E-11 2.63E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.01E-08 3.02E-11 1.07E-06 3.02E-11
F13 2.51E-11 2.72E-11 2.61E-11 3.02E-11 3.02E-11 3.02E-11 5.49E-11 3.02E-11 3.02E-11 2.00E-06 3.02E-11
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Table 21: p-values of the Wilcoxon rank-sum test with 5% significance for F1-F13 with 100 dimensions (p-values
≥ 0.05 are shown in bold face)

GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE
F1 2.98E-11 2.52E-11 2.52E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F2 2.88E-11 2.72E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F3 2.72E-11 2.72E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F4 2.40E-11 2.52E-11 2.51E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.01E-11 3.02E-11
F5 2.72E-11 2.62E-11 2.84E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F6 2.52E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F7 2.71E-11 2.79E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.20E-10 3.02E-11
F8 2.72E-11 2.51E-11 2.83E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.02E-11 3.02E-11 3.02E-11
F9 1.06E-12 9.57E-13 9.54E-13 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 3.34E-01 1.21E-12
F10 9.56E-13 9.57E-13 1.09E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 4.16E-14 1.21E-12
F11 1.06E-12 9.55E-13 9.56E-13 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F12 2.72E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F13 2.72E-11 2.72E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Table 22: p-values of the Wilcoxon rank-sum test with 5% significance for F1-F13 with 500 dimensions (p-values
≥ 0.05 are shown in bold face)

GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE
F1 2.94E-11 2.79E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F2 2.52E-11 2.63E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F3 2.88E-11 2.52E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F4 2.25E-11 2.52E-11 2.59E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F5 2.72E-11 2.72E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F6 2.52E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F7 2.52E-11 2.79E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.98E-11 3.02E-11
F8 2.52E-11 2.72E-11 2.63E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F9 1.06E-12 1.06E-12 1.06E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F10 9.57E-13 9.57E-13 1.06E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 6.14E-14 1.21E-12
F11 9.57E-13 9.57E-13 1.06E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F12 2.52E-11 2.52E-11 2.79E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F13 2.79E-11 2.52E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Table 23: p-values of the Wilcoxon rank-sum test with 5% significance for F1-F13 with 1000 dimensions (p-values
≥ 0.05 are shown in bold face)

GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE
F1 3.01E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F2 2.63E-11 1.21E-12 2.72E-11 3.02E-11 3.02E-11 1.21E-12 1.21E-12 3.02E-11 1.21E-12 1.21E-12 1.21E-12
F3 2.86E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F4 1.93E-11 2.52E-11 2.07E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F5 2.72E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F6 2.63E-11 2.63E-11 2.63E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F7 2.63E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F8 2.52E-11 2.52E-11 2.52E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F9 1.01E-12 1.06E-12 9.57E-13 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
F10 1.01E-12 1.01E-12 9.57E-13 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 8.72E-14 1.21E-12
F11 1.06E-12 1.01E-12 9.57E-13 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.17E-13 1.21E-12
F12 2.52E-11 2.52E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F13 2.52E-11 2.63E-11 2.72E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Table 24: p-values of the Wilcoxon rank-sum test with 5% significance for F14-F29 problems(p-values ≥ 0.05 are
shown in bold face)

GA PSO BBO FPA GWO BAT FA CS MFO TLBO DE
F14 8.15E-02 2.89E-08 8.15E-03 1.08E-01 5.20E-08 7.46E-12 1.53E-09 6.13E-14 9.42E-06 8.15E-02 1.00E+00
F15 2.78E-11 7.37E-11 2.51E-11 9.76E-10 1.37E-01 3.34E-11 3.16E-10 8.69E-10 5.00E-10 5.08E-06 3.92E-02
F16 1.05E-12 9.53E-13 9.49E-13 NaN NaN 5.54E-03 NaN NaN NaN NaN NaN
F17 1.87E-12 1.89E-12 2.06E-12 1.61E-01 1.61E-01 5.97E-01 1.61E-01 1.61E-01 1.61E-01 1.61E-01 1.61E-01
F18 NaN 9.53E-13 NaN NaN 1.09E-02 1.34E-03 NaN NaN NaN NaN NaN
F19 2.50E-11 5.24E-02 1.91E-09 1.65E-11 1.06E-01 5.02E-10 1.65E-11 1.65E-11 4.54E-10 1.65E-11 1.65E-11
F20 8.74E-03 2.54E-04 8.15E-03 6.15E-03 5.74E-06 5.09E-06 1.73E-07 NaN 1.73E-04 1.73E-04 1.73E-04
F21 1.22E-04 6.25E-05 5.54E-03 1.91E-08 5.54E-03 6.85E-07 1.71E-07 1.91E-08 9.42E-06 1.73E-04 1.79E-04
F22 1.64E-07 5.00E-10 8.15E-08 2.51E-11 8.15E-08 6.63E-07 5.24E-04 1.73E-08 8.15E-08 8.81E-10 1.21E-12
F23 1.54E-05 5.00E-10 8.88E-08 2.51E-11 8.88E-08 1.73E-08 5.14E-04 1.69E-08 8.88E-08 8.81E-10 NaN
F24 2.40E-01 4.69E-08 1.64E-05 1.17E-05 2.84E-04 3.02E-11 3.03E-03 3.08E-08 8.89E-10 8.35E-08 3.20E-09
F25 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F26 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F27 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F28 0.012732 1.17E-09 5.07E-10 0.001114 1.01E-08 3.02E-11 2.37E-10 2.02E-08 8.35E-08 0.446419 2.71E-11
F29 1.85E-08 6.52E-09 3.02E-11 1.29E-06 7.12E-09 3.02E-11 1.17E-09 3.02E-11 3.02E-11 2.6E-08 3.02E-11
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[6] J. Dréo, A. Pétrowski, P. Siarry, E. Taillard, Metaheuristics for hard optimization: methods and case studies, Springer Science &

