Accepted Manuscript

Harris hawks optimization: Algorithm and applications

Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, Huiling Chen

PII: \quad S0167-739X(18)31353-0
DOI: https://doi.org/10.1016/j.future.2019.02.028
Reference: FUTURE 4781
To appear in: Future Generation Computer Systems
Received date: 2 June 2018
Revised date: 29 December 2018
Accepted date: 18 February 2019

Please cite this article as: A.A. Heidari, S. Mirjalili, H. Faris et al., Harris hawks optimization: Algorithm and applications, Future Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.02.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Harris Hawks Optimization: Algorithm and Applications

Ali Asghar Heidari ${ }^{\text {a }}$, Seyedali Mirjalili ${ }^{\text {b }}$, Hossam Faris ${ }^{\text {c }}$, Ibrahim Aljarab ${ }^{\text {, }}$, ${ }^{\text {' }}$.idi Mafarja ${ }^{\text {d }}$, Huiling Chen *e
${ }^{a}$ School of Surveying and Geospatial Engineering, University of Tehrai, T nran, Iran as_heidari@ut.ac.ir
${ }^{b}$ School of Information and Communication Technology, Griffith University, Nrathaiv, Brisbane, QLD 4111, Australia
seyedali.mirjalili@griffithuni.edu.au
${ }^{c}$ King Abdullah II School for Information Technology, The Universitar of л•1an, Amman, Jordan
\{i.aljarah,hossam.faris\}@ju.edu.jo
${ }^{d}$ Department of Computer Science, Birzeit University, POBo. 14, W' st Bank, Palestine mmafarja@birzeit.edu
${ }^{e}$ Department of Computer Science, Wenzhou Univers ty, ए c, hou 325035, China
chenhuiling.jlu@gmail.com

Abstract

In this paper, a novel population-based, nature-inspireu notimization paradigm is proposed, which is called Harris Hawks Optimizer (HHO). The man neration of HHO is the cooperative behavior and chasing style of Harris' hawks in nature nallec surprise pounce. In this intelligent strategy, several hawks cooperatively pounce a prey froı ${ }^{\prime}:$:fferent directions in an attempt to surprise it. Harris hawks can reveal a variety of chasi \approx nat, 2 rns based on the dynamic nature of scenarios and escaping patterns of the prey. This work • athematically mimics such dynamic patterns and behaviors to develop an optimization alonrithm. The effectiveness of the proposed HHO optimizer is checked, through a comparison with ther . . ature-inspired techniques, on 29 benchmark problems and several real-world engineering nro ${ }^{1}{ }^{\circ} \mathrm{ms}$ The statistical results and comparisons show that the HHO algorithm provides very pr mising and occasionally competitive results compared to well-established metaheuristic tec..- ${ }_{1}$, ues

Keywords:

Nature-inspired computing, Harris 1 n wks optimization algorithm, Swarm intelligence, Optimization, Metaheurist

1 Introduction

Many real-world problms in machine learning and artificial intelligence have generally a continuous, discrete, a nstrai ed or unconstrained nature [1, 2]. Due to these characteristics, it is hard to tackle so ... clawoes of problems using conventional mathematical programming approaches such as conjugi te grac ient, sequential quadratic programming, fast steepest, and quasi-Newton methods $[3,4]$. S. ver. types of research have verified that these methods are not efficient enough or always ef. 'mus in dealing with many larger-scale real-world multimodal, non-continuous, and non-differentia. e problems [5]. Accordingly, metaheuristic algorithms have been designed and utilized for tackıng many problems as competitive alternative solvers, which is because of their

[^0]simplicity and easy implementation process. In addition, the core operations of these methods do not rely on gradient information of the objective landscape or its mathemati al traits. However, the common shortcoming for the majority of metaheuristic algorithms is ${ }^{-}+$they often show a delicate sensitivity to the tuning of user-defined parameters. Another drawbuck is that the metaheuristic algorithms may not always converge to the global optimur . [ℓ]

In general, metaheuristic algorithms have two types [7]; single solutic. sased (i.g. Simulated Annealing (SA) [8]) and population-based (i.g. Genetic Algorithm (GA, [9]). As the name indicates, in the former type, only one solution is processed during the op imization phase, while in the latter type, a set of solutions (i.e. population) are evolved in acł iteration of the optimization process. Population-based techniques can often find an optimal on suboptimal solution that may be same with the exact optimum or located in its neighl orhoon'. Population-based metaheuristic (P-metaheuristics) techniques mostly mimic natural p. nor ena [10, 11, 12, 13]. These algorithms start the optimization process by generating a ett (r - nulation) of individuals, where each individual in the population represents a candidate solu: in to he optimization problem. The population will be evolved iteratively by replacing the curı t, pupulation with a newly generated population using some often stochastic operators [14, 15]. The optimization process is proceeded until satisfying a stopping criteria (i.e. maximum nui. her $\sqrt{ }$: verations) $[16,17]$.

Based on the inspiration, P-metaheuristics can be cate乞 rized in four main groups [18, 19] (see Fig. 1): Evolutionary Algorithms (EAs), Physics-w red, Human-based, and Swarm Intelligence (SI) algorithms. EAs mimic the biological evolut marv benaviors such as recombination, mutation, and selection. The most popular EA is the GA tha r imics the Darwinian theory of evolution [20]. Other popular examples of EAs are Differenti, 5,vo tion (DE) [21], Genetic Programming (GP) [20], and Biogeography-Based Optimizer (BBO) ? 2 . Physics-based algorithms are inspired by the physical laws. Some examples of these algor: ' nus ure Big-Bang Big-Crunch (BBBC) [23], Central Force Optimization (CFO) [24], and Gravitational Search Algorithm (GSA) [25]. Salcedo-Sanz [26] has deeply reviewed several physir Nan doptimizers. The third category of P-metaheuristics includes the set of algorithms that m. mic so re human behaviors. Some examples of the humanbased algorithms are Tabu Search (IS) $\left[L^{71}\right.$, Socio Evolution and Learning Optimization (SELO) [28], and Teaching Learning Based Op^{+}imi ation(TLBO) [29]. As the last class of P-metaheuristics, SI algorithms mimic the social rehavivrs (e.g. decentralized, self-organized systems) of organisms living in swarms, flocks, or he u - $[30,31]$. For instance, the birds flocking behaviors is the main inspiration of the Particle Swarm (4 timization (PSO) proposed by Eberhart and Kennedy [32]. In PSO, each particle in th \leq sw arm represents a candidate solution to the optimization problem. In the optimization process, ch particle is updated with regard to the position of the global best particle and its own (lo al) best position. Ant Colony Optimization (ACO) [33], Cuckoo Search (CS) [34], and Artificia, R e C slony (ABC) are other examples of the SI techniques.

Regardless of the vriety of these algorithms, there is a common feature: the searching steps have two phases: є cplorat on (diversification) and exploitation (intensification) [26]. In the exploration phase, the.${ }^{1} \mathrm{~m} n$. thm should utilize and promote its randomized operators as much as possible to deef ty exp'ore various regions and sides of the feature space. Hence, the exploratory behaviors of a ell-de, igned optimizer should have an enriched-enough random nature to efficiently alloc ${ }^{+n}$ more randomly-generated solutions to different areas of the problem topography during early s, ers of the searching process [35]. The exploitation stage is normally performed after the exploration hase. In this phase, the optimizer tries to focus on the neighborhood of betterquality solutions located inside the feature space. It actually intensifies the searching process in a local region instead of all-inclusive regions of the landscape. A well-organized optimizer should be capable of making a reasonable, fine balance between the exploration and exploitation tenden-

Figure 1: Classification of meta-heuristic techniques (m_{1} ta-heuristic diamond)
cies. Otherwise, the possibility of being trapped in lnoal n. ima (LO) and immature convergence drawbacks increases.

We have witnessed a growing interest and a ru- moss in the successful, inexpensive, efficient application of EAs and SI algorithms in recent yea. . However, referring to No Free Lunch (NFL) theorem [36], all optimization algorithms pris sea so-far show an equivalent performance on average if we apply them to all possible optimizal: n tasks. According to NFL theorem, we cannot theoretically consider an algorithm as a gene al-purpose universally-best optimizer. Hence, NFL theorem encourages searching for developing more efficient optimizers. As a result of NFL theorem, besides the widespread studies on the ticar v, performance aspects and results of traditional EAs and SI algorithms, new optimizers wiu. spec ic global and local searching strategies are emerging in recent years to provide more var ety of cioices for researchers and experts in different fields.

In this paper, a new nature-in. nir d or cimization technique is proposed to compete with other optimizers. The main idea bek nd tı` proposed optimizer is inspired from the cooperative behaviors of one of the most int H_{1} 万nt birds, Harris' Hawks, in hunting escaping preys (rabbits in most cases) [37]. For this pu ${ }^{-}$- ase, a new mathematical model is developed in this paper. Then, a stochastic metaheuristic is desi ned based on the proposed mathematical model to tackle various optimization problems.

The rest of this reser ch s organized as follows. Section 2 represents the background inspiration and info about the coope tive life of Harris' hawks. Section 3 represents the mathematical model and computational srocedures of the HHO algorithm. The results of HHO in solving different benchmark and rea world ease studies are presented in Section 4 Finally, Section 6 concludes the work with some

2 Backgrounc

In 1997, Le $\cdot \mathbf{i}$, Lefebvre proposed an approach to measure the avian "IQ" based on the observed innovations in fe ling behaviors [38]. Based on his studies [38, 39, 40, 41], the hawks can be listed amongst the most intelligent birds in nature. The Harris' hawk (Parabuteo unicinctus) is a wellknown bird of prey that survives in somewhat steady groups found in southern half of Arizona, USA [37]. Harmonized foraging involving several animals for catching and then, sharing the slain
animal has been persuasively observed for only particular mammalian carnivores. The Harris's hawk is distinguished because of its unique cooperative foraging activities ${ }^{+}$ogether with other family members living in the same stable group while other raptors usual, attack to discover and catch a quarry, alone. This avian desert predator shows evolved innovative team chasing capabilities in tracing, encircling, flushing out, and eventually attacki g t te potential quarry. These smart birds can organize dinner parties consisting of several indivia 's in the non-breeding season. They are known as truly cooperative predators in the raptor -alı. As reported by Bednarz [37] in 1998, they begin the team mission at morning to $11_{\varepsilon} h t$, with leaving the rest roosts and often perching on giant trees or power poles inside theii hor ie realm. They know their family members and try to be aware of their moves during the att~ k . 'rhen assembled and party gets started, some hawks one after the other make short tou s and then, land on rather high perches. In this manner, the hawks occasionally will perform . "les pfrog" motion all over the target site and they rejoin and split several times to activelv searn for the covered animal, which is usually a rabbit ${ }^{2}$.

The main tactic of Harris' hawks to capture a prey is -rpıse pounce", which is also known as "seven kills" strategy. In this intelligent strategy, eeveral lawks try to cooperatively attack from different directions and simultaneously converg on a dected escaping rabbit outside the cover. The attack may rapidly be completed by capturine the surprised prey in few seconds, but occasionally, regarding the escaping capabilities anı hehaviors of the prey, the seven kills may include multiple, short-length, quick dives neark - the prty during several minutes. Harris' hawks can demonstrate a variety of chasing styles depe. d nt on the dynamic nature of circumstances and escaping patterns of a prey. A switching wctic occurs when the best hawk (leader) stoops at the prey and get lost, and the chase will be rontinued by one of the party members. These switching activities can be observed in differ nt suruations because they are beneficial for confusing the escaping rabbit. The main advantage of these cooperative tactics is that the Harris' hawks can pursue the detected rabbit to ex'au 'ion, which increases its vulnerability. Moreover, by perplexing the escaping prey, it car 'nt rec ver its defensive capabilities and finally, it cannot escape from the confronted team br siege eve one the hawks, which is often the most powerful and experienced one, effortlessly c apt res he tired rabbit and shares it with other party members. Harris' hawks and their main briavics an be seen in nature, as captured in Fig. 2.

(a) Parabuteo unicinctus

(b) Surprise pounce

Figure 2: Harris's hawk and their behaviors ${ }^{3}$

[^1]
3 Harris hawks optimization (HHO)

In this section, we model the exploratory and exploitative phases of th proposed HHO inspired by the exploring a prey, surprise pounce, and different attacking strategies of Harris hawks. HHO is a population-based, gradient-free optimization technique; hence, $\because \sim \cdot n$ be applied to any optimization problem subject to a proper formulation. Figure 3 shows . ${ }^{1} \mathrm{f}$ ' ases of HHO , which are described in the next subsections.

Figur s: こifferent phases of HHO

3.1 Exploration phase

In this part, the exploratio $\operatorname{mec}_{\mathrm{i}}$. ism of HHO is proposed. If we consider the nature of Harris' hawks, they can track a.d detect the prey by their powerful eyes, but occasionally the prey cannot be seen easily. H $\neg n c e$, the hawks wait, observe, and monitor the desert site to detect a prey maybe after several nou s. In HHO, the Harris' hawks are the candidate solutions and the best candidate solution in eav step is considered as the intended prey or nearly the optimum. In HHO, the Harris' hawks per ih randomly on some locations and wait to detect a prey based on two strategies. If we considt. in f qual chance q for each perching strategy, they perch based on the positions of other f $\mathfrak{\imath}$. 111 l y menbers (to be close enough to them when attacking) and the rabbit, which is modeled ir Eq. () for the condition of $q<0.5$, or perch on random tall trees (random locations inside the g_{1-}, s home range), which is modeled in Eq. (1) for condition of $q \geq 0.5$.

$$
X_{\left(\text {® L- }^{\prime}\right)}=\left\{\begin{array}{cc}
X_{\text {rand }}(t)-r_{1}\left|X_{\text {rand }}(t)-2 r_{2} X(t)\right| & q \geq 0.5 \tag{1}\\
\left(X_{\text {rabbit }}(t)-X_{m}(t)\right)-r_{3}\left(L B+r_{4}(U B-L B)\right) & q<0.5
\end{array}\right.
$$

where $X\left(t+1\right.$) is the position vector of hawks in the next iteration $t, X_{\text {rabbit }}(t)$ is the position of rabbit, $X(t)$ is the current position vector of hawks, $r_{1}, r_{2}, r_{3}, r_{4}$, and q are random numbers inside $(0,1)$, which are updated in each iteration, $L B$ and $U B$ show the upper and lower bounds of variables, $X_{\text {rand }}(t)$ is a randomly selected hawk from the current population, and X_{m} is the average
position of the current population of hawks. We proposed a simple model to generate random locations inside the group's home range $(L B, U B)$. The first rule generates s slutions based on a random location and other hawks. In second rule of Eq. (1), we have the diff .nce of the location of best so far and the average position of the group plus a randomly-scaled comp nent based on range of variables, while r_{3} is a scaling coefficient to further increase th ra idom nature of rule once r_{4} takes close values to 1 and similar distribution patterns may occu. in this rule, we add a randomly scaled movement length to the $L B$. Then, we considered a ranu m scaling coefficient for the component to provide more diversification trends and explore dite ent regions of the feature space. It is possible to construct different updating rules, but we u i $i_{i z} d$ the simplest rule, which is able to mimic the behaviors of hawks. The average position of $h^{2}{ }^{2} w k{ }^{\prime}$:s attained using Eq. (2):

$$
\begin{equation*}
X_{m}(t)=\frac{1}{N} \sum_{i=1}^{N} X_{i}(t) \tag{2}
\end{equation*}
$$

where $X_{i}(t)$ indicates the location of each hawk in iteration ' and N denotes the total number of hawks. It is possible to obtain the average location in \because 'fferent ways, but we utilized the simplest rule.

3.2 Transition from exploration to exploital: $\urcorner n$

The HHO algorithm can transfer from explc $\cdots \cdots{ }^{-} \cdot n$ to exploitation and then, change between different exploitative behaviors based on the esca ${ }_{1}$; 1 g energy of the prey. The energy of a prey decreases considerably during the escaping be w ior. To model this fact, the energy of a prey is modeled as:

$$
\begin{equation*}
E=2 F_{n}\left(1-\frac{t}{T}\right) \tag{3}
\end{equation*}
$$

where E indicates the escaping energy on ' E_{0} is the initial state of its energy. . ${ }^{2} \mathrm{HHC} \quad E_{0}$ randomly changes inside the interval $(-1,1)$ at each iteration. When the value of E_{0} au " ases from 0 to -1 , the rabbit is physically flagging, whilst when the value of E_{0} inc sasr, fr $>\mathrm{m} 0$ to 1 , it means that the rabbit is strengthening. The dynamic escaping energy E has _ d creasing trend during the iterations. When the escaping energy $|E| \geq 1$, the hawks sea \therefore different regions to explore a rabbit location, hence, the HHO performs the exploration phase, ana when $|E|<1$, the algorithm try to exploit the neighborhood of the solutions during the exp jitation steps. In short, exploration happens when $|E| \geq 1$, while exploitation happens in lan" steps when $|E|<1$. The time-dependent behavior of E is also demonstrated in Fig. 4

3.3 Exploitation ~hase

In this phase, t ie Har is' hawks perform the surprise pounce (seven kills as called in [37]) by attacking the inte prey detected in the previous phase. However, preys often attempt to escape from dang ous situations. Hence, different chasing styles occur in real situations. According to th escar ng behaviors of the prey and chasing strategies of the Harris' hawks, four possible stra n ries are proposed in the HHO to model the attacking stage.

The preys \urcorner rays try to escape from threatening situations. Suppose that r is the chance of a prey in successfu'ly escaping $(r<0.5)$ or not successfully escaping $(r \geq 0.5)$ before surprise pounce. Whatever the prey does, the hawks will perform a hard or soft besiege to catch the prey. It means that they will encircle the prey from different directions softly or hard depending on the retained energy of the prey. In real situations, the hawks get closer and closer to the intended prey to

Figure 4: Behavior of E during two runs and 50 itere sons
increase their chances in cooperatively killing the rabbit perfor ang the surprise pounce. After several minutes, the escaping prey will lose more and more e e r rgy; then, the hawks intensify the besiege process to effortlessly catch the exhausted prey. To r odel this strategy and enable the HHO to switch between soft and hard besiege processes, the E parameter is utilized.

In this regard, when $|E| \geq 0.5$, the soft besiege 'uppuno, and when $|E|<0.5$, the hard besiege occurs.

3.3.1 Soft besiege

When $r \geq 0.5$ and $|E| \geq 0.5$, the rabbit scon has enough energy, and try to escape by some random misleading jumps but finally it car ${ }^{\sim}$ nt L wring these attempts, the Harris' hawks encircle it softly to make the rabbit more exhausted a. ${ }^{\prime}$ then perform the surprise pounce. This behavior is modeled by the following rules:

$$
\begin{gather*}
X(t+1)=\wedge X(t)-E\left|J X_{\text {rabbit }}(t)-X(t)\right| \tag{4}\\
\Delta \wedge(t)=X_{\text {rabbit }}(t)-X(t) \tag{5}
\end{gather*}
$$

where $\Delta X(t)$ is the difference r atwee. ne position vector of the rabbit and the current location in iteration t, r_{5} is a random unn ar inside $(0,1)$, and $J=2\left(1-r_{5}\right)$ represents the random jump strength of the rabbit throurc ut the escaping procedure. The J value changes randomly in each iteration to simulate the n tur of rabbit motions.

3.3.2 Hard besiege

When $r \geq 0.5$ and $\mid\llcorner\mid<0$, the prey is so exhausted and it has a low escaping energy. In addition, the Harris' alawks hardly encircle the intended prey to finally perform the surprise pounce. In this situation, the curre t positions are updated using Eq. (6):

$$
\begin{equation*}
X(t+1)=X_{\text {rabbit }}(t)-E|\Delta X(t)| \tag{6}
\end{equation*}
$$

A simple oxampre of this step with one hawk is depicted in Fig. 5.

3.3.3 Soft b, siege with progressive rapid dives

When still $|E| \geq 0.5$ but $r<0.5$, the rabbit has enough energy to successfully escape and still a soft besiege is constructed before the surprise pounce. This procedure is more intelligent than the previous case.

Figure 5: Example of overall vectors in the case of ha. ${ }^{11}$ esiege

To mathematically model the escaping patterns of the prey an + leapt og movements (as called in [37]), the levy flight (LF) concept is utilized in the HHO algor:unm. \& ne LF is utilized to mimic the real zigzag deceptive motions of preys (particularity rabbits d.rin escaping phase and irregular, abrupt, and rapid dives of hawks around the escaping pre, Act \cdots ly, hawks perform several team rapid dives around the rabbit and try to progressively correc ι their location and directions with regard to the deceptive motions of prey. This mechanisı is : so supported by real observations in other competitive situations in nature. It has been cu.firmed that LF-based activities are the optimal searching tactics for foragers/predators ii. 'won-qestructive foraging conditions [42, 43]. In addition, it has been detected the LF-based patterni san be detected in the chasing activities of animals like monkeys and sharks [44, 45, 46, '7]. ıнnce, the LF-based motions were utilized within this phase of HHO technique.

Inspired by real behaviors of hawks, we sup no nd that they can progressively select the best possible dive toward the prey when they $i^{1}+t_{0}$ catch the prey in the competitive situations. Therefore, to perform a soft besiege, we suppos.d that the hawks can evaluate (decide) their next move based on the following rule in Eo (7):

$$
\begin{equation*}
\left.Y=X_{\text {rabbu. }}{ }^{(} t\right)-E\left|J X_{\text {rabbit }}(t)-X(t)\right| \tag{7}
\end{equation*}
$$

Then, they compare the possible i su's of such a movement to the previous dive to detect that will it be a good dive or not. If it w s not a isonable (when they see that the prey is performing more deceptive motions), they also $\sim a v^{+}+$perform irregular, abrupt, and rapid dives when approaching the rabbit. We supposed the they will dive based on the LF-based patterns using the following rule:

$$
\begin{equation*}
Z=Y+S \times L F(D) \tag{8}
\end{equation*}
$$

where D is the dimens $\cap \mathrm{n}$, p , sblem and S is a random vector by size $1 \times D$ and LF is the levy flight function, which is can " ated using Eq. (9) [48]:

$$
\begin{equation*}
L H(x)=0.01 \times \frac{u \times \sigma}{|v|^{\frac{1}{\beta}}}, \sigma=\left(\frac{\Gamma(1+\beta) \times \sin \left(\frac{\pi \beta}{2}\right)}{\left.\Gamma\left(\frac{1+\beta}{2}\right) \times \beta \times 2^{\left(\frac{\beta-1}{2}\right)}\right)}\right)^{\frac{1}{\beta}} \tag{9}
\end{equation*}
$$

Hence, the ${ }^{f}$ alal strategy for updating the positions of hawks in the soft besiege phase can be performed by Eq_{1} (10):

$$
X(t+1)= \begin{cases}Y & \text { if } F(Y)<F(X(t)) \tag{10}\\ Z & \text { if } F(Z)<F(X(t))\end{cases}
$$

where Y and Z are obtained using Eqs.(7) and (8).
A simple illustration of this step for one hawk is demonstrated in Fig. 6. Note that the position history of LF-based leapfrog movement patterns during some iterat; sare also recorded and shown in this illustration. The colored dots are the location footprints of LF- Jased patterns in one trial and then, the HHO reaches to the location Z. In each step. onl the better position Y or Z will be selected as the next location. This strategy is applied to $\mathrm{a}^{1{ }^{11}}$, earch agents.

Figure 6: Example of overall vectors in \therefore caw of soft besiege with progressive rapid dives

3.3.4 Hard besiege with progre sive \mathbf{r} pid dives

When $|E|<0.5$ and $r<0.5$, the abbbr $^{\wedge}$ is not enough energy to escape and a hard besiege is constructed before the surprise pc inc to catch and kill the prey. The situation of this step in the prey side is similar to that in the son ege, but this time, the hawks try to decrease the distance of their average location with t, escaping prey. Therefore, the following rule is performed in hard besiege condition:

$$
\therefore(t+1)= \begin{cases}Y & \text { if } F(Y)<F(X(t)) \tag{11}\\ Z & \text { if } F(Z)<F(X(t))\end{cases}
$$

where Y and Z are sts ined using new rules in Eqs.(12) and (13).

$$
\begin{gather*}
Y=X_{\text {rabbit }}(t)-E\left|J X_{\text {rabbit }}(t)-X_{m}(t)\right| \tag{12}\\
Z=Y+S \times L F(D) \tag{13}
\end{gather*}
$$

where $X_{m}(t)$ is sbtain d using Eq. (2). A simple example of this step is demonstrated in Fig. 7. Note that the cc'rred lots are the location footprints of LF-based patterns in one trial and only Y or Z will ${ }^{\text {tho }}$ next location for the new iteration.

3.4 Pseudoce de of HHO

The pseudocode of the proposed HHO algorithm is reported in Algorithm 1.

Figure 7: Example \downarrow ove all vectors in the case of hard besiege with progressive rapid dives in 2D and 3D space.

```
Algorithm 1 Pseudo-code of HHO algorithm
    Inputs: The population size \(N\) and maximum number of iterations \(T\)
    Outputs: The location of rabbit and its fitness value
    Initialize the random population \(X_{i}(i=1,2, \ldots, N)\)
    while (stopping condition is not met) do
        Calculate the fitness values of hawks
        Set \(X_{\text {rabbit }}\) as the location of rabbit (best location)
        for (each hawk \(\left(X_{i}\right)\) ) do
            Update the initial energy \(E_{0}\) and jump strength \(J \quad \triangleright \mathrm{E}_{0} \cdot \overbrace{r}\) and()-1, J=2(1-rand())
            Update the \(E\) using Eq. (3)
            if \((|E| \geq 1)\) then
                Update the location vector using Eq. (1)
            if \((|E|<1)\) then
                Update the location vector using Eq. (4)
                else if \((r \geq 0.5\) and \(|E|<0.5)\) then \(\triangleright\) Hard besiege
                Update the location vector using Eq. ()
                else if \((r<0.5\) and \(|E| \geq 0.5)\) then \(\quad, \ldots t\) besiege with progressive rapid dives
                Update the location vector using Eq. \(\left.{ }^{1} 10\right)\)
                else if \((r<0.5\) and \(|E|<0.5)\) the \(\quad\) Hard besiege with progressive rapid dives
                Update the location vector using \(L^{\prime} . .(11)\)
```

 Return \(X_{\text {rabbit }}\)

3.5 Computational complexity

Note that the computational comp ${ }^{\prime}$ sxity ${ }^{\text {c }}$ the HHO mainly depends on three processes: initialization, fitness evaluation, and updatı..' of ' awks. Note that with N hawks, the computational complexity of the initialization pr scess is $\mathcal{O}(N)$. The computational complexity of the updating mechanism is $\mathrm{O}(T \times N)+\mathrm{O}\left(T \cdot N^{\top} \times D\right.$, which is composed of searching for the best location and updating the location vec or of a. hawks, where T is the maximum number of iterations and D is the dimension of s_{1}^{\prime} echi problems. Therefore, computational complexity of HHO is $\mathrm{O}(N \times(T+T D+1))$.

4 Experimental resı its alı ${ }^{1}$ discussions

4.1 Benchmark set a drompared algorithms

In order to inves igate the efficacy of the proposed HHO optimizer, a well-studied set of diverse benchmark functior are s lected from literature [49, 50]. This benchmark set covers three main groups of bench nark landscapes: unimodal (UM), multimodal (MM), and composition (CM). The UM functi ns (F - F7) with unique global best can reveal the exploitative (intensification) capacities of difft ${ }^{\text {nt }}$ optimizers, while the MM functions (F8-F23) can disclose the exploration (diversificatı, η, \ldots LO avoidance potentials of algorithms. The mathematical formulation and characteristics $i \mathrm{UM}$ and MM problems are shown in Tables 16, 17, and 18 in Appendix A. The third group probems (F24-F29) are selected from IEEE CEC 2005 competition [51] and covers hybrid composite, rotated and shifted MM test cases. These CM cases are also utilized in many papers and can expose the performance of utilized optimizers in well balancing the exploration
and exploitation inclinations and escaping from LO in dealing with challenging problems. Details of the CM test problems are also reported in Table 19 in Appendix A. Figure 8 demonstrates three of composition test problems.

The results and performance of the proposed HHO is compared with other w.ell-established optimization techniques such as the GA [22], BBO [22], DE [22], PSO [‘2], CS [34], TLBO [29], BA/BAT [52], FPA [53], FA [54], GWO [55], and MFO [56] algorithms be d on the best, worst, standard deviation (STD) and average of the results (AVG). These algon hms cover both recently proposed techniques such as MFO, GWO, CS, TLBO, BAT, FPA, a rd and also, relatively the most utilized optimizers in the field like the GA, DE, PSO, and B.' 1 dgorthms.

As recommended by Derrac et al. [57], the non-parametric Wil~xon ' 'atistical test with 5% degree of significance is also performed along with experimental as jessme ts to detect the significant differences between the attained results of different techniques.

Figure 8: Demonstratioı of composition test functions

4.2 Experimental setup

All algorithms were implementf 1 under Matlab 7.10 (R2010a) on a computer with a Windows 764 -bit professional and 64 GB I AN . T' ee swarm size and maximum iterations of all optimizers are set to 30 and 500 , respectiv ly. $F_{2}{ }^{11}$ esults are recorded and compared based on the average performance of optimizers ove u^{2} independent runs.

The settings of GA, PSO DE anu BBO algorithms are same with those set by Dan Simon in the original work of BBO $\ulcorner 22$]. while for the BA [52], FA [58], TLBO [29], GWO [55], FPA [53], CS [34], and MFO [56], the f_{r} rameters are same with the recommended settings in the original works. The used param ter are also reported in Table 1.

4.3 Qualitative ralts i HHO

The qualitative esults of HHO for several standard unimodal and multimodal test problems are demonstrated in $I: m$ mes $9-11$. These results include four well-known metrics: search history, the trajectory of th first awk, average fitness of population, and convergence behavior. In addition, the escaping ent ry of the rabbit is also monitored during iterations. The search history diagram reveals the ${ }^{1}{ }^{n+n r y}$ of those positions visited by artificial hawks during iterations. The map of the trajectory c. the first hawk monitors how the first variable of the first hawk varies during the steps of the rocess. The average fitness of hawks monitors how the average fitness of whole population varies during the process of optimization. The convergence metric also reveals how the fitness value of the rabbit (best solution) varies during the optimization. Note that the diagram of escaping energy demonstrates how the energy of rabbit varies during the simulation.

Figure 9: Qualitative results for unimodal F1, F3, and F4 problems

Figure 10: Qualitative results for F7, F9, and F10 problems

Table 1: The parameter settings

Algorithm	Parameter	Valv
DE	Scaling factor	0.5
	Crossover probability	0.5
PSO	Topology fully connected	
	Inertia factor	
	c_{1}	1
	c_{2}	1
TLBO	Teaching factor T	1,
GWO	Convergence constant a	-0]
MFO	Convergence constant a	$\left[\begin{array}{ll}-1 & -1\end{array}\right]$
	Spiral factor b	
CS	Discovery rate of alien solutions p_{a}	0.25
BA	$Q_{\text {min }}$ Frequency minimum	0
	$Q_{\text {max }}$ Frequency maximum	2
	A Loudness	0.5
	r Pulse rate	0.5
FA	α	0.5
	β	0.2
	γ	1
FPA	Probability switch p	0.8
BBO	Habitat modification probabiu.	1
	Immigration probabı ty 11.	[0,1]
	Step size	1
	Max immigration - ' and \ax emigration (E)	1
	Mutation probabilı.	0.005

Figure 11: Qualitative results for F13 problem

From the history of sampled locations in Figs. 9-11, it can be observed that the HHO reveals a similar pattern in dealing with different cases, in which the hawks attempts t, initially boost the diversification and explore the favorable areas of solution space and then $\epsilon_{A_{1}}{ }^{1}$,it the vicinity of the best locations. The diagram of trajectories can help us to comprehend the sear hing behavior of the foremost hawk (as a representative of the rest of hawks). By tr $\mathrm{s}_{\mathrm{s}} \mathrm{r}$ etric, we can check if the foremost hawk faces abrupt changes during the early phases and $\mathrm{g} \wedge$ ual variations in the concluding steps. Referring to Van Den Bergh and Engelbrecht [59], thesu actıvities can guarantee that a P-metaheuristic finally convergences to a position and exploi the target region.

As per trajectories in Figs. 9-11, we see that the foremost haw. str it the searching procedure with sudden movements. The amplitude of these variations cover mor than 50% of the solution space. This observation can disclose the exploration propensiti s of th proposed HHO. As times passes, the amplitude of these fluctuations gradually decreases. This point guarantees the transition of HHO from exploratory trends to exploitative stef s. F- - ntually, the motion pattern of the first hawk becomes very stable which shows that the $\mathrm{Hl} \curvearrowleft$ is e ploiting the promising regions during the concluding steps. By monitoring the average hu- ass of the population, the next measure, we can notice the reduction patterns in fitness va'י ${ }^{1}$ es whe 1 the HHO enriches the excellence of the randomized candidate hawks. Based on the diac amı d monstrated in Figs. 9-11, the HHO can enhance the quality of all hawks during half of the : ${ }^{*}$ orations and there is an accelerating decreasing pattern in all curves. Again, the amplitui. of variations of fitness results decreases by more iteration. Hence, the HHO can dynamicall? fonis on more promising areas during iterations. According to convergence curves in Fig. Figs. 9-1 . which shows the average fitness of best hawk found so far, we can detect accelerated decre ng \mathfrak{A} atterns in all curves, especially after half of the iteration. We can also detect the estimated no.nent that the HHO shift from exploration to exploitation. In this regard, it is observed nat ine HHO can reveal an accelerated convergence trend.

4.4 Scalability analysis

In this section, a scalability asse smen ${ }^{*}$ utilized to investigate the impact of dimension on the results of HHO. This test has bee ut 'izer' in the previous studies and it can reveal the impact of dimensions on the quality of sol tion f_{C} the HHO optimizer to recognize its efficacy not only for problems with lower dimensior s '口lt also for higher dimension tasks. In addition, it reveals how a P-metaheuristic can preserve its seaıhing advantages in higher dimensions. For this experiment, the HHO is utilized to tacl e t .e scalable UM and MM F1-F13 test cases with 30, 100, 500, and 1000 dimensions. The averac error AVG and STD of the attained results of all optimizers over 30 independent runs an $\downarrow 5 \bigcirc 0$ iterations are recorded and compared for each dimension. Table 2 reveals the results of $\mathrm{H}_{1}{ }^{\top} r$ ver sus other methods in dealing with F1-F13 problems with different dimensions. The sca'wility , esults for all techniques are also illustrated in Fig. 12. Note that the detailed results of εl techi iques are reported in the next parts.

As it can be seeı in 'able 2, the HHO can expose excellent results in all dimensions and its performance remai s consistently superior when realizing cases with many variables. As per curves in Fig. '2, it s observed that the optimality of results and the performance of other methods sig : firantly degrade by increasing the dimensions. This reveals that HHO is capable of maintainin n_{ε} : good balance between the exploratory and exploitative tendencies on problems with many varia les.