Business Media, 2006.
[7] E.-G. Talbi, Metaheuristics: from design to implementation, volume 74, John Wiley & Sons, 2009.
[8] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, science 220 (1983) 671–680.
[9] J. H. Holland, Genetic algorithms, Scientific american 267 (1992) 66–73.

[10] J. Luo, H. Chen, Y. Xu, H. Huang, X. Zhao, et al., An improved grasshopper optimization algorithm with application to financial
stress prediction, Applied Mathematical Modelling 64 (2018) 654–668.

[11] M. Wang, H. Chen, B. Yang, X. Zhao, L. Hu, Z. Cai, H. Huang, C. Tong, Toward an optimal kernel extreme learning machine
using a chaotic moth-flame optimization strategy with applications in medical diagnoses, Neurocomputing 267 (2017) 69–84.

[12] L. Shen, H. Chen, Z. Yu, W. Kang, B. Zhang, H. Li, B. Yang, D. Liu, Evolving support vector machines using fruit fly optimization
for medical data classification, Knowledge-Based Systems 96 (2016) 61–75.

[13] Q. Zhang, H. Chen, J. Luo, Y. Xu, C. Wu, C. Li, Chaos enhanced bacterial foraging optimization for global optimization, IEEE
Access (2018).

[14] A. A. Heidari, R. A. Abbaspour, A. R. Jordehi, An efficient chaotic water cycle algorithm for optimization tasks, Neural Computing
and Applications 28 (2017) 57–85.

[15] M. Mafarja, I. Aljarah, A. A. Heidari, A. I. Hammouri, H. Faris, A.-Z. AlaM, S. Mirjalili, Evolutionary population dynamics and
grasshopper optimization approaches for feature selection problems, Knowledge-Based Systems 145 (2018) 25 – 45.

[16] M. Mafarja, I. Aljarah, A. A. Heidari, H. Faris, P. Fournier-Viger, X. Li, S. Mirjalili, Binary dragonfly optimization for feature
selection using time-varying transfer functions, Knowledge-Based Systems 161 (2018) 185 – 204.

[17] I. Aljarah, M. Mafarja, A. A. Heidari, H. Faris, Y. Zhang, S. Mirjalili, Asynchronous accelerating multi-leader salp chains for
feature selection, Applied Soft Computing 71 (2018) 964–979.

[18] S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in Engineering Software 95 (2016) 51–67.
[19] H. Faris, M. M. Mafarja, A. A. Heidari, I. Aljarah, A.-Z. AlaM, S. Mirjalili, H. Fujita, An efficient binary salp swarm algorithm

with crossover scheme for feature selection problems, Knowledge-Based Systems 154 (2018) 43–67.
[20] J. R. Koza, Genetic Programming II, Automatic Discovery of Reusable Subprograms, MIT Press, Cambridge, MA, 1992.
[21] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal

of global optimization 11 (1997) 341–359.
[22] D. Simon, Biogeography-based optimization, IEEE transactions on evolutionary computation 12 (2008) 702–713.
[23] O. K. Erol, I. Eksin, A new optimization method: big bang–big crunch, Advances in Engineering Software 37 (2006) 106–111.
[24] R. A. Formato, Central force optimization, progress in Electromagnetic Research77 (2007) 425–491.
[25] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, Gsa: a gravitational search algorithm, Information sciences 179 (2009) 2232–2248.
[26] S. Salcedo-Sanz, Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures, Physics

Reports 655 (2016) 1–70.
[27] F. Glover, Tabu searchpart i, ORSA Journal on computing 1 (1989) 190–206.
[28] M. Kumar, A. J. Kulkarni, S. C. Satapathy, Socio evolution & learning optimization algorithm: A socio-inspired optimization

methodology, Future Generation Computer Systems 81 (2018) 252–272.
[29] R. V. Rao, V. J. Savsani, D. Vakharia, Teaching–learning-based optimization: an optimization method for continuous non-linear

large scale problems, Information Sciences 183 (2012) 1–15.
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• A mathematical model is proposed to simulate the hunting behaviour of Harris' Hawks 
• An optimization algorithm is proposed using the mathematical model  
• The proposed HHO algorithm is tested on several benchmarks  
• The performance of HHO is also examined on several engineering design problems  
• The results show the merits of the HHO algorithm as compared to the existing algorithms  