Figure 12: Scalability results of the HHO versus other methods in dealing with the F1-F13 cases with different dimensions

Table 2: Results of HHO for different dimensions of scalable F1-F13 problems

Problem/D	Metric	30	100	500	1000
F1	AVG	$3.95 \mathrm{E}-97$	$1.91 \mathrm{E}-94$	$1.46 \mathrm{E}-92$	$1.06 \mathrm{E}-94$
	STD	$1.72 \mathrm{E}-96$	8.66E-94	8.01E-92	4.97E-94
F2	AVG	$1.56 \mathrm{E}-51$	$9.98 \mathrm{E}-52$	7.87E-49	$2.52 \mathrm{E}-50$
	STD	6.98E-51	$2.66 \mathrm{E}-51$	$3.11 \mathrm{E}-48$	5.02E-50
F3	AVG	$1.92 \mathrm{E}-63$	$1.84 \mathrm{E}-59$	$6.54 \mathrm{E}-37$	$1.79 \mathrm{E}-17$
	STD	$1.05 \mathrm{E}-62$	$1.01 \mathrm{E}-58$	$3.58 \mathrm{E}-36$	$9.81 \mathrm{E}-17$
F4	AVG	$1.02 \mathrm{E}-47$	$8.76 \mathrm{E}-47$	$1.29 \mathrm{E}-47$	$1.43 \mathrm{E}-46$
	STD	$5.01 \mathrm{E}-47$	$4.79 \mathrm{E}-46$	4.11E-47	$7.74 \mathrm{E}^{18}$
F5	AVG	$1.32 \mathrm{E}-02$	$2.36 \mathrm{E}-02$	$3.10 \mathrm{E}-01$	$5.73{ }^{\text {c }}$,-01
	STD	$1.87 \mathrm{E}-02$	$2.99 \mathrm{E}-02$	$3.73 \mathrm{E}-01$	1. ${ }^{\text {a }} \mathrm{E}+0^{\text {r }}$
F6	AVG	$1.15 \mathrm{E}-04$	5.12E-04	$2.94 \mathrm{E}-03$	$3.61{ }_{\text {L }}{ }^{-}$
	STD	$1.56 \mathrm{E}-04$	6.77E-04	$3.98 \mathrm{E}-03$	3E-03
F7	AVG	$1.40 \mathrm{E}-04$	$1.85 \mathrm{E}-04$	$2.51 \mathrm{E}-04$	1.41E-C
	STD	$1.07 \mathrm{E}-04$	$4.06 \mathrm{E}-04$	$2.43 \mathrm{E}-04$	$1.63 \mathrm{E}-04$
F8	AVG	$-1.25 \mathrm{E}+04$	$-4.19 \mathrm{E}+04$	$-2.09 \mathrm{E}+05$	1.19F J5
	STD	$1.47 \mathrm{E}+02$	$2.82 \mathrm{E}+00$	$2.84 \mathrm{~F}_{1}-\mathrm{Ul}_{1}$	$1.03 \mathrm{E}+02$
F9	AVG	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0 . 0 0 \longdiv { + 0 0 }$	U. $\overline{\mathrm{E}+00}$
	STD	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	0.00 L J	0.r J $\mathrm{E}+00$
F10	AVG	$8.88 \mathrm{E}-16$	8.88E-16	8. ${ }^{\text {5.-16 }}$	$8 \overline{8 \mathrm{E}-16}$
	STD	$4.01 \mathrm{E}-31$	$4.01 \mathrm{E}-31$	$4.01 \mathrm{E}-\mathrm{c}$	$4.01 \mathrm{E}-31$
F11	AVG	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
	STD	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+\mathrm{n} 0$	ᄂ. ${ }^{1} \mathrm{E}+\mathrm{C}$	$0.00 \mathrm{E}+00$
F12	AVG	$7.35 \mathrm{E}-06$	$4.23 \mathrm{E}-06$	$1.41 \mathrm{E}-\mathrm{v6}$	$1.02 \mathrm{E}-06$
	STD	$1.19 \mathrm{E}-05$	5.25E-06	1.2 ${ }^{\text {「-06 }}$	$1.16 \mathrm{E}-06$
F13	AVG	$1.57 \mathrm{E}-04$	9.15	$3.44 \mathrm{E-04}$	$8.41 \mathrm{E}-04$
	STD	$2.15 \mathrm{E}-04$	$1.26 \mathrm{E}-04$	$4.75 \mathrm{E}-04$	$1.18 \mathrm{E}-03$

4.5 Quantitative results of HHO and ${ }^{\bullet} \times \mathrm{scus}$ ion

In this section, the results of HHO are com $_{1}$ arel with those of other optimizers for different dimensions of F1-F13 test problems in aan rivin the F14-F29 MM and CM test cases. Note that the results are presented for $30,100,500$, a.id 1000 dimensions of the scalable F1-F13 problems. Tables $3-6$ show the obtained $r^{{ }^{2} \text { oun }^{2} \text { s }}$ for HHO versus other competitors in dealing with scalable functions. Table 8 also reve is the performance of algorithms in dealing with F14-F29 test problems. In order to investig te the c.gnificant differences between the results of proposed HHO versus other optimizers, Wi^{1} oxr n r$_\mathrm{nk}$-sum test with 5% degree is carefully performed here [57]. Tables 20, 21, 22, 23, and 24 n f.ppendix B show the attained p-values of the Wilcoxon rank-sum test with 5% signific „ e .

As per result in Table 3, the Hhへ can obtain the best results compared to other competitors on F1-F5, F7, and F9-F1? pr, blems. The results of HHO are considerably better than other algorithms in dealing with 215% of these 30 -dimensional functions, demonstrating the superior performance of this opti niz^r. According to p-values in Table 20, it is detected that the observed differences in the resul - a e st ttistically meaningful for all cases. From Table 4, when we have a 100-dimensional sear spac the HHO can considerably outperform other techniques and attain the best results for 92.3% of F1-F13 problems. It is observed that the results of HHO are again remarkably better th. n n n^{+}er techniques. With regard to p-values in Table 21, it is detected that the solutions of HHO are significantly better than those realized by other techniques in almost all cases. From Table ; we see that the HHO can attain the best results in terms of AVG and STD in dealing witı 12 test cases with 500 dimensions. By considering p-values in Table 22, it is recognized th ${ }^{+\dagger}$ ne HHO can significantly outperform other optimizers in all cases. As per results in Table 6, simi ?rly to what we observed in lower dimensions, it is detected that the HHO has still a remarkably superior performance in dealing with F1-F13 test functions compared to GA, PSO, DE, BBO, CS, GWO, MFO, TLBO, BAT, FA, and FPA optimizers. The statistical results in Table 23 also verify the significant gap between the results of HHO and other optimizers in
almost all cases. It is seen that the HHO has reached the best global optimum for F9 and F11 cases in any dimension.

Table 3: Results of benchmark functions (F1-F13), with 30 dimensıons.

Benchmark		HHO	GA	PSO	BBO	FPA	GWO	BAT	FA	CS	MFC	T BO	DE
F1	AVG	$3.95 \mathrm{E}-97$	$1.03 \mathrm{E}+03$	$1.83 \mathrm{E}+04$	$7.59 \mathrm{E}+01$	$2.01 \mathrm{E}+03$	$1.18 \mathrm{E}-27$	$6.59 \mathrm{E}+04$	$7.11 \mathrm{E}-03$	$9.06 \mathrm{E}-04$	1.01 n3	$17 \mathrm{E}-89$	$1.33 \mathrm{E}-03$
	STD	1.72E-96	$5.79 \mathrm{E}+02$	$3.01 \mathrm{E}+03$	$2.75 \mathrm{E}+01$	$5.60 \mathrm{E}+02$	$1.47 \mathrm{E}-27$	$7.51 \mathrm{E}+03$	$3.21 \mathrm{E}-03$	$4.55 \mathrm{E}-04$	$3.05 \mathrm{E}+\mathrm{v}$	3.14E-89	5.92E-04
F2	AVG	$1.56 \mathrm{E}-51$	$2.47 \mathrm{E}+01$	$3.58 \mathrm{E}+02$	$1.36 \mathrm{E}-03$	$3.22 \mathrm{E}+01$	$9.71 \mathrm{E}-17$	$2.71 \mathrm{E}+08$	4.34E-01	1.49E-01	$\llcorner 01$	2.145	6.83E-03
	STD	6.98E-51	$5.68 \mathrm{E}+00$	$1.35 \mathrm{E}+03$	$7.45 \mathrm{E}-03$	$5.55 \mathrm{E}+00$	$5.60 \mathrm{E}-17$	$1.30 \mathrm{E}+09$	$1.84 \mathrm{E}-01$	2.79E-02	$2.06 \mathrm{E}_{7}$	$3.11 \mathrm{E}-45$	$2.06 \mathrm{E}-03$
F3	AVG	$1.92 \mathrm{E}-63$	$2.65 \mathrm{E}+04$	$4.05 \mathrm{E}+04$	$1.21 \mathrm{E}+04$	$1.41 \mathrm{E}+03$	5.12E-05	$1.38 \mathrm{E}+05$	$1.66 \mathrm{E}+03$	$2.10 \mathrm{E}-01$	3E+04	1E-18	$3.97 \mathrm{E}+04$
	STD	$1.05 \mathrm{E}-62$	$3.44 \mathrm{E}+03$	$8.21 \mathrm{E}+03$	$2.69 \mathrm{E}+03$	$5.59 \mathrm{E}+02$	$2.03 \mathrm{E}-04$	$4.72 \mathrm{E}+04$	$6.72 \mathrm{E}+02$	$5.69 \mathrm{E}-0{ }^{0}$		8.04E-18	$5.37 \mathrm{E}+03$
F4	AVG	$1.02 \mathrm{E}-47$	$5.17 \mathrm{E}+01$	$4.39 \mathrm{E}+01$	$3.02 \mathrm{E}+01$	$2.38 \mathrm{E}+01$	1.24E-06	$8.51 \mathrm{E}+01$	$1.11 \mathrm{E}-01$	${ }^{9.65 \mathrm{E}}$,	7 , $\mathrm{E}+01$	1.68E-36	$1.15 \mathrm{E}+01$
	STD	5.01E-47	$1.05 \mathrm{E}+01$	$3.64 \mathrm{E}+00$	$4.39 \mathrm{E}+00$	$2.77 \mathrm{E}+00$	$1.94 \mathrm{E}-06$	$2.95 \mathrm{E}+00$	$4.75 \mathrm{E}-02$	$1.94 \mathrm{E}-\mathrm{u}_{2}$	$06 \mathrm{E}+00$	$1.47 \mathrm{E}-36$	$2.37 \mathrm{E}+00$
F5	AVG	$1.32 \mathrm{E}-02$	$1.95 \mathrm{E}+04$	$1.96 \mathrm{E}+07$	$1.82 \mathrm{E}+03$	$3.17 \mathrm{E}+05$	$2.70 \mathrm{E}+01$	$2.10 \mathrm{E}+08$	$7.97 \mathrm{E}+01$	$2.76 \mathrm{~F}+01$	${ }^{-} \mathrm{F}_{\mathrm{F}}+03$	$2.54 \mathrm{E}+01$	$1.06 \mathrm{E}+02$
	STD	$1.87 \mathrm{E}-02$	$1.31 \mathrm{E}+04$	$6.25 \mathrm{E}+06$	$9.40 \mathrm{E}+02$	$1.75 \mathrm{E}+05$	7.78E-01	$4.17 \mathrm{E}+07$	$7.39 \mathrm{E}+01$	1E-01	2.26 L -04	$4.26 \mathrm{E}-01$	$1.01 \mathrm{E}+02$
F6	AVG	$1.15 \mathrm{E}-04$	$9.01 \mathrm{E}+02$	$1.87 \mathrm{E}+04$	$6.71 \mathrm{E}+01$	$1.70 \mathrm{E}+03$	$8.44 \mathrm{E}-01$	$6.69 \mathrm{E}+04$	$6.94 \mathrm{E}-03$	3.13E-03	$68 \mathrm{E}+03$	$3.29 \mathrm{E}-05$	$1.44 \mathrm{E}-03$
	STD	$1.56 \mathrm{E}-04$	$2.84 \mathrm{E}+02$	$2.92 \mathrm{E}+03$	$2.20 \mathrm{E}+01$	$3.13 \mathrm{E}+02$	3.18E-01	$5.87 \mathrm{E}+03$	$3.61 \mathrm{E}-03$	1.30E-03	$34 \mathrm{E}+03$	8.65E-05	5.38E-04
F7	AVG	$1.40 \mathrm{E}-04$	$1.91 \mathrm{E}-01$	1.07	$2.91 \mathrm{E}-03$	$3.41 \mathrm{E}-01$	$1.70 \mathrm{E}-03$	$4.57 \mathrm{E}+01$	$6.62 \mathrm{E}-02$	- E -02	$50 \mathrm{E}+00$	$16 \mathrm{E}-03$	$5.24 \mathrm{E}-02$
	STD	1.07E-04	$1.50 \mathrm{E}-01$	$3.05 \mathrm{E}+00$	1.83E-03	1.10E-01	$1.06 \mathrm{E}-03$	$7.82 \mathrm{E}+00$	$4.23 \mathrm{E}^{-\mathrm{m}}$	2.21 .	$9.21 \mathrm{E}+00$	3.63E-04	1.37E-02
F8	AVG	$-1.25 \mathrm{E}+04$	$-1.26 \mathrm{E}+0$	$-3.86 \mathrm{E}+03$	$-1.24 \mathrm{E}+04$	$-6.45 \mathrm{E}+03$	$-5.97 \mathrm{E}+03$	$-2.33 \mathrm{E}+03$	-5.5 $\dot{\text { c }}$	$-^{-}{ }^{-} \mathrm{E}+19$	$-8.48 \mathrm{E}+03$	$-7.76 \mathrm{E}+03$	$-6.82 \mathrm{E}+03$
	STD	$1.47 \mathrm{E}+02$	$4.51 \mathrm{E}+00$	$2.49 \mathrm{E}+02$	$3.50 \mathrm{E}+01$	$3.03 \mathrm{E}+02$	$7.10 \mathrm{E}+02$	$2.96 \mathrm{E}+02$	1. E+03	-.76E 20	$7.98 \mathrm{E}+02$	$1.04 \mathrm{E}+03$	$3.94 \mathrm{E}+02$
F9	AVG	$0.00 \mathrm{E}+00$	$9.04 \mathrm{E}+$	$2.87 \mathrm{E}+02$	$0.00 \mathrm{E}+00$	$1.82 \mathrm{E}+02$	$2.19 \mathrm{E}+00$	$1.92 \mathrm{E}+02$	3.8	$1.51 \mathrm{E} \sqrt{1}$	$9 \mathrm{E}+02$	E +01	$1.58 \mathrm{E}+02$
	STD	$0.00 \mathrm{E}+00$	$4.58 \mathrm{E}+00$	$1.95 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$1.24 \mathrm{E}+01$	$3.69 \mathrm{E}+00$	$3.56 \mathrm{E}+01$	${ }^{1} .12 \mathrm{E}+01$	1.25 +00	$3.21 \mathrm{E}+01$	5.45E+00	$1.17 \mathrm{E}+01$
F10	AVG	$8.88 \mathrm{E}-16$	$1.36 \mathrm{E}+01$	$1.75 \mathrm{E}+01$	$2.13 \mathrm{E}+00$	$7.14 \mathrm{E}+00$	$1.03 \mathrm{E}-13$	$1.92 \mathrm{E}+01$	4.0. ${ }^{2}$	з. $29 \mathrm{E}-02$	$1.74 \mathrm{E}+01$	$6.45 \mathrm{E}-15$	$1.21 \mathrm{E}-02$
	STD	4.01E-31	$1.51 \mathrm{E}+00$	3.67E-01	$3.53 \mathrm{E}-01$	$1.08 \mathrm{E}+00$	1.70E-14	$2.43 \mathrm{E}-01$	$1.20 \mathrm{E}-\mathrm{v}$	7.93E-03	$4.95 \mathrm{E}+00$	$1.79 \mathrm{E}-15$	$3.30 \mathrm{E}-03$
F11	AVG	$0.00 \mathrm{E}+00$	$1.01 \mathrm{E}+01$	$1.70 \mathrm{E}+02$	$1.46 \mathrm{E}+00$	$1.73 \mathrm{E}+01$	$4.76 \mathrm{E}-03$	6.01 F ~2	$4.23 \mathrm{E}-03$	$4.29 \mathrm{E}-05$	$3.10 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	3.52E-02
	STD	$0.00 \mathrm{E}+00$	$2.43 \mathrm{E}+00$	$3.17 \mathrm{E}+01$	1.69E-01	$3.63 \mathrm{E}+00$	8.57E-03	$5.50 \mathrm{E}+\mathrm{U}$ -	1.29E-03	$2.00 \mathrm{E}-05$	$5.94 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$7.20 \mathrm{E}-02$
F12	AVG	$2.08 \mathrm{E}-06$	$4.77 \mathrm{E}+00$	$1.51 \mathrm{E}+07$	$6.68 \mathrm{E}-01$	$3.05 \mathrm{E}+02$	4.83E-02	4.1. 08	3.1	$5.57 \mathrm{E}-05$	$2.46 \mathrm{E}+02$	$7.35 \mathrm{E}-06$	$2.25 \mathrm{E}-03$
	STD	$1.19 \mathrm{E}-05$	$1.56 \mathrm{E}+00$	$9.88 \mathrm{E}+06$	$2.62 \mathrm{E}-01$	$1.04 \mathrm{E}+03$	2.12E-02	$1.54 \mathrm{E}+\iota$	$1.76 \mathrm{E}-04$	$4.96 \mathrm{E}-05$	$1.21 \mathrm{E}+03$	7.45E-06	$1.70 \mathrm{E}-03$
F13	AVG	$1.57 \mathrm{E}-04$	$1.52 \mathrm{E}+01$	$5.73 \mathrm{E}+07$	$1.82 \mathrm{E}+00$	$9.59 \mathrm{E}+04$	5.96E-01	$9.40 \mathrm{E}+08$	T-03	$8.19 \mathrm{E}-03$	$2.73 \mathrm{E}+07$	$7.89 \mathrm{E}-02$	$9.12 \mathrm{E}-03$
	STD	$2.15 \mathrm{E}-04$	$4.52 \mathrm{E}+00$	$2.68 \mathrm{E}+07$	$3.41 \mathrm{E}-01$	$1.46 \mathrm{E}+05$	$2.23 \mathrm{E}-01$	ヶ.0ib+u8	y. $62 \mathrm{E}-04$	$6.74 \mathrm{E}-03$	$1.04 \mathrm{E}+08$	$8.78 \mathrm{E}-02$	$1.16 \mathrm{E}-02$

Table 4: Results of benchmark functic. (F1-F13), with 100 dimensions.

Benchmark		HHO	GA	PSO	BBO	FPA	$G^{\circ} \bar{O}$	BAT	FA	CS	MFO	TLBO	DE
F1	AVG	$1.91 \mathrm{E}-94$	$5.41 \mathrm{E}+04$	$1.06 \mathrm{E}+05$	$2.85 \mathrm{E}+03$	$1.39 \mathrm{~F}+04$	1.59 L '2	$2.72 \mathrm{E}+05$	$3.05 \mathrm{E}-01$	$3.17 \mathrm{E}-01$	$6.20 \mathrm{E}+04$	$3.62 \mathrm{E}-81$	$26 \mathrm{E}+03$
	STD	8.66E-94	$1.42 \mathrm{E}+04$	$8.47 \mathrm{E}+03$	$4.49 \mathrm{E}+02$	2.71		$1.42 \mathrm{E}+04$	5.60E-02	5.28E-02	$1.25 \mathrm{E}+04$	4.14E-81	$1.32 \mathrm{E}+03$
F2	AVG	$9.98 \mathrm{E}-52$	$2.53 \mathrm{E}+02$	$6.06 \mathrm{E}+23$	$1.59 \mathrm{E}+01$	$1.01 \mathrm{E}+0 /$	$31 \mathrm{E}-08$	$6.00 \mathrm{E}+43$	$1.45 \mathrm{E}+01$	$4.05 \mathrm{E}+00$	$2.46 \mathrm{E}+02$	$3.27 \mathrm{E}-41$	21E+02
	STD	2.66E-51	$1.41 \mathrm{E}+01$	$2.18 \mathrm{E}+24$	$3.74 \mathrm{E}+00$	$9.36 \mathrm{E}+00$	-08	$1.18 \mathrm{E}+44$	$6.73 \mathrm{E}+00$	3.16E-01	$4.48 \mathrm{E}+01$	$2.75 \mathrm{E}-41$	$2.33 \mathrm{E}+01$
F3	AVG	$1.84 \mathrm{E}-59$	$2.53 \mathrm{E}+05$	$4.22 \mathrm{E}+05$	$1.70 \mathrm{E}+05$	$1.89 \mathrm{E}+04$	$4.09 \mathrm{E}+02$	$1.43 \mathrm{E}+06$	$4.65 \mathrm{E}+04$	6.88E+00	$2.15 \mathrm{E}+05$	$4.33 \mathrm{E}-07$	$5.01 \mathrm{E}+05$
	STD	1.01E-58	$5.03 \mathrm{E}+04$	$7.08 \mathrm{E}+04$	$2.02 \mathrm{E}+0^{4}$	- +03	$2.77 \mathrm{E}+02$	$6.21 \mathrm{E}+05$	$6.92 \mathrm{E}+03$	$1.02 \mathrm{E}+00$	4.43E+04	$8.20 \mathrm{E}-07$	$5.87 \mathrm{E}+04$
F4	AVG	$8.76 \mathrm{E}-47$	$8.19 \mathrm{E}+01$	$6.07 \mathrm{E}+01$	$7.08 \mathrm{E}-1$	$3.51 \mathrm{E}+$	$8.89 \mathrm{E}-01$	$9.41 \mathrm{E}+01$	$1.91 \mathrm{E}+01$	$2.58 \mathrm{E}-01$	$9.31 \mathrm{E}+01$	6.36E-33	$62 \mathrm{E}+01$
	STD	4.79E-46	$3.15 \mathrm{E}+00$	$3.05 \mathrm{E}+00$	$4.73 \mathrm{~F} \quad 00$	$3.37 \mathrm{E}+0$.	9.30E-01	$1.49 \mathrm{E}+00$	$3.12 \mathrm{E}+00$	2.80E-02	$2.13 \mathrm{E}+00$	6.66E-33	$1.00 \mathrm{E}+00$
F5	AVG	$2.36 \mathrm{E}-02$	$2.37 \mathrm{E}+07$	$2.42 \mathrm{E}+08$	$4.47 \mathrm{E}+$ 。	$4.64 \mathrm{E}+\mathrm{C}$	$9.79 \mathrm{E}+01$	$1.10 \mathrm{E}+09$	$8.46 \mathrm{E}+02$	$1.33 \mathrm{E}+02$	$1.44 \mathrm{E}+08$	9.67E+01	$1.99 \mathrm{E}+07$
	STD	$2.99 \mathrm{E}-02$	$8.43 \mathrm{E}+06$	$4.02 \mathrm{E}+07$	2 jE+05	E -3	$6.75 \mathrm{E}-01$	$9.47 \mathrm{E}+07$	$8.13 \mathrm{E}+02$	$7.34 \mathrm{E}+00$	$7.50 \mathrm{E}+07$	7.77E-01	$5.80 \mathrm{E}+06$
F6	AVG	5.12E-04	$5.42 \mathrm{E}+04$	$1.07 \mathrm{E}+05$. $85 \mathrm{E}+{ }^{\circ}$	$1.26 \mathrm{~b}-{ }^{-04}$	$1.03 \mathrm{E}+01$	$2.69 \mathrm{E}+05$	$2.95 \mathrm{E}-01$	$2.65 \mathrm{E}+00$	$6.68 \mathrm{E}+04$	$3.27 \mathrm{E}+00$	$8.07 \mathrm{E}+03$
	STD	6.77E-04	$1.09 \mathrm{E}+04$	$9.70 \mathrm{E}+03$	$4.07 \mathrm{E} \quad 2$	$2.0{ }^{\text {® }} \mathrm{E}+03$	$1.05 \mathrm{E}+00$	$1.25 \mathrm{E}+04$	5.34E-02	$3.94 \mathrm{E}-01$	$1.46 \mathrm{E}+04$	$6.98 \mathrm{E}-01$	$1.64 \mathrm{E}+03$
F7	AVG	$1.85 \mathrm{E}-04$	$2.73 \mathrm{E}+01$	$3.41 \mathrm{E}+02$	${ }^{5}+00$	$5.4 \mathrm{E}+00$	7.60E-03	$3.01 \mathrm{E}+02$	$5.65 \mathrm{E}-01$	$1.21 \mathrm{E}+00$	$2.56 \mathrm{E}+02$	$1.50 \mathrm{E}-03$	01
	STD	4.06E-04	$4.45 \mathrm{E}+01$	$8.74 \mathrm{E}-1$	5.1. 00	. $16 \mathrm{E}+00$	$2.66 \mathrm{E}-03$	$2.66 \mathrm{E}+01$	1.64E-01	$2.65 \mathrm{E}-01$	$8.91 \mathrm{E}+01$	5.39E-04	$5.66 \mathrm{E}+00$
F8	AVG	$-4.19 \mathrm{E}$	$-4.10 \mathrm{E}+04$	${ }^{-7.3}{ }^{\text {a }}+03$	$-3.85 \mathrm{E}+$	-1.28E	$-1.67 \mathrm{E}$	$-4.07 \mathrm{E}+03$	$-1.81 \mathrm{E}+04$	$-2.84 \mathrm{E}+18$	$-2.30 \mathrm{E}+04$	$-1.71 \mathrm{E}+04$	9E+04
	STD	$2.82 \mathrm{E}+00$	$1.14 \mathrm{E}+02$	$4.7-{ }^{-}$	$2.80 \mathrm{E}+02$	$4.64 \mathrm{E}+02$	$2.62 \mathrm{E}+03$	$9.37 \mathrm{E}+02$	$3.23 \mathrm{E}+03$	$6.91 \mathrm{E}+18$	$1.98 \mathrm{E}+03$	$3.54 \mathrm{E}+03$	$5.80 \mathrm{E}+02$
F9	AVG	$0.00 \mathrm{E}+00$	$3.39 \mathrm{E}+02$? .6 E+03	${ }^{1} \mathrm{E}+00$	$8.47 \mathrm{E}+02$	$1.03 \mathrm{E}+01$	$7.97 \mathrm{E}+02$	$2.36 \mathrm{E}+02$	$1.72 \mathrm{E}+02$	$8.65 \mathrm{E}+02$	$1.02 \mathrm{E}+01$	$1.03 \mathrm{E}+03$
	STD	$0.00 \mathrm{E}+00$	$4.17 \mathrm{E}+01$	$5.74 \mathrm{E}+01$	2.7u. 00	$4.01 \mathrm{E}+01$	$9.02 \mathrm{E}+00$	$6.33 \mathrm{E}+01$	$2.63 \mathrm{E}+01$	$9.24 \mathrm{E}+00$	$8.01 \mathrm{E}+01$	$5.57 \mathrm{E}+01$	$4.03 \mathrm{E}+01$
F10	AVG	$8.88 \mathrm{E}-16$	$1.82 \mathrm{E}+01$	1.) +01	$5.57 \mathrm{E}+00$	$8.21 \mathrm{E}+00$	$1.20 \mathrm{E}-07$	$1.94 \mathrm{E}+01$	$9.81 \mathrm{E}-01$	$3.88 \mathrm{E}-01$	$1.99 \mathrm{E}+01$	$1.66 \mathrm{E}-02$	$1.22 \mathrm{E}+01$
	STD	4.01E-31	$4.35 \mathrm{E}-0^{7}$	2.0401	4.72E-01	$1.14 \mathrm{E}+00$	5.07E-08	$6.50 \mathrm{E}-02$	$2.55 \mathrm{E}-01$	5.23E-02	$8.58 \mathrm{E}-02$	$9.10 \mathrm{E}-02$	$8.31 \mathrm{E}-01$
F11	AVG	$0.00 \mathrm{E}+00$	5.14 E	9. ${ }^{\text {a }}$	$2.24 \mathrm{E}+01$	$1.19 \mathrm{E}+02$	4.87E-03	$2.47 \mathrm{E}+03$	1.19E-01	4.56E-03	$5.60 \mathrm{E}+02$	$0.00 \mathrm{E}+00$	$7.42 \mathrm{E}+01$
	STD	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}+02$	J $\mathrm{E}+01$	$4.35 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	1.07E-02	$1.03 \mathrm{E}+02$	2.34E-02	9.73E-04	$1.23 \mathrm{E}+02$	$0.00 \mathrm{E}+00$	$1.40 \mathrm{E}+01$
F12	AVG	$4.23 \mathrm{E}-06$	4. ${ }^{\text {E + } 06}$	3.54.	$3.03 \mathrm{E}+02$	$1.55 \mathrm{E}+05$	$2.87 \mathrm{E}-01$	$2.64 \mathrm{E}+09$	$4.45 \mathrm{E}+00$	$2.47 \mathrm{E}-02$	$2.82 \mathrm{E}+08$	$3.03 \mathrm{E}-02$	$3.90 \mathrm{E}+07$
	STD	5.25E-06	-2E+0f	$8.75 \mathrm{E}+07$	$1.48 \mathrm{E}+03$	$1.74 \mathrm{E}+05$	$6.41 \mathrm{E}-02$	$2.69 \mathrm{E}+08$	$1.32 \mathrm{E}+00$	5.98E-03	$1.45 \mathrm{E}+08$	$1.02 \mathrm{E}-02$	$1.88 \mathrm{E}+07$
F13	AVG	$9.13 \mathrm{E}-05$.26E+	8.56	$6.82 \mathrm{E}+04$	$2.76 \mathrm{E}+06$	$6.87 \mathrm{E}+00$	$5.01 \mathrm{E}+09$	$4.50 \mathrm{E}+01$	$5.84 \mathrm{E}+00$	$6.68 \mathrm{E}+08$	$5.47 \mathrm{E}+00$	$7.19 \mathrm{E}+07$
	STD	1.26E-04	- 57	2. ${ }^{\text {e }}+08$	$3.64 \mathrm{E}+04$	$1.80 \mathrm{E}+06$	$3.32 \mathrm{E}-01$	$3.93 \mathrm{E}+08$	$2.24 \mathrm{E}+01$	$1.21 \mathrm{E}+00$	$3.05 \mathrm{E}+08$	8.34E-01	$2.73 \mathrm{E}+07$

In order to furth er chec the efficacy of HHO , we recorded the running time taken by optimizers to find the solutions ${ }^{\circ}{ }^{\circ}{ }^{\top} 1$ 1-F13 problems with 1000 dimensions and the results are exposed in Table 7. As per esult in Table 7, we detect that the HHO shows a reasonably fast and competitive performance in : ndins the best solutions compared to other well-established optimizers even for high dimens ${ }^{-n a l}$ unımodal and multimodal cases. Based on average running time on 13 problems, the HHO pert ${ }^{r r}$ is faster than BBO, PSO, GA, CS, GWO, and FA algorithms. These observations are also in accor 'ance with the computational complexity of HHO.

The results in Table 8 verify that HHO provides superior and very competitive results on F14-F23 fixed dimension MM test cases. The results on F16-F18 are very competitive and all algorithms have attained high-quality results. Based on results in Table 8, the proposed HHO has

Table 5: Results of benchmark functions (F1-F13), with 500 dimf 10. ns.

Benchmark		HHO	GA	PSO	BBO	FPA	GWO	BAT	FA	CS	MFO	LBO	DE
F1	AVG	1.46E-92	$6.06 \mathrm{E}+05$	$6.42 \mathrm{E}+05$	$1.60 \mathrm{E}+05$	$8.26 \mathrm{E}+04$	$1.42 \mathrm{E}-03$	$1.52 \mathrm{E}+06$	$6.30 \mathrm{E}+04$	$6.80 \mathrm{E}+00$	E+06	-77	$7.43 \mathrm{E}+05$
	STD	8.01E-92	$7.01 \mathrm{E}+04$	$2.96 \mathrm{E}+04$	$9.76 \mathrm{E}+03$	$1.32 \mathrm{E}+04$	$3.99 \mathrm{E}-04$	$3.58 \mathrm{E}+04$	$8.47 \mathrm{E}+03$	4.93E-01	$3.54{ }^{\text {- }}$ - 4	1.94L.77	$3.67 \mathrm{E}+04$
F2	AVG	$7.87 \mathrm{E}-49$	$1.94 \mathrm{E}+03$	$6.08 \mathrm{E}+09$	$5.95 \mathrm{E}+02$	$5.13 \mathrm{E}+02$	1.10E-02	$8.34 \mathrm{E}+09$	$7.13 \mathrm{E}+02$	$4.57 \mathrm{E}+01$	90E+08	${ }^{1} \mathrm{E}-39$	$3.57 \mathrm{E}+09$
	STD	3.11E-48	$7.03 \mathrm{E}+01$	$1.70 \mathrm{E}+10$	$1.70 \mathrm{E}+01$	$4.84 \mathrm{E}+01$	$1.93 \mathrm{E}-03$	$1.70 \mathrm{E}+10$	$3.76 \mathrm{E}+01$	$2.05 \mathrm{E}+0 r$	1. $\mathrm{E}+09$	1.03E-39	$1.70 \mathrm{E}+10$
F3	AVG	$6.54 \mathrm{E}-37$	$5.79 \mathrm{E}+06$	$1.13 \mathrm{E}+07$	$2.98 \mathrm{E}+06$	$5.34 \mathrm{E}+05$	$3.34 \mathrm{E}+05$	$3.37 \mathrm{E}+07$	$1.19 \mathrm{E}+06$	$2.03 \mathrm{E}+$		$1.06 \mathrm{E}+00$	$1.20 \mathrm{E}+07$
	STD	3.58E-36	$9.08 \mathrm{E}+05$	$1.43 \mathrm{E}+06$	$3.87 \mathrm{E}+05$	$1.34 \mathrm{E}+05$	7.95E+04	$1.41 \mathrm{E}+07$	$1.88 \mathrm{E}+05$	2.72 E	,2E+06	$3.70 \mathrm{E}+00$	$1.49 \mathrm{E}+06$
F4	AVG	$1.29 \mathrm{E}-47$	$9.59 \mathrm{E}+01$	$8.18 \mathrm{E}+0$	$9.35 \mathrm{E}+01$	$4.52 \mathrm{E}+01$	$6.51 \mathrm{E}+01$	$9.82 \mathrm{E}+01$	$5.00 \mathrm{E}+01$	$4.06 \mathrm{E}-01$	88E+01	$4.02 \mathrm{E}-31$	$9.92 \mathrm{E}+01$
	STD	4.11E-47	$1.20 \mathrm{E}+00$	$1.49 \mathrm{E}+00$	$9.05 \mathrm{E}-01$	$4.28 \mathrm{E}+00$	$5.72 \mathrm{E}+00$	3.32E-01	$1.73 \mathrm{E}+00$	$3^{\text {r }} 2$	4.1. ${ }^{1}$	$2.67 \mathrm{E}-31$	2.33E-01
F5	AVG	$3.10 \mathrm{E}-01$	1.7	$1.84 \mathrm{E}+09$	2.0	E +07	$4.98 \mathrm{E}+02$	$6.94 \mathrm{E}+09$	$2.56 \mathrm{E}+07$	$.21 \mathrm{E}+03$	$01 \mathrm{E}+09$	$97 \mathrm{E}+02$	E+09
	STD	3.73E-01	$4.11 \mathrm{E}+08$	$1.11 \mathrm{E}+08$	$2.08 \mathrm{E}+07$	$8.76 \mathrm{E}+06$	5.23E-01	$2.23 \mathrm{E}+08$	$6.14 \mathrm{E}+06$	7.04E+01	i0E+08	$3.07 \mathrm{E}-01$	$1.25 \mathrm{E}+09$
F6	AVG	$2.94 \mathrm{E}-03$	$6.27 \mathrm{E}+05$	$6.57 \mathrm{E}+05$	1.68E+05	8.01E+04	$9.22 \mathrm{E}+01$	$1.53 \mathrm{E}+06$	$6.30 \mathrm{E}+04$	$7 \mathrm{E}+01$	$16 \mathrm{E}+06$	$7.82 \mathrm{E}+01$	$7.23 \mathrm{E}+05$
	STD	3.98E-03	7.43E+04	$3.29 \mathrm{E}+04$	$8.23 \mathrm{E}+03$	$9.32 \mathrm{E}+03$	$2.15 \mathrm{E}+00$	$3.37 \mathrm{E}+04$	$8.91 \mathrm{E}+03$	2.- ᄂno	, $48 \mathrm{E}+04$	$2.50 \mathrm{E}+00$	$3.28 \mathrm{E}+04$
F7	A	2.51	$9.10 \mathrm{E}+03$	1.4	2.62 E	$2.53 \mathrm{E}+02$	$4.67 \mathrm{E}-02$	$2.23 \mathrm{E}+04$	$3.71^{\text { }}$ - 02	$8.05 \mathrm{E}+01$	$3.84 \mathrm{E}+04$	$1.71 \mathrm{E}-03$	$2.39 \mathrm{E}+04$
	STD	2.43E-04	$2.20 \mathrm{E}+03$	$1.51 \mathrm{E}+03$	$3.59 \mathrm{E}+02$	$6.28 \mathrm{E}+01$	1.12E-02	$1.15 \mathrm{E}+03$	$6.7{ }^{\text {a }}$ +01	. 01	$2.24 \mathrm{E}+03$	4.80E-04	$2.72 \mathrm{E}+03$
F8	A	$-2.09 \mathrm{E}$	$-1.31 \mathrm{E}+0$	-1.65E+04	-1.42E+05	-3.00E+04	-5.70E+04	-9.03E+03	-7. $\overline{5}+\Gamma$	-2.101 -17	$-6.29 \mathrm{E}+04$	$-5.02 \mathrm{E}+04$	$-2.67 \mathrm{E}+04$
	STD	$2.84 \mathrm{E}+01$	$2.31 \mathrm{E}+04$	$9.99 \mathrm{E}+02$	$1.98 \mathrm{E}+03$	$1.14 \mathrm{E}+03$	$3.12 \mathrm{E}+03$	$2.12 \mathrm{E}+03$	1.15b . . 4	1.14F 18	$5.71 \mathrm{E}+03$	$1.00 \mathrm{E}+04$	$1.38 \mathrm{E}+03$
F9	AVG	$0.00 \mathrm{E}+00$	$3.29 \mathrm{E}+03$	$6.63 \mathrm{E}+03$	$7.86 \mathrm{E}+02$	$4.96 \mathrm{E}+03$	$7.84 \mathrm{E}+01$	$6.18 \mathrm{E}+03$	$\mathrm{F}_{\text {+ }}+03$	- +03	$6.96 \mathrm{E}+03$	$0.00 \mathrm{E}+00$	$7.14 \mathrm{E}+03$
	STD	$0.00 \mathrm{E}+00$	$1.96 \mathrm{E}+02$	$1.07 \mathrm{E}+02$	$3.42 \mathrm{E}+01$	$7.64 \mathrm{E}+01$	$3.13 \mathrm{E}+01$	$1.20 \mathrm{E}+02$	1.42 L	$5.21 \mathrm{E}+01$	$1.48 \mathrm{E}+02$	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}+02$
F10	AVG	$8.88 \mathrm{E}-16$	$1.96 \mathrm{E}+01$	$1.97 \mathrm{E}+01$	$1.44 \mathrm{E}+01$	$8.55 \mathrm{E}+00$	$1.93 \mathrm{E}-03$	$2.04 \mathrm{E}+01$	$1.24 \mathrm{E}+01$	$1.07 \mathrm{E}+00$	$2.03 \mathrm{E}+01$	7.62E-01	$2.06 \mathrm{E}+01$
	STD	4.01E-31	2.04E-01	$1.04 \mathrm{E}-01$	$2.22 \mathrm{E}-01$	8.66E-01	3.50E-04	$3.25 \mathrm{E}-$	$4.46 \mathrm{E}-01$	$6.01 \mathrm{E}-02$	$1.48 \mathrm{E}-01$	$2.33 \mathrm{E}+00$	$2.45 \mathrm{E}-01$
F11	AVG	$0.00 \mathrm{E}+00$	$5.42 \mathrm{E}+03$	$5.94 \mathrm{E}+03$	$1.47 \mathrm{E}+03$	$6.88 \mathrm{E}+02$	$1.55 \mathrm{E}-02$	1.975 ${ }^{5}+04$	'r+r	$2.66 \mathrm{E}-02$	$1.03 \mathrm{E}+04$	$0.00 \mathrm{E}+00$	$6.75 \mathrm{E}+03$
	STD	$0.00 \mathrm{E}+00$	$7.32 \mathrm{E}+02$	$3.19 \mathrm{E}+02$	$8.10 \mathrm{E}+01$	$8.17 \mathrm{E}+01$	3.50E-02	3.19¢	$7.33 \mathrm{c}+01$	$2.30 \mathrm{E}-03$	$4.43 \mathrm{E}+02$	$0.00 \mathrm{E}+00$	$2.97 \mathrm{E}+02$
F12	AVG	$1.41 \mathrm{E}-06$	$2.79 \mathrm{E}+09$	$3.51 \mathrm{E}+09$	$1.60 \mathrm{E}+08$	$4.50 \mathrm{E}+06$	$7.42 \mathrm{E}-01$	$1.70 \mathrm{E}+10$	$7 \mathrm{E}+05$	$3.87 \mathrm{E}-01$	$1.20 \mathrm{E}+10$	4.61E-01	$1.60 \mathrm{E}+10$
	STD	1.48E-06	$1.11 \mathrm{E}+09$	$4.16 \mathrm{E}+08$	$3.16 \mathrm{E}+07$	$3.37 \mathrm{E}+06$	$4.38 \mathrm{E}-02$		د+05	$2.47 \mathrm{E}-02$	$6.82 \mathrm{E}+08$	$2.40 \mathrm{E}-02$	$2.34 \mathrm{E}+09$
F13	AVG	$3.44 \mathrm{E}-04$	$8.84 \mathrm{E}+09$	$6.82 \mathrm{E}+09$	$5.13 \mathrm{E}+08$	$3.94 \mathrm{E}+07$	$5.06 \mathrm{E}+01$	${ }^{7} \mathrm{E}+10$	$2.29 \mathrm{E}+07$	$6.00 \mathrm{E}+01$	$2.23 \mathrm{E}+10$	$4.98 \mathrm{E}+01$	$2.42 \mathrm{E}+10$
	STD	$4.75 \mathrm{E}-04$	$2.00 \mathrm{E}+09$	$8.45 \mathrm{E}+08$	$6.59 \mathrm{E}+07$	$1.87 \mathrm{E}+07$	$1.30 \mathrm{E}+00$	$9.68 \pm{ }^{\text {a }}$	$9.46 \mathrm{E}+06$	$1.13 \mathrm{E}+00$	$1.13 \mathrm{E}+09$	9.97E-03	$6.39 \mathrm{E}+09$

Table 6: Results of r nch marn functions (F1-F13), with 1000 dimensions.

Benchmark		HHO	GA	PSO		,	GWO	BAT	FA	CS	MFO	TLBO	DE
F1	AVG	1.06E-94	$1.36 \mathrm{E}+06$	1.36 F 06	6.51 E	.70E+05	$2.42 \mathrm{E}-01$	$3.12 \mathrm{E}+06$	$3.20 \mathrm{E}+05$	$1.65 \mathrm{E}+01$	$2.73 \mathrm{E}+06$	2.73E-76	$2.16 \mathrm{E}+06$
	STD	4.97E-94	$1.79 \mathrm{E}+05$	6.3 - 4	$2.37 \mathrm{E}+04$	$2.99 \mathrm{E}+04$	$4.72 \mathrm{E}-02$	$4.61 \mathrm{E}+04$	$2.11 \mathrm{E}+04$	$1.27 \mathrm{E}+00$	$4.70 \mathrm{E}+04$	7.67E-76	$3.39 \mathrm{E}+05$
F2	AVG	2.52E-50	$4.29 \mathrm{E}+03$	1 J $\overline{\mathrm{E}}+1$,	$96 \mathrm{E}+03$	$8.34 \mathrm{E}+02$	7.11E-01	$1.79 \mathrm{E}+10$	$1.79 \mathrm{E}+10$	$1.02 \mathrm{E}+02$	$1.79 \mathrm{E}+10$	$1.79 \mathrm{E}+10$	$1.79 \mathrm{E}+10$
	STD	5.02E-50	$8.86 \mathrm{E}+01$	1.79E+10	4. +01	$8.96 \mathrm{E}+01$	4.96E-01	$1.79 \mathrm{E}+10$	$1.79 \mathrm{E}+10$	$3.49 \mathrm{E}+00$	$1.79 \mathrm{E}+10$	$1.79 \mathrm{E}+10$	$1.79 \mathrm{E}+10$
F3	AVG	$1.79 \mathrm{E}-17$	$2.29 \mathrm{E}+07$	${ }^{7}+07$	9.92E+06	$1.95 \mathrm{E}+06$	$1.49 \mathrm{E}+06$	$1.35 \mathrm{E}+08$	$4.95 \mathrm{E}+06$	$8.67 \mathrm{E}+02$	$1.94 \mathrm{E}+07$	$8.61 \mathrm{E}-01$	$5.03 \mathrm{E}+07$
	STD	$9.81 \mathrm{E}-17$	$3.93 \mathrm{E}+0^{\prime}$	$1.16 \quad \vdash 07$	$1.48 \mathrm{E}+06$	$4.20 \mathrm{E}+05$	$2.43 \mathrm{E}+05$	$4.76 \mathrm{E}+07$	$7.19 \mathrm{E}+05$	$1.10 \mathrm{E}+02$	$3.69 \mathrm{E}+06$	$1.33 \mathrm{E}+00$	$4.14 \mathrm{E}+06$
F4	AVG	$1.43 \mathrm{E}-46$	9.79 E	$8.9{ }^{\text {c }}$ +01	$9.73 \mathrm{E}+01$	$5.03 \mathrm{E}+01$	$7.94 \mathrm{E}+01$	$9.89 \mathrm{E}+01$	$6.06 \mathrm{E}+01$	4.44E-01	$9.96 \mathrm{E}+01$	$1.01 \mathrm{E}-30$	$9.95 \mathrm{E}+01$
	STD	7.74E-46	7.16E-01	E+00	7.62E-01	$5.37 \mathrm{E}+00$	$2.77 \mathrm{E}+00$	$2.22 \mathrm{E}-01$	$2.69 \mathrm{E}+00$	$2.24 \mathrm{E}-02$	1.49E-01	$5.25 \mathrm{E}-31$	$1.43 \mathrm{E}-01$
F5	AVG	5.73E-01	4.7 - +09	3.1 ${ }^{\text {L09 }}$	$1.29 \mathrm{E}+09$	$7.27 \mathrm{E}+07$	$1.06 \mathrm{E}+03$	$1.45 \mathrm{E}+10$	$2.47 \mathrm{E}+08$	$2.68 \mathrm{E}+03$	$1.25 \mathrm{E}+10$	$9.97 \mathrm{E}+02$	$1.49 \mathrm{E}+10$
	STD	$1.40 \mathrm{E}+00$	$93 \mathrm{E}+08$	$2.76 \mathrm{E}+.3$	$6.36 \mathrm{E}+07$	$1.84 \mathrm{E}+07$	$3.07 \mathrm{E}+01$	$3.20 \mathrm{E}+08$	$3.24 \mathrm{E}+07$	$1.27 \mathrm{E}+02$	$3.15 \mathrm{E}+08$	$2.01 \mathrm{E}-01$	$3.06 \mathrm{E}+08$
F6	AVG	$3.61 \mathrm{E}-03$. $52 \mathrm{E}+$ ¢	$1.38{ }^{\text {「 }+06}$	$6.31 \mathrm{E}+05$	$1.60 \mathrm{E}+05$	$2.03 \mathrm{E}+02$	$3.11 \mathrm{E}+06$	$3.18 \mathrm{E}+05$	$2.07 \mathrm{E}+02$	$2.73 \mathrm{E}+06$	$1.93 \mathrm{E}+02$	$2.04 \mathrm{E}+06$
	STD	5.38E-03	$8 \mathrm{E}-5$	$6.0{ }^{\circ}+04$	$1.82 \mathrm{E}+04$	$1.86 \mathrm{E}+04$	$2.45 \mathrm{E}+00$	$6.29 \mathrm{E}+04$	$2.47 \mathrm{E}+04$	$4.12 \mathrm{E}+00$	$4.56 \mathrm{E}+04$	$2.35 \mathrm{E}+00$	$2.46 \mathrm{E}+05$
F7	AVG	$1.41 \mathrm{E}-04$	$4.45\llcorner$	¢ .6 E+04	$3.84 \mathrm{E}+04$	$1.09 \mathrm{E}+03$	$1.47 \mathrm{E}-01$	$1.25 \mathrm{E}+05$	$4.44 \mathrm{E}+03$	$4.10 \mathrm{E}+02$	$1.96 \mathrm{E}+05$	$1.83 \mathrm{E}-03$	$2.27 \mathrm{E}+05$
	STD	$1.63 \mathrm{E}-\mathrm{r}$	$8.40 \mathrm{E}+0.0$.16E+03	$2.91 \mathrm{E}+03$	$3.49 \mathrm{E}+02$	3.28E-02	$3.93 \mathrm{E}+03$	$4.00 \mathrm{E}+02$	$8.22 \mathrm{E}+01$	$6.19 \mathrm{E}+03$	5.79E-04	$3.52 \mathrm{E}+04$
F8	AVG	$-4.19+05$	-1.94. 05	$-2.30 \mathrm{E}+04$	$-2.29 \mathrm{E}+05$	$-4.25 \mathrm{E}+04$	$-8.64 \mathrm{E}+04$	$-1.48 \mathrm{E}+04$	$-1.08 \mathrm{E}+05$	$-9.34 \mathrm{E}+14$	$-9.00 \mathrm{E}+04$	$-6.44 \mathrm{E}+04$	$-3.72 \mathrm{E}+04$
	STD	1.03 +02	$9.74 \mathrm{E}+3$	$1.70 \mathrm{E}+03$	$3.76 \mathrm{E}+03$	$1.47 \mathrm{E}+03$	$1.91 \mathrm{E}+04$	$3.14 \mathrm{E}+03$	$1.69 \mathrm{E}+04$	$2.12 \mathrm{E}+15$	$7.20 \mathrm{E}+03$	$1.92 \mathrm{E}+04$	$1.23 \mathrm{E}+03$
F9	AVG	0.001 00	$8.02 \mathrm{E}-3$	$1.35 \mathrm{E}+04$	$2.86 \mathrm{E}+03$	$1.01 \mathrm{E}+04$	$2.06 \mathrm{E}+02$	$1.40 \mathrm{E}+04$	$7.17 \mathrm{E}+03$	$6.05 \mathrm{E}+03$	$1.56 \mathrm{E}+04$	$0.00 \mathrm{E}+00$	$1.50 \mathrm{E}+04$
	STD	$0.00 \mathrm{E}+\mathrm{l}$,	$21^{1-} 02$	$1.83 \mathrm{E}+02$	9.03E+01	$1.57 \mathrm{E}+02$	$4.81 \mathrm{E}+01$	$1.85 \mathrm{E}+02$	$1.88 \mathrm{E}+02$	$1.41 \mathrm{E}+02$	$1.94 \mathrm{E}+02$	$0.00 \mathrm{E}+00$	$1.79 \mathrm{E}+02$
F10	AVC	$8.88 \mathrm{E}-16$	$1.95 \mathrm{E}+01$	$1.98 \mathrm{E}+01$	$1.67 \mathrm{E}+01$	$8.62 \mathrm{E}+00$	$1.88 \mathrm{E}-02$	$2.07 \mathrm{E}+01$	$1.55 \mathrm{E}+01$	$1.18 \mathrm{E}+00$	$2.04 \mathrm{E}+01$	5.09E-01	$2.07 \mathrm{E}+01$
	ST	$4.01 \mathrm{E}-31$	$2.55 \mathrm{E}-01$	$1.24 \mathrm{E}-01$	8.63E-02	9.10E-01	$2.74 \mathrm{E}-03$	$2.23 \mathrm{E}-02$	$2.42 \mathrm{E}-01$	5.90E-02	$2.16 \mathrm{E}-01$	$1.94 \mathrm{E}+00$	$1.06 \mathrm{E}-01$
F11	AV	$0.00 \mathrm{E}+00$	$1.26 \mathrm{E}+04$	$1.23 \mathrm{E}+04$	$5.75 \mathrm{E}+03$	$1.52 \mathrm{E}+03$	6.58E-02	$2.83 \mathrm{E}+04$	$2.87 \mathrm{E}+03$	$3.92 \mathrm{E}-02$	$2.47 \mathrm{E}+04$	$1.07 \mathrm{E}-16$	$1.85 \mathrm{E}+04$
	STL	9.00E +00	$1.63 \mathrm{E}+03$	$5.18 \mathrm{E}+02$	$1.78 \mathrm{E}+02$	$2.66 \mathrm{E}+02$	8.82E-02	$4.21 \mathrm{E}+02$	$1.78 \mathrm{E}+02$	3.58E-03	$4.51 \mathrm{E}+02$	$2.03 \mathrm{E}-17$	$2.22 \mathrm{E}+03$
F1 ${ }^{\square}$	AVG		$1.14 \mathrm{E}+10$	$7.73 \mathrm{E}+09$	$1.56 \mathrm{E}+09$	$8.11 \mathrm{E}+06$	$1.15 \mathrm{E}+00$	$3.63 \mathrm{E}+10$	$6.76 \mathrm{E}+07$	6.53E-01	$3.04 \mathrm{E}+10$	6.94E-01	$3.72 \mathrm{E}+10$
		$116 \mathrm{E}-06$	$1.27 \mathrm{E}+09$	$6.72 \mathrm{E}+08$	$1.46 \mathrm{E}+08$	$3.46 \mathrm{E}+06$	$1.82 \mathrm{E}-01$	$1.11 \mathrm{E}+09$	$1.80 \mathrm{E}+07$	$2.45 \mathrm{E}-02$	$9.72 \mathrm{E}+08$	$1.90 \mathrm{E}-02$	$7.67 \mathrm{E}+08$
F13	4VG	3.415-04	$1.91 \mathrm{E}+10$	$1.58 \mathrm{E}+10$	$4.17 \mathrm{E}+09$	$8.96 \mathrm{E}+07$	$1.21 \mathrm{E}+02$	$6.61 \mathrm{E}+10$	$4.42 \mathrm{E}+08$	$1.32 \mathrm{E}+02$	$5.62 \mathrm{E}+10$	$9.98 \mathrm{E}+01$	$6.66 \mathrm{E}+10$
	\sim^{\top}	1.18E-03	$4.21 \mathrm{E}+09$	$1.56 \mathrm{E}+09$	$2.54 \mathrm{E}+08$	$3.65 \mathrm{E}+07$	$1.11 \mathrm{E}+01$	$1.40 \mathrm{E}+09$	$7.91 \mathrm{E}+07$	$1.48 \mathrm{E}+00$	$1.76 \mathrm{E}+09$	$1.31 \mathrm{E}-02$	$2.26 \mathrm{E}+09$

Table 7: Comparison of average running time results (seconds) over 30 runs for larger-scale problems with 1000 variables

ID	Mertic	HHO	GA	PSO	BBO	FPA	GWO	BAT	FA	CS	MFO	TI	DE
F1	AVG	$2.03 \mathrm{E}+00$	$8.27 \mathrm{E}+01$	$8.29 \mathrm{E}+01$	$1.17 \mathrm{E}+02$	$2.13 \mathrm{E}+00$	$4.47 \mathrm{E}+00$	$1.60 \mathrm{E}+00$	$5.62 \mathrm{E}+00$	$5.47 \mathrm{E}+00$	$3.23 \mathrm{E}+00$	2. $1 \mathrm{LE}+00$	$+00$
	STD	$4.04 \mathrm{E}-01$	$5.13 \mathrm{E}+00$	$4.04 \mathrm{E}+00$	$6.04 \mathrm{E}+00$	$2.62 \mathrm{E}-01$	$2.64 \mathrm{E}-01$	$2.08 \mathrm{E}-01$	4.42E-01	$4.00 \mathrm{E}-01$	$2.06 \mathrm{E}-01$	$2 \mathrm{r} 2 \mathrm{E}-01$	2.70¢-31
F2	AVG	$1.70 \mathrm{E}+00$	$8.41 \mathrm{E}+01$	$8.28 \mathrm{E}+01$	$1.16 \mathrm{E}+02$	$2.09 \mathrm{E}+00$	$4.37 \mathrm{E}+00$	$1.61 \mathrm{E}+00$	$2.57 \mathrm{E}+00$	$5.50 \mathrm{E}+00$	$3.25 \mathrm{E}+0$ O	1.3. +00	$2.28 \mathrm{E}+00$
	STD	7.37E-02	$4.65 \mathrm{E}+00$	$4.08 \mathrm{E}+00$	$6.28 \mathrm{E}+00$	8.64E-02	$1.29 \mathrm{E}-01$	$1.02 \mathrm{E}-01$	$3.93 \mathrm{E}-01$	$3.48 \mathrm{E}-01$	$1.56 \mathrm{E}-0$	$1.19]$	$1.16 \mathrm{E}-01$
F3	AVG	$1.17 \mathrm{E}+02$	$1.32 \mathrm{E}+02$	$1.30 \mathrm{E}+02$	$1.65 \mathrm{E}+02$	$5.10 \mathrm{E}+01$	$5.20 \mathrm{E}+01$	$5.23 \mathrm{E}+01$	$3.70 \mathrm{E}+01$	$1.02 \mathrm{E}+02$	5.11 E - 1	$9.75+01$	$5.04 \mathrm{E}+01$
	STD	$5.28 \mathrm{E}+00$	$5.68 \mathrm{E}+00$	$5.73 \mathrm{E}+00$	$7.56 \mathrm{E}+00$	$2.01 \mathrm{E}+00$	$1.93 \mathrm{E}+00$	$2.25 \mathrm{E}+00$	$1.49 \mathrm{E}+00$	$3.73 \mathrm{E}+00$	$2.00 \mathrm{E}+\mathrm{u}$	E+00	$1.98 \mathrm{E}+00$
F4	AVG	$2.05 \mathrm{E}+00$	8.14E+01	$8.24 \mathrm{E}+01$	$1.18 \mathrm{E}+02$	$1.90 \mathrm{E}+00$	$4.27 \mathrm{E}+00$	$1.44 \mathrm{E}+00$	$5.43 \mathrm{E}+00$	$5.14 \mathrm{E}+00$	3.1 $\mathrm{F}^{\mathrm{F}}+00$	1. ${ }^{\text {a }}+00$	$2.21 \mathrm{E}+00$
	STD	7.40E-02	$3.73 \mathrm{E}+00$	$3.91 \mathrm{E}+00$	$5.48 \mathrm{E}+00$	5.83E-02	$1.36 \mathrm{E}-01$	$1.02 \mathrm{E}-01$	$2.76 \mathrm{E}-01$	$2.33 \mathrm{E}-01$	9.28 L	$1.05 \mathrm{E}-$	$8.73 \mathrm{E}-02$
F5	AVG	$2.95 \mathrm{E}+00$	8.16E+01	$8.33 \mathrm{E}+01$	$1.17 \mathrm{E}+02$	$2.04 \mathrm{E}+00$	$4.46 \mathrm{E}+00$	$1.65 \mathrm{E}+00$	$5.61 \mathrm{E}+00$	$5.49 \mathrm{E}+00$	$3.31 \mathrm{E}+00$	${ }^{\text {'3E }}$ + 000	$2.38 \mathrm{E}+00$
	STD	$8.36 \mathrm{E}-02$	$4.13 \mathrm{E}+00$	$4.36 \mathrm{E}+00$	$5.91 \mathrm{E}+00$	$7.79 \mathrm{E}-02$	$1.39 \mathrm{E}-01$	$1.16 \mathrm{E}-01$	$3.01 \mathrm{E}-01$	$2.74 \mathrm{E}-01$... -01	1.ט. 01	$1.30 \mathrm{E}-01$
F6	AVG	$2.49 \mathrm{E}+00$	$8.08 \mathrm{E}+01$	$8.26 \mathrm{E}+01$	$1.17 \mathrm{E}+02$	$1.88 \mathrm{E}+00$	$4.29 \mathrm{E}+00$	$1.47 \mathrm{E}+00$	$5.51 \mathrm{E}+00$	$5.17 \mathrm{E}+\mathrm{C}$	3.131	$1.89 \mathrm{E}+00$	$2.19 \mathrm{E}+00$
	STD	$8.25 \mathrm{E}-02$	$3.96 \mathrm{E}+00$	$3.95 \mathrm{E}+00$	$5.69 \mathrm{E}+00$	4.98E-02	$1.07 \mathrm{E}-01$	$1.03 \mathrm{E}-01$	$2.87 \mathrm{E}-01$	$2.35 \mathrm{E}-$	1.00 -01	,3E-02	$1.02 \mathrm{E}-01$
F7	AVG	$8.20 \mathrm{E}+00$	$8.26 \mathrm{E}+01$	$8.52 \mathrm{E}+01$	$1.18 \mathrm{E}+02$	$4.79 \mathrm{E}+00$	$7.08 \mathrm{E}+00$	$4.22 \mathrm{E}+00$	$6.89 \mathrm{E}+00$	1.08 E -	5. $\mathrm{E}+00$	$7.23 \mathrm{E}+00$	$4.95 \mathrm{E}+00$
	STD	$1.69 \mathrm{E}-01$	$4.56 \mathrm{E}+00$	$3.94 \mathrm{E}+00$	$6.10 \mathrm{E}+00$	$1.02 \mathrm{E}-01$	$7.56 \mathrm{E}-02$	8.98E-02	$2.02 \mathrm{E}-01$	$3.86 \mathrm{E}-01$	${ }^{1} \mathrm{E}-01$	$1.31 \mathrm{E}-01$	$1.43 \mathrm{E}-01$
F8	AVG	$4.86 \mathrm{E}+00$	$8.47 \mathrm{E}+01$	$8.36 \mathrm{E}+01$	$1.18 \mathrm{E}+02$	$3.18 \mathrm{E}+00$	$5.21 \mathrm{E}+00$	$2.45 \mathrm{E}+00$	$6.04 \mathrm{E}+00$	$7{ }^{\text {cn }} 90$	4.0. \quad O	$3.84 \mathrm{E}+00$	$3.23 \mathrm{E}+00$
	STD	$1.03 \mathrm{E}+00$	$3.68 \mathrm{E}+00$	$3.80 \mathrm{E}+00$	$5.52 \mathrm{E}+00$	4.73E-01	$1.78 \mathrm{E}-01$	$2.88 \mathrm{E}-01$	$2.69 \mathrm{E}-01$	66E-01	$120 \mathrm{E}-01$	$4.12 \mathrm{E}-01$	$8.69 \mathrm{E}-02$
F9	AVG	$3.77 \mathrm{E}+00$	8.09E+01	$8.33 \mathrm{E}+01$	$1.15 \mathrm{E}+02$	$2.84 \mathrm{E}+00$	$4.72 \mathrm{E}+00$	$2.33 \mathrm{E}+00$	$5.89 \mathrm{E}+00$	3.90E+00	3. E+00	$2.70 \mathrm{E}+00$	$3.20 \mathrm{E}+00$
	STD	$8.87 \mathrm{E}-01$	$3.59 \mathrm{E}+00$	$3.88 \mathrm{E}+00$	$5.94 \mathrm{E}+00$	4.30E-01	$1.19 \mathrm{E}-01$	$2.88 \mathrm{E}-01$	$2.55 \mathrm{E}-01$	3.34E-01	1.2 E-01	$4.71 \mathrm{E}-01$	$5.50 \mathrm{E}-01$
F10	AVG	$3.75 \mathrm{E}+00$	$8.24 \mathrm{E}+01$	$8.36 \mathrm{E}+01$	$1.17 \mathrm{E}+02$	$2.96 \mathrm{E}+00$	$4.80 \mathrm{E}+00$	$2.46 \mathrm{E}+00$	$5.98 \mathrm{E}+00$	-6E+00	4. E+00	$2.84 \mathrm{E}+00$	$3.41 \mathrm{E}+00$
	STD	$8.75 \mathrm{E}-01$	$4.02 \mathrm{E}+00$	$3.99 \mathrm{E}+00$	$5.90 \mathrm{E}+00$	$3.74 \mathrm{E}-01$	$1.14 \mathrm{E}-01$	$4.67 \mathrm{E}-01$	$2.91 \mathrm{E}-01$	3.5	L1E-01	5.39E-01	$3.01 \mathrm{E}-01$
F11	AVG	$4.17 \mathrm{E}+00$	$8.23 \mathrm{E}+01$	$8.38 \mathrm{E}+01$	$1.18 \mathrm{E}+02$	$3.16 \mathrm{E}+00$	$4.95 \mathrm{E}+00$	$2.61 \mathrm{E}+00$	6.03 F uv	$6.43 \mathrm{E}+00$	$4.22 \mathrm{E}+00$	$3.03 \mathrm{E}+00$	$3.38 \mathrm{E}+00$
	STD	$5.56 \mathrm{E}-01$	$4.41 \mathrm{E}+00$	$3.97 \mathrm{E}+00$	$6.02 \mathrm{E}+00$	5.50E-01	$8.65 \mathrm{E}-02$	$3.95 \mathrm{E}-01$	2.51 -01	11	$1.20 \mathrm{E}-01$	$3.95 \mathrm{E}-01$	$9.95 \mathrm{E}-02$
F12	AVG	$1.90 \mathrm{E}+01$	$8.64 \mathrm{E}+01$	$8.85 \mathrm{E}+01$	$1.23 \mathrm{E}+02$	$9.09 \mathrm{E}+00$	$1.06 \mathrm{E}+01$	$8.66 \mathrm{E}+00$	9.1 i +00		$9.67 \mathrm{E}+00$	$1.53 \mathrm{E}+01$	$9.14 \mathrm{E}+00$
	STD	$3.31 \mathrm{E}+00$	$4.47 \mathrm{E}+00$	$4.42 \mathrm{E}+00$	$6.20 \mathrm{E}+00$	$1.39 \mathrm{E}+00$	$4.33 \mathrm{E}-01$	$1.47 \mathrm{E}+00$	3.62.	$3.53 \mathrm{E} \quad \mathrm{j0}$	$4.04 \mathrm{E}-01$	$2.54 \mathrm{E}+00$	$1.14 \mathrm{E}+00$
F13	AVG	$1.89 \mathrm{E}+01$	$8.64 \mathrm{E}+01$	8.90E+01	$1.23 \mathrm{E}+02$	$9.28 \mathrm{E}+00$	$1.05 \mathrm{E}+01$	$8.74 \mathrm{E}+00$	${ }^{2} 4 \mathrm{E}+00$	$1.8{ }^{\circ}+01$	$9.66 \mathrm{E}+00$	$1.46 \mathrm{E}+01$	$9.34 \mathrm{E}+00$
	STD	$1.56 \mathrm{E}+00$	$4.40 \mathrm{E}+00$	$4.20 \mathrm{E}+00$	$6.29 \mathrm{E}+00$	$1.50 \mathrm{E}+00$	$4.56 \mathrm{E}-01$	$1.38 \mathrm{E}+00$	3.. ${ }^{1}$...0E-01	$3.91 \mathrm{E}-01$	$2.24 \mathrm{E}+00$	$1.24 \mathrm{E}+00$

always achieved to the best results on F14-F23 probin ns in comparison with other approaches. Based on results for F24-F29 hybrid CM functions in $\mathrm{T} \sim 1.3$, the HHO is capable of achieving to high-quality solutions and outperforming other compe ${ }^{\circ}+$ ors. The p -values in Table 24 also confirm the meaningful advantage of HHO compared to vin antimizers for the majority of cases.

Table 8: Results of be. \quad marı functions (F14-F29)

Benchmark		HHO	GA	PSO	BBO	FPA	GWO	BAT	FA	CS	MFO	TLBO	DE
F14	AVG	9.98E-01	$9.98 \mathrm{E}-01$	$1.39 \mathrm{E}+00$	$9.98 \mathrm{E}-01$	$9.98 \mathrm{E}-\mathrm{u}$		$1.27 \mathrm{E}+01$	$3.51 \mathrm{E}+00$	1.27E+01	$2.74 \mathrm{E}+00$	$9.98 \mathrm{E}-01$	$1.23 \mathrm{E}+00$
	STD	$9.23 \mathrm{E}-01$	4.52E-16	$4.60 \mathrm{E}-01$	4.52E-16	$2.00 \mathrm{E}-04$:1E+00	$6.96 \mathrm{E}+00$	$2.16 \mathrm{E}+00$	$1.81 \mathrm{E}-15$	$1.82 \mathrm{E}+00$	4.52E-16	$9.23 \mathrm{E}-01$
F15	AVG	3.10E-04	$3.33 \mathrm{E}-02$	$1.61 \mathrm{E}-03$	$1.66 \mathrm{E}-02$	$6.88 \mathrm{E}-04$	$6.24 \pm$	$3.00 \mathrm{E}-02$	1.01E-03	$3.13 \mathrm{E}-04$	$2.35 \mathrm{E}-03$	$1.03 \mathrm{E}-03$	$5.63 \mathrm{E}-04$
	STD	1.97E-04	$2.70 \mathrm{E}-02$	4.60E-04	8.60E-03	1.55E-04	$1.25 \mathrm{E}-02$	$3.33 \mathrm{E}-02$	4.01E-04	2.99E-05	4.92E-03	$3.66 \mathrm{E}-03$	$2.81 \mathrm{E}-04$
F16	AVG	$-1.03 \mathrm{E}+00$	-3.78E-01	$-1.03 \mathrm{E}+00$	-8.30E-01	-00	$-1.03 \mathrm{E}+00$	-6.87E-01	$-1.03 \mathrm{E}+00$				
	STD	6.78E-16	$3.42 \mathrm{E}-01$	$2.95 \mathrm{E}-03$	$3.16 \mathrm{E}-0^{\prime}$	$6.78 \mathrm{E}-1 \mathrm{c}$	6.78E-16	$8.18 \mathrm{E}-01$	6.78E-16	6.78E-16	6.78E-16	6.78E-16	6.78E-16
F17	AVG	3.98E-01	$5.24 \mathrm{E}-01$	4.00E-01	5.49 E	$3.98 \mathrm{E}-01$	$3.98 \mathrm{E}-01$	$3.98 \mathrm{E}-01$	3.98E-01	3.98E-01	3.98E-01	3.98E-01	8E-01
	STD	$2.54 \mathrm{E}-06$	6.06E-02	1.39E-03	$6.05 \mathrm{E}-\mathrm{v}$ -	1.69E-16	1.69E-16	$1.58 \mathrm{E}-03$	1.69E-16	1.69E-16	1.69E-16	$1.69 \mathrm{E}-16$	1.69E-16
F18	AVG	$3.00 \mathrm{E}+00$	$3.00 \mathrm{E}+00$	$3.10 \mathrm{E}+00$	3. $\mathrm{E}+00$	${ }^{\square}+$	$3.00 \mathrm{E}+00$	1.47E+01	$3.00 \mathrm{E}+00$				
	STD	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	7.60E-02	¢ 0 E +00	0.00上 J	4.07E-05	$2.21 \mathrm{E}+01$	$0.00 \mathrm{E}+00$				
F19	AVG	$-3.86 \mathrm{E}+00$	$-3.42 \mathrm{E}+00$	$-3.86 \mathrm{E}+00$	$3.78 \mathrm{E}+$	$-3.86 \mathrm{E}+00$	$-3.86 \mathrm{E}+00$	$-3.84 \mathrm{E}+00$	$-3.86 \mathrm{E}+00$				
	STD	$2.44 \mathrm{E}-03$	3.03E-01	1.24E-03	$1.26 \mathrm{E}-$	3.1 -15	3.14E-03	1.41E-01	$3.16 \mathrm{E}-15$	3.16E-15	$1.44 \mathrm{E}-03$	3.16E-15	3.16E-15
F20	AVG	-3.322	-1.61351	-3.11088		2951	-3.25866	-3.2546	-3.28105	-3.322	${ }^{-3.23509}$	-3.24362	-3.27048
	STD	0.137406	0.46049	0.02912	0.3578	. 019514	0.064305	0.058943	0.063635	$1.77636 \mathrm{E}-15$	0.064223	0.15125	0.058919
F21	AVG	-10.1451	-6.66177	-4.14*	-8.31508	-5.21514	-8.64121	-4.2661	-7.67362	-5.0552	-6.8859	-8.64525	-9.64796
	STD	0.885673	3.732521	$0.9{ }^{1}$ /78	9.883867	0.008154	2.563356	2.554009	3.50697	$1.77636 \mathrm{E}-15$	3.18186	1.76521	1.51572
F22	AVG	-10.4015	-5.58399	-6.1.1045	18	-5.34373	-10.4014	-5.60	-9.63827	-5.0877	-8.26492	-10.2251	-9.74807
	STD	1.352375	2.605837	1067628	2.597~08	0.053685	0.000678	3.022612	2.293901	8.88178E-16	3.076809	0.007265	1.987703
F23	AVG	-10.5364	-4.69882	-4.72.	-6.2351	-5.29437	-10.0836	-3.97284	-9.75489	-5.1285	${ }^{-7.65923}$	-10.0752	-10.5364
	STD	0.927655	3.256702	1.742	3.78462	0.356377	1.721889	3.008279	2.345487	$1.77636 \mathrm{E}-15$	3.576927	1.696222	8.88E-15
F24	AVG	396.8256	626.838	768 75	493.0129	518.7886	486.5743	1291.474	471.9752	469.0141	412.4627	612.5569	431.0767
	STD	79.58214	101.2255	1641	102.6058	47.84199	142.9028	150.4189	252.1018	60.62538	68.38819	123.2403	64.1864
F25	AVG	910	999	1184.	935.4693	1023.799	985.4172	1463.423	953.8902	910.1008	947.9322	967.088	917.6204
	STD	0	$2^{\text {c }}$. 4366	33.02676	9.61349	31.85965	29.95368	68.41612	11.74911	0.036659	27.06628	27.39906	1.052473
F26	AVG	910	8.9091	$1178 . ?$	934.2718	1018.002	973.5362	1480.683	953.5493	910.1252	940.1221	983.774	917.346
	STD	0	71°	35.28	8.253209	34.87908	22.45008	45.55006	14.086	0.047205	21.68256	45.32275	0.897882
F27	AVG	910	1002.0	11.088	939.7644	1010.392	969.8538	1477.919	947.7667	910.1233	945.4266	978.7344	917.3067
	STD	0	${ }_{6}^{6.66321}$	97978	23.07814	31.51188	19.51721	60.58827	11.18408	0.049732	26.79031	38.22729	0.861945
F28	AVG	860.8^{\prime}.	1512.4	1711.981	1068.631	1539.357	1337.671	1961.526	1016.389	1340.078	1455.918	1471.879	1553.993
	STD	0.651: 2	94.6455's	35.18377	201.9045	42.93441	191.0662	58.46188	270.6854	134.183	36.06884	268.6238	96.35255
F29	AVG	558.9 ${ }^{\text {c }}$?	1937.396	2101.145	1897.439	2033.614	1909.091	2221.404	1986.206	1903.852	1882.974	1883.773	1897.031
	STD	5.11235%	11.259 ${ }^{\prime}$	29.74533	8.823239	30.2875	6.567542	35.54849	18.88722	185.7944	6.528261	3.493192	4.203909

4.6 Engineeriı。' 'enchmark sets

In this se ${ }^{\text {tic }}$, the proposed HHO is applied to six well-known benchmark engineering problems. Tackling , ngineering design tasks using P-metaheuristics is a well-regarded research direction in the previous works [60,61]. The results of HHO is compared to various conventional and modified optimizers proposed in previous studies. Table 9 tabulates the details of the tackled engineering design tasks.

Table 9: Brief description of the tackled engineering design tasks. (D: dimension, CV: continuous variables, DV:Discrete variables, NC: Number of constraints, AC: Active constraints, F/S: ratio of the feasible solutions in the solution domain (F) to the whole search domain(S), OB: Objective.)

No.	Name	D	CV	DV	NC	AC	F/S	OB
1	Three-bar truss	2	2	0	3	NA	NA	Minimizr $\mathrm{we}^{\text {e }}$ ht
2	Tension/compression spring	3	3	0	4	2	0.01	Minimi e we ${ }^{\text {, ht }}$
3	Pressure vessel	4	2	2	4	2	0.40	Minimize ${ }_{\text {c it }}$
4	Welded beam	4	4	0	7	2	0.035	Minimı cost
5	Multi-plate disc clutch brake	5	0	5	8	1	0.700	M \% ... ize wt. _ht
6	Rolling element bearing	10	9	1	9	4	0.015	${ }^{\text {a axir ac }}$ Jynamic load

4.6.1 Three-bar truss design problem

This problem can be regarded as one of the most studied ce es ir previous works [62]. This problem can be described mathematically as follows:

$$
\begin{aligned}
\text { Consider } & \vec{X}=\left[x_{1} x_{2}\right]=\left[A_{1} A_{2}\right], \\
\text { Minimise } & f(\vec{X})=\left(2 \sqrt{2} X_{1}+v_{2}\right) \wedge 1, \\
\text { Subject to } & g_{1}(\vec{X})=\frac{\sqrt{2} x_{1} \cdot x_{2}}{\sqrt{2} x^{?} r_{1} x_{2}} P-\sigma \leq 0, \\
& g_{2}(\vec{X})=\frac{r_{2}}{\sqrt{2}}+\frac{x_{1} x_{2}}{} P-\sigma \leq 0, \\
& g_{3}(\vec{X})=\frac{V^{\text {n }} r_{2}+x_{1}}{} P-\sigma \leq 0, \\
\text { Variable range } & 0 \leq x, x_{2} \leq 1, \\
\text { where } & 1=100 \mathrm{cr}, \quad P=2 \mathrm{KN} / \mathrm{cm}^{2}, \sigma=2 \mathrm{KN} / \mathrm{cm}^{2}
\end{aligned}
$$

Figure 13 demonstrates the sh pe f the formulated truss and the related forces on this structure. With regard to Fig. 13 and t_{ι}, forr ulation, we have two parameters: the area of bars 1 and 3 and area of bar 2. The objec ${ }^{+}$ve of thıs task is to minimize the total weight of the structure. In addition, this design case has seveı ${ }^{1}$ constraints including stress, deflection, and buckling.

Figure 13: Three-bar truss design problem
The HHO is applied to this case based on 30 independent runs with 30 hawks and 500 iterations in each run. Since this benchmark case has some constraints, we need to integrate the HHO with
a constraint handling technique. For the sake of simplicity, we used a barrier penalty approach [63] in the HHO. The results of HHO are compared to those reported for DFDS [64], MVO [65], GOA [62], MFO [56], PSO-DE [66], SSA [60], MBA [67], Tsa [68], Ray and ‘ \quad : n [69], and CS [34] in previous literature. Table 10 shows the detailed results of the proposed HHO con-pared to other techniques. Based on the results in Table 10, it is observed that HHO car rer al very competitive results compared to DEDS, PSO-DE, and SSA algorithms. Additionally, ${ }^{+}$, e HHO outperforms other optimizers significantly. The results obtained show that the HHO .. rapable of dealing with a constrained space.

Table 10: Comparison of results for three-bar truss desig. rroblem.

Algorithm	Optimal values for variables		Op mal weight
	x_{1}	x_{2}	
HHO	0.788662816	$0.40828313383{ }^{\text {® }} \mathrm{J}$	~งJ. 8958434
DEDS [64]	0.78867513	0.40824828	263.8958434
MVO [65]	0.78860276	$0.4084530700{ }^{\text {n }}$, 0	263.8958499
GOA [62]	0.788897555578973	$0.4076195 \% \cdot 1515 \%$	263.895881496069
MFO [56]	0.788244771	$0.409466905784{ }^{1} 1$	263.8959797
PSO-DE [66]	0.7886751	$0.40824{ }^{\text {- }}$	263.8958433
SSA [60]	0.788665414	0.408.75784. ${ }^{\text {15 }} 7$	263.8958434
MBA [67]	0.7885650	0.408559 ,	263.8958522
Tsa [68]	0.788	$0{ }^{-\cdots}$	263.68
Ray and Sain [69]	0.795	0.39 ¢	264.3
CS [34]	0.78867	$\cdots 10902$	263.9716

4.6.2 Tension/compression spring desig ?

In this case, our intention is to minir: ${ }^{\circ}$ th weight of a spring. Design variables for this case are wire diameter (d), mean coil diamett. (D), and the number of active coils (N). For this case, the constraints on shear stress, suroe frequency, and minimum deflection should be satisfied during the weight optimization. The rojectı e and constraints of this problem can be formulated as follows:

$$
\begin{aligned}
& \text { Cor sider } \vec{\sim}=\left[z_{1} z_{2} z_{3}\right]=[d D N], \\
& \text { Minin } \cdot \operatorname{re} f(\vec{z})=\left(z_{3}+2\right) z_{2} z_{1}^{2}, \\
& \text { su ject to } \\
& \left.g_{1}, \vec{\imath}\right)=1-\frac{z_{2}^{3} z_{3}}{71785 z_{1}^{4}} \leq 0, \\
& \\
& (\vec{z})=\frac{4 z_{2}^{2}-z_{1} z_{2}}{12566\left(z_{2} z_{1}^{3}-z_{1}^{4}\right)}+\frac{1}{5108 z_{1}^{2}} \leq 0, \\
& g_{3}(\vec{z})=1-\frac{140.45 z_{1}}{z_{2}^{2} z_{3}} \leq 0 \\
& g_{4}(\vec{z})=\frac{z_{1}+z_{2}}{1.5}-1 \leq 0,
\end{aligned}
$$

There are e eral optimizers previously applied to this case such as the SSA [60], TEO [70], MFO [56], SFS ${ }^{\text {¹ }}$], GWO [55], WOA [18], method presented by Arora [72], GA2 [73], GA3 [74], method presented by Belegundu [75], CPSO [76], DEDS [64], GSA [25], DELC [77], HEAA [78], WEO [79], BA [80], ESs [81], Rank-iMDDE [82], CWCA [14], and WCA [61]. The results of HHO are compared to the aforementioned techniques in Table 11.

Table 11: Comparison of results for tension/compression spring problem.

Algorithms	d	D	N	Optim 2 cost
HHO	0.051796393	0.359305355	11.138859	$0.012^{\text {r }}$ 〕.13
SSA [60]	0.051207	0.345215	12.004032	$0.01<0763$
TEO [70]	0.051775	0.3587919	11.16839	0.C « 45
MFO [56]	0.051994457	0.36410932	10.868422	¢ J126 39
SFS [71]	0.051689061	0.356717736	11.288966	0.6. ${ }^{\text {¢ }} 65233$
GWO [55]	0.05169	0.356737	11.28885	n126um
WOA [18]	0.051207	0.345215	12.004032	$0.01 .{ }^{2} 763$
Arora [72]	0.053396	0.399180	9.185400	${ }^{\text {- } 12730}$
GA2 [73]	0.051480	0.351661	11.6322 C	0.012704
GA3 [74]	0.051989	0.363965	10.890592	?. 012681
Belegundu [75]	0.05	0.315900	$14.2{ }^{\text {r }} \mathrm{J000}$	0.012833
CPSO [76]	0.051728	0.357644	11.24543	0.012674
DEDS [64]	0.051689	0.356717	11.28 ${ }^{\text {² } 65}$	0.012665
GSA [25]	0.050276	0.323680	. 5.525410	0.012702
DELC [77]	0.051689	0.356717	11.^ 896	0.012665
HEAA [78]	0.051689	0.356729	$11.2882^{\text {r }} 3$	0.012665
WEO [79]	0.051685	0.356630	11.294103	0.012665
BA [80]	0.05169	0.35673	11.. 985	0.012665
ESs [81]	0.051643	0.355360	11.97926	0.012698
Rank-iMDDE [82]	0.051689	0.3567171 ¢	11.288999	0.012665
CWCA [14]	0.051709	0.35710734	11.270826	0.012672
WCA [61]	0.05168	0.3565	11.30041	0.012665

Table 11 shows that the proposed HHO can a^{h}.eve to high quality solutions very effectively when tackling this benchmark problem and it nos sthe best design. It is evident that results of HHO are very competitive to those of SFS an, ${ }^{1}$ IEO.

4.6.3 Pressure vessel design problem

In this well-regarded case, we min miz the fabrication cost and it has four parameters and constraints. The variables of this u se are $\left(x_{1}-x_{4}\right): T_{s}\left(x_{1}\right.$, thickness of the shell), $T_{h}\left(x_{2}\right.$, thickness of the head), $r\left(x_{3}\right.$, inner radius, $L\left(x_{4}\right.$, length of the section without the head). The overall configuration of this prob $\mathrm{m} / \mathrm{s} \mathrm{sf}$ Jwn in Fig. 14. The formulation of this test case is as

Figure 14: Pressure vessel problem
follows：
Consider $\vec{z}=\left[z_{1} z_{2} z_{3} z_{4}\right]=\left[T_{s} T_{h} R L\right]$,
$\operatorname{Minimize} f(\vec{z})=0.6224 z_{1} z_{3} z_{4}+1.7781 z_{2} z_{2}^{3}+3.1661 z_{1}^{2} z_{4}+19.84 z_{1}^{2} z_{3}$ ，
Subject to

$$
\begin{aligned}
& g_{1}(\vec{z})=-z_{1}+0.0193 z_{3} \leq 0, \\
& g_{2}(\vec{z})=-z_{3}+0.00954 z_{3} \leq 0, \\
& g_{3}(\vec{z})=-\Pi z_{3}^{2} z_{4}-\frac{4}{3} \Pi z_{3}^{3}+1,296,000 \leq 0, \\
& g_{4}(\vec{z})=z_{4}-240 \leq 0,
\end{aligned}
$$

The design space for this case is limited to： $0 \leq z_{1}, z_{2} \leq y_{9}$ ，（1）$z_{3}, z_{4} \leq 200$ ．The results of HHO are compared to those of GWO［55］，GA［73］，HPSO［87］，G QPSO［84］，WEO［79］，IACO ［85］，BA［80］，MFO［56］，CSS［86］，ESs［81］，CPSO［76］，工AN～\＆［87］，MDDE［88］，DELC［77］， WOA［18］，GA3［74］，Lagrangian multiplier（Kannan）［18］，a d d Branch－bound（Sandgren）［18］． Table 12 reports the optimum designs attained by HH心 an＇listed optimizers．Inspecting the results in Table 12，we detected that the HHO is the bes nptimizer in dealing with problems and can attain superior results compared to other tech．rues．

Table 12：Comparison of results $\wedge r \mu_{1} \ldots$ re vessel design problem

Algorithms	$T_{s}\left(x_{1}\right)$	I 1	$R\left(x_{3}\right)$	$L\left(x_{4}\right)$	Optimal cost
HHO	0.81758383	$0.4 .5{ }^{7}$ ¢ヶ，	42.09174576	176.7196352	6000.46259
GWO［55］	0.8125	0.434	42.089181	176.758731	6051.5639
GA［73］	0.812500	501	42.097398	176.654050	6059.9463
HPSO［83］	0.812500	－${ }^{1} 37500$	42.0984	176.6366	6059.7143
G－QPSO［84］	0.812500	0．43، ${ }^{1} 0$	42.0984	176.6372	6059.7208
WEO［79］	0.812500	0.437500	42.098444	176.636622	6059.71
IACO［85］	$0.812^{\circ} \mathrm{J}$	0.437500	42.098353	176.637751	6059.7258
BA［80］	0．81．500	． 437500	42.098445	176.636595	6059.7143
MFO［56］	0.81	． 4375	42.098445	176.636596	6059.7143
CSS［86］	＇ 812500	0.437500	42.103624	176.572656	6059.0888
ESs［81］	J．812 30	0.437500	42.098087	176.640518	6059.7456
CPSO［76］	0.81 500	0.437500	42.091266	176.746500	6061.0777
BIANCA［87］	2500	0.437500	42.096800	176.658000	6059.9384
MDDE［88］	0.81	0.437500	42.098446	176.636047	6059.701660
DELC［77］	0.812500	0.437500	42.0984456	176.6365958	6059.7143
WOA［18］	－ 812500	0.437500	42.0982699	176.638998	6059.7410
GA3［74］	0．8． 2500	0.437500	42.0974	176.6540	6059.9463
Lagrangian multiplier（Ka nan，＇18］	1.125000	0.625000	58.291000	43.6900000	7198.0428
Branch－bound（Sandgrer［18］	1.125000	0.625000	47.700000	117.701000	8129.1036

4．6．4 Welded bean． 1 sig 1 problem

Purpose of the $n-$－known engineering case is to discover the best manufacturing cost with regard to a series of design constraints．A schematic view of this problem is illustrated in Fig． 15. The design variahles an＊．ickness of weld (h) ，length (l) ，height (t) ，and thickness of the bar (b) ．

This case ca 1 be fe＂mulated as follows：

Figure 15: Welded beam design problem

Consider $\vec{z}=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=[h, l, t, b]$,
$\operatorname{Minimize} f(\vec{z})=1.10471 z_{1}^{2} z_{2}+0.04811 z_{3} z_{4}\left(14.6, ~ z_{2}\right)$.
Subject to

$$
\begin{aligned}
& g_{1}(\vec{z})=\tau(\vec{z})-\tau_{\max } \leq 0, \\
& g_{2}(\vec{z})=\sigma(\vec{z})-\sigma_{\max } \leq 0, \\
& g_{3}(\vec{z})=\delta(\vec{z})-\delta_{\max } \leq 0, \\
& g_{4}(\vec{z})=z_{1}-z_{4} \leq 0, \\
& g_{5}(\vec{z})=P-P_{c}(\vec{z}) \leq 0, \\
& g_{6}(\vec{z})=0.125-z_{1} \leq 0, \\
& \left.g_{7}(\vec{z})=1.10471 z_{1}^{2}+0.04811 z_{3}, \quad-z_{2}\right)-5.0 \leq 0,
\end{aligned}
$$

Variable range

$$
0.05 \leq z_{1} \leq 2.00, \quad r .25-z_{2} \leq 1.30, \quad 2.00 \leq z_{3} \leq 15.0
$$

where

$$
\begin{aligned}
& \tau(\vec{z})=\sqrt{\tau^{\prime 2}+2 \tau^{\prime} \tau^{\prime \prime}} 2 \kappa \tau^{\prime \prime \prime}, \tau^{\prime}=\frac{P}{\sqrt{2} z_{1} z_{2}}, \tau^{\prime \prime}=\frac{M R}{J}, M=P\left(L+\frac{z_{2}}{2}\right), \\
& R=\sqrt{\frac{z_{2}^{2}}{4}+\left(\frac{z_{1}+3}{n}\right)}, \iota^{\prime}=2\left\{\sqrt{2} z_{1} z_{2}\left[\frac{z_{2}^{2}}{12}+\left(\frac{z_{1}+z_{3}}{2}\right)^{2}\right]\right\}, \sigma(\vec{z})=\frac{6 P L}{z_{4} z_{3}^{2}}, \\
& \delta(\vec{z})=\frac{4 P L^{3}}{E z^{3}}-, P_{c}(\vec{\sim})=\frac{4.013 E \sqrt{\frac{z_{2}^{2} z_{4}^{6}}{36}}}{L^{2}}\left(1-\frac{z_{3}}{2 L} \sqrt{\frac{E}{4 G}}\right), \\
& P=6000 / h L-1, i n, E=30 \times 10^{6} p s i, G=12 \times 10^{6} p s i,
\end{aligned}
$$

The optimal esults of HHO versus those attained by RANDOM [89], DAVID [89], SIMPLEX [89], APPROX ,99], G 1 [73], GA2 [63], HS [90], GSA [18], ESs [81], and CDE [91] are represented in Table 13. From Table 13, it can be seen that the proposed HHO can reveal the best design settings with the innimum fitness value compared to other optimizers.

4.6.5 Multi-pıate disc clutch brake

In this discrete benchmark task, the intention is to optimize the total weight of a multiple disc clutch brake with regard to five variables: actuating force, inner and outer radius, number of

Table 13: Comparison of results for welded beam design problem

Algorithm	h	l	t	b	Opt nal cost
HHO	0.204039	3.531061	9.027463	0.206147	1.7 ${ }^{\text {, }}$ (1) 57
RANDOM [89]	0.4575	4.7313	5.0853	0.66	4.1185
DAVID [89]	0.2434	6.2552	8.2915	0.2444	2.3. 41
SIMPLEX [89]	0.2792	5.6256	7.7512	0.2796	2.5,07
APPROX [89]	0.2444	6.2189	8.2915	0.2444	<. ${ }^{\text {Q }} 15$
GA1 [73]	0.248900	6.173000	8.178900	0.253300	433116
GA2 [63]	0.208800	3.420500	8.997500	0.21000 r	1.748310
HS [90]	0.2442	6.2231	8.2915	0.2443	4.3807
GSA [18]	0.182129	3.856979	10	0.202376	1.879952
ESs [81]	0.199742	3.61206	9.0375	$0.2^{\text {r }}$ งu ${ }^{\text {2 }}$	1.7373
CDE [91]	0.203137	3.542998	9.033498	0.: 06179	1.733462

friction surfaces, and thickness of discs [92].
This problem has eight constraints according to the c. ndition, of geometry and operating requirements. The feasible area for this case includes practically. 9% of the solution space. However, there are few works that considered this problem in the test. The optimal results of proposed HHO in compared to those revealed by TLBO [93], WンA [61], and PVS [92] algorithms. Table 14 shows the attained results of different optimiz , ive unis test case. From Table 14, we can recognize that the HHO attains the best rank and can •יtperform the well-known TLBO, WCA, and PVS in terms of quality of solutions.

$$
f(x)=\Pi\left(r_{o}^{2}-r_{i}^{2}\right) t(Z+1) \rho
$$

subject to:

$$
\begin{aligned}
& g_{1}(x)=r_{o}-r_{i}-\Delta r \geq 0 \\
& g_{2}(x)=l_{\max }-(Z+1)(t+\delta) \geq \\
& g_{3}(x)=P_{\max }-P_{r z} \geq 0 \\
& g_{4}(x)=P_{\max } v_{s r \max }-P_{r z} \nu_{s r}-r \\
& g_{5}(x)=v_{s r \max }-v_{s r} \geq 0 \\
& g_{6}=T_{\max }-T \geq 0 \\
& g_{7}(x)=M_{h}-s M_{s} \geq \\
& g_{8}(x)=T \geq 0
\end{aligned}
$$

where,
$M_{h}=\frac{2}{3} \mu F Z \frac{r_{o}^{3}-\frac{r_{i}^{2}}{r}-r_{i}^{3}}{-\quad \vdash_{r z}=\frac{F}{\Pi\left(r_{o}^{2}-r_{i}^{2}\right)}, ~}$
$v_{r z}=\frac{2 \Pi n\left(r^{3}-{ }^{3}\right)}{90\left(r_{o}^{2}-r_{\imath}^{2}\right)}, T=\frac{I_{z} \Pi n}{30\left(M_{h}+M_{f}\right)}$
$\Delta r=20 \mathrm{mi}_{i} \quad I=55 \mathrm{kgmm}^{2}, P_{\max }=1 \mathrm{MPa}, F_{\max }=1000 \mathrm{~N}$,
$T_{\text {max }}='$ 'วs \quad. $=0.5, s=1.5, M_{s}=40 \mathrm{Nm}, M_{f}=3 \mathrm{Nm}, n=250 \mathrm{rpm}$,
$v_{s r_{\text {max }}}=1^{\prime} \mathrm{m} / \mathrm{s}, l_{\text {max }}=30 \mathrm{~mm}, r_{i \text { min }}=60, r_{i \text { max }}=80, r_{o \text { min }}=90$,
$r_{o \text { max }}=110, t_{\min }=1.5, t_{\max }=3, F_{\min }=600, F_{\max }=1000, Z_{\text {min }}=2, Z_{\max }=9$,

Table 14: Comparison of results for multi-plate disc clutch brake

Algorithm	r_{i}	r_{0}	t	F	Z	Optimal
HHO	69.9999999992493	90	1	1000	2.312781994	$0.2597 ¢$
TLBO [93]	70	90	1	810	3	0.313656
WCA [61]	70	90	1	910	3	$0.31,05$
PVS [92]	70	90	1	980	3	0.366

4.6.6 Rolling element bearing design problem

This engineering problem has 10 geometric variables, nine cons "qir ss considered for assembly and geometric-based restrictions and our purpose for tackling th: case : to optimize (maximize) the dynamic load carrying capacity. The formulation of this te t case s described as follows:

$$
\begin{aligned}
& \text { Maximize } C_{d}=f_{c} Z^{2 / 3} D_{b}^{1.8} \quad \text { if } D \leq 25.4 m m \\
& C_{d}=3.647 f_{c} Z^{2 / 3} D_{b}^{1.4} \quad \text { if } D>25.4 \mathrm{~mm}
\end{aligned}
$$

Subject to

$$
\begin{aligned}
& g_{1}(\vec{z})=\frac{\phi_{0}}{2 \sin ^{-1}\left(D_{b} / D_{m}\right)}-Z+1 \leq 0, \\
& g_{2}(\vec{z})=2 D_{b}-K_{D \min }(D-d)>0, \\
& g_{3}(\vec{z})=K_{D \max }(D-d)-2 D_{b} \geq 0, \\
& g_{4}(\vec{z})=\zeta B_{w}-D_{b} \leq 0, \\
& g_{5}(\vec{z})=D_{m}-0.5(D+d) \geq 0, \\
& g_{6}(\vec{z})=(0.5+e)(D+d)-D_{m}-n \\
& g_{7}(\vec{z})=0.5\left(D-D_{m}-D_{b}\right)-\epsilon D_{b}=0, \\
& g_{8}(\vec{z})=f_{i} \geq 0.515, \\
& g_{9}(\vec{z})=f_{o} \geq 0.515,
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{c}=37.91\left[1+\left\{1 . .^{1}\left(\frac{1-\gamma}{1+\gamma}\right)^{1.72}\left(\frac{f_{i}\left(2 f_{o}-1\right)}{f_{o}\left(2 f_{i}-1\right)}\right)^{0.41}\right\}^{10 / 3}\right]^{-0.3} \\
& \times\left[\begin{array}{c}
{\frac{0^{0.3}\left(1-\gamma^{\prime}\right.}{}{ }^{39}}_{\left(1+\gamma^{1 / 3}\right.} \\
j
\end{array} \frac{2 f_{i}}{2 f_{i}-1}\right]^{0.41} \\
& x=\left[\{(D-\lambda) 2-3(T / 4)\}^{2}+\left\{D / 2-T / 4-D_{b}\right\}^{2}-\{d / 2+T / 4\}^{2}\right] \\
& y=2\{(\Gamma-d) / \check{L}-3(T / 4)\}\left\{D / 2-T / 4-D_{b}\right\} \\
& \phi_{o}=2 \Pi \cdot n^{-1}\left(\frac{x}{y}\right) \\
& \gamma=\frac{D_{b}}{L_{m}}, \quad f_{i}=\frac{r_{i}}{D_{b}}, \quad f_{o}=\frac{r_{o}}{D_{b}}, \quad T=D-d-2 D_{b} \quad D=160, \quad d=90, \\
& b_{4}=3 \mathrm{u}, \quad r_{i}=r_{o}=11.033 \quad 0.5(D+d) \leq D_{m} \leq 0.6(D+d) \text {, } \\
& 0 . .5(D-d) \leq D_{b} \leq 0.45(D-d), 4 \leq Z \leq 50, \quad 0.515 \leq f_{i} \text { and } f_{o} \leq 0.6 \text {, } \\
& 0.4 \leq K_{D \min } \leq 0.5 \text {, } \\
& 0.6 \leq K_{D \max } \leq 0.7, \quad 0.3 \leq e \leq 0.4,0.02 \leq e \leq 0.1,0.6 \leq \zeta \leq 0.85
\end{aligned}
$$

A schematic view of this problem is illustrated in Fig. 16.

Figure 16: Rolling element bearing proble a
This case covers closely 1.5% of the feasible area or he to get space. The results of HHO is compared to GA4 [94], TLBO [93], and PVS [92] tecı. iques. Table 15 tabulates the results of HHO versus those of other optimizers. From Table - ove that the proposed HHO has detected the best solution with the maximum cost with a subsu. ntial progress compared to GA4, TLBO, and PVS algorithms.

Table 15: Comparison of results fo. ${ }^{11}{ }^{17}$ ing element bearing design problem

Algorithms	GA4 [94]	Lnél 3]	PVS [92]	HHO
D_{m}	125.717100	12.7191	125.719060	125.000000
D_{b}	21.423000	21.42559	21.425590	21.000000
Z	11.0000 ,	11.000000	11.000000	11.092073
f_{i}	0.515 J 0	(515000	0.515000	0.515000
f_{0}	$0.5150 u$	¢ 515000	0.515000	0.515000
$K_{\text {dmin }}$	$0 . ¢ 5900$	J. 424266	0.400430	0.400000
$K_{\text {dmax }}$	\bigcirc o51¢ 0	0.633948	0.680160	0.600000
ϵ	$0.0<143$	0.300000	0.300000	0.300000
e	0.0223 u	0.068858	0.079990	0.050474
ξ	751000	0.799498	0.700000	0.600000
Maximum	8184. 30	81859.74	81859.741210	83011.88329

5 Discussion on res alt.

As per results in r viou. sections, we can recognize that the HHO shows significantly superior results for multi-di eensio al F1-F13 problems and F14-F29 test cases compared to other wellestablished optimize sur' as GA, PSO, BBO, DE, CS, GWO, MFO, FPA, TLBO, BA, and FA methods. Whil the fficacy of methods such as PSO, DE, MFO, and GA significantly degrade by increasing t_{1} o dim nsions, the scalability results in Fig. 12 and Table 2 expose that HHO is able to maintaln a well equilibrium among the exploratory and exploitative propensities on problems top or p pnies with many variables. If we observe the results of F1-F7 in Tables 3-6, there is a big, s. rnificant gap between the results of several methods such as the GA, PSO, DE, BBO, GWO, FPA, FA, and BA, with high-quality solutions found by HHO. This observation confirms the advanced exploitative merits of the proposed HHO. Based on the solution found for multimodal and hybrid composition landscapes in Table 8, we detect that HHO finds superior
and competitive solutions based on a stable balance between the diversification and intensification inclinations and a smooth transition between the searching modes. The resu'is also support the superior exploratory strengths of the HHO. The results for six well-known $\quad \checkmark$ nstrained cases in Tables 10-15 also disclose that HHO obtains the best solutions and it is one of the top optimizers compared to many state-of-the-art techniques. The results highlight that the proposed HHO has several exploratory and exploitative mechanisms and consequently, it hau ficiently avoided LO and immature convergence drawbacks when solving different classes of f nblems and in the case of any LO stagnation, the proposed HHO has shown a higher potr atı. 1 in jumping out of local optimum solutions.

The following features can theoretically assist us in realizing - hy $\because=$ proposed HHO can be beneficial in exploring or exploiting the search space of a given optimı ation problem:

- Escaping energy E parameter has a dynamic randorized time-varying nature, which can further boost the exploration and exploitation patte ns of F HO. This factor also requires HHO to perform a smooth transition between exple tior - ad exploitation.
- Different diversification mechanisms with regard in the a erage location of hawks can boost the exploratory behavior of HHO in initial iteratı ns.
- Different LF-based patterns with short-length ; יmps enhance the exploitative behaviors of HHO when conducting a local search.
- The progressive selection scheme assists arch qgents to progressively improve their position and only select a better position, which ca 1. prove the quality of solutions and intensification powers of HHO during the cour vi ations.
- HHO utilizes a series of searching strategies based on E and r parameters and then, it selects the best movement step. This c pabilı y has also a constructive impact on the exploitation potential of HHO.
- The randomized jump J str ngt 1 ca 1 assist candidate solutions in balancing the exploration and exploitation tendencir s.
- The use of adaptive and timu varying parameters allows HHO to handle difficulties of a search space includins, loc al optimal solutions, multi-modality, and deceptive optima.

6 Conclusion and retirections

In this work, a novel population-based optimization algorithm called HHO is proposed to tackle different opti nizatir n tasks. The proposed HHO is inspired by the cooperative behaviors and chasing styl of puedatory birds, Harris' hawks, in nature. Several equations are designed to simulate the social ntelligence of Harris' hawks to solve optimization problems. Twenty nine unconstrained be wh ark problems were used to evaluate the performance of HHO. Exploitative, exploratory, tur ' nal optima avoidance of HHO was investigated using unimodal, multi-modal and compositic problems. The results obtained show that HHO was capable of finding excellent solutions compar do to other well-regarded optimizers. Additionally, the results of six constrained engineering design tasks also revealed that the HHO can show superior results compared to other optimizers.

We designed the HHO as simple as possible with few exploratory and exploitative mechanisms. It is possible to utilize other evolutionary schemes such as mutation and crossr ver schemes, multiswarm and multi-leader structure, evolutionary updating structures, and char, hased phases. Such operators and ideas are beneficial for future works. In future works, the binary ana .aulti-objective versions of HHO can be developed. In addition, it can be employed to cac le various problems in engineering and other fields. Another interesting direction is to comp e different constraint handling strategies in dealing with real-world constrained problems.

A Appendix A

Table 16: Description of unimodal benchmark functic is.

Function	Dimensions	1 ange	$f_{\text {min }}$
$f_{1}(x)=\sum_{i=1}^{n} x_{i}^{2}$	30,100, 500, 100u	[-100,100]	0
$f_{2}(x)=\sum_{i=1}^{n}\left\|x_{i}\right\|+\prod_{i=1}^{n}\left\|x_{i}\right\|$	30,100, 500, 10u	[-10,10]	0
$f_{3}(x)=\sum_{i=1}^{n}\left(\sum_{j-1}^{i} x_{j}\right)^{2}$	30,100, 5u 1000	[-100,100]	0
$f_{4}(x)=\max _{i}\left\{\left\|x_{i}\right\|, 1 \leq i \leq n\right\}$	30,100, bu ' 1000	[-100,100]	0
$f_{5}(x)=\sum_{i=1}^{n-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(x_{i}-1\right)^{2}\right]$	$30,1^{n \cap}, \cdots,-\ldots 00$	[-30,30]	0
$f_{6}(x)=\sum_{i=1}^{n}\left(\left[x_{i}+0.5\right]\right)^{2}$	30,100, ᄂ ๆ. 1000	[-100,100]	0
$f_{7}(x)=\sum_{i=1}^{n} i x_{i}^{4}+$ random $[0,1)$	\cdots-1u\% ${ }^{\text {-nn }}, 1000$	[-128,128]	0

Table 17: Description of $\mathrm{ml}^{\text {'th. }}$. \urcorner dal benchmark functions.

Function	Dimensions	Range	$f_{\text {min }}$
$f_{8}(x)=\sum_{i=1}^{n}-x_{i} \sin \left(\sqrt{\left\|x_{i}\right\|}\right)$	30,100, 500, 1000	[-500,500]	$-418.9829 \times n$
$f_{9}(x)=\sum_{i=1}^{n}\left[x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right]$	30,100, 500, 1000	[-5.12,5.12]	0
$f_{10}(x)=-20 \exp \left(-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}\right)-\exp \left(\frac{1}{n} \sum_{i=.}^{n} \operatorname{oos}\left(2 \pi x_{i}\right)\right)+20+e$	$30,100,500,1000$	[-32,32]	0
$f_{11}(x)=\frac{1}{4000} \sum_{i=1}^{n} x_{i}^{2}-\prod_{i=1}^{n} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1$	30,100, 500, 1000	[-600,600]	0
$\begin{aligned} & f_{12}(x)= \\ & \frac{\pi}{n}\left\{10 \sin \left(\pi y_{1}\right)+\sum_{i=1}^{n-1}\left(y_{i}-1\right)^{2}\left[1+10 \sin ^{2}\left(\varkappa_{0} \quad,\right]+(n-1)^{2}\right\}+\right. \\ & \sum_{i=1}^{n} u\left(x_{i}, 10,100,4\right) \end{aligned}$	30,100, 500, 1000	[-50,50]	0
$y_{i}=1+\frac{x_{i}+1}{4} u\left(x_{i}, a, k, m\right)= \begin{cases}k\left(x_{i}-a\right) & x_{i}>a \\ 0-a & -x_{i}<a \\ k\left(-x_{i}-a\right)^{m} & x_{i}-a\end{cases}$			
$\begin{aligned} & f_{13}(x)= \\ & 0.1\left\{\sin ^{2}\left(3 \pi x_{1}\right)+\sum_{i=1}^{n}\left(x_{i}-1\right)^{2} \Gamma+\operatorname{sir}\left(3 \pi x_{i}+1\right)\right]+\left(x_{n}-1\right)^{2}[1+\mathrm{s} \\ & \sum_{i=1}^{n} u\left(x_{i}, 5,100,4\right) \end{aligned}$	$\begin{aligned} & 30,100,500,1000 \\ & \left.\left.2^{2}\left(2 \pi x_{n}\right)\right]\right\}+ \end{aligned}$	[-50,50]	0

Table 18: Description of fixed-dimension multimodal benchmark functions.

Function	Dimensions	Range	$f_{\text {min }}$
$f_{14}(x)=\left(\frac{1}{500}+\sum_{j=1}^{25} \frac{1}{j+\sum_{i=1}^{2}\left(x_{i}-a_{i j}\right)^{6}}\right)$	2	[-65, 65]	
$f_{15}(x)=\sum_{i=1}^{11}\left[a_{i}-\frac{x_{1}\left(b_{i}^{2}+b_{i} x_{2}\right)}{b_{i}^{2}+b_{i} x_{3}+x_{4}}\right]^{2}$	4	$[-5,5]$	0.00030
$f_{16}(x)=4 x_{1}^{2}-2.1 x_{1}^{4}+\frac{1}{3} x_{1}^{6}+x_{1} x_{2}-4 x_{2}^{2}+4 x_{2}^{4}$	2	[-5, $]$	-1.0316
$\begin{aligned} & f_{17}(x)=\left(x_{2}-\frac{5.1}{4 \pi^{2}} x_{1}^{2}+\frac{5}{\pi} x_{1}-6\right)^{2}+10\left(1-\frac{1}{8 \pi}\right) \cos x_{1}+10 \\ & f_{18}(x)= \end{aligned}$	2	$\left[-5,{ }^{\text {b }}\right.$]	0.398
$\begin{aligned} & {\left[1+\left(x_{1}+x_{2}+1\right)^{2}\left(19-14 x_{1}+3 x_{1}^{2}-14 x_{2}+6 x_{1} x_{2}+3 x_{2}^{2}\right)\right]} \\ & \times\left[30+\left(2 x_{1}-3 x_{2}\right)^{2} \times\left(18-32 x_{1}+12 x_{1}^{2}+48 x_{2}-36 x_{1} x_{2}+27 x_{2}^{2}\right)\right] \end{aligned}$			
$f_{19}(x)=-\sum_{i=1}^{4} c_{i} \exp \left(-\sum_{j=1}^{3} a_{i j}\left(x_{j}-p_{i j}\right)^{2}\right)$	3	$13]$	-3.86
$f_{20}(x)=-\sum_{i=1}^{4} c_{i} \exp \left(-\sum_{j=1}^{6} a_{i j}\left(x_{j}-p_{i j}\right)^{2}\right)$	6	, ${ }^{1}$	-3.32
$f_{21}(x)=-\sum_{i=1}^{5}\left[\left(X-a_{i}\right)\left(X-a_{i}\right)^{T}+c_{i}\right]^{-1}$	4	$10]$	-10.1532
$f_{22}(x)=-\sum_{i=1}^{7}\left[\left(X-a_{i}\right)\left(X-a_{i}\right)^{T}+c_{i}\right]^{-1}$	4	, 10]	-10.4028
$f_{23}(x)=-\sum_{i=1}^{10}\left[\left(X-a_{i}\right)\left(X-a_{i}\right)^{T}+c_{i}\right]^{-1}$		[0.10]	-10.5363

Table 19: Details of hybrid composition functions F24-F29 (MM: Multı-moda, R: Rotated, NS: Non-Separable, S: Scalable, D: Dimension)

ID (CEC5-ID)	Description	Properties	D	Range
F24 (C16)	Rotated Hybrid Composition Function	MM, R, NS, S	30	$[-5,5]^{D}$
F25 (C18)	Rotated Hybrid Composition Function	MM, R, NS, S	30	$[-5,5]^{D}$
F26 (C19)	Rotated Hybrid Composition Function with narr nawn groval optimum	MM, NS, S	30	$[-5,5]^{D}$
F27 (C20)	Rotated Hybrid Composition Function with Global $\mathrm{L}_{ \pm}{ }^{\text {- }}$ [mum on the Bounds	MM, NS, S	30	$[-5,5]^{D}$
F28 (C21)	Rotated Hybrid Composition Function	MM, R, NS, S	30	$[-5,5]^{D}$
F29 (C25)	Rotated Hybrid Composition Function withou bous a	MM, NS, S	30	$[-5,5]^{D}$

B Appendix B

Table 20: p-values of the Wilcoxon rank-sum test with 5% significance for F1-F13 with 30 dimensions (p-values \geq 0.05 are shown in bold face, NaN means "Nc, a N. nber" returned by the test)

	GA	PSO	BBO	FPA	7WC	BAT	FA	CS	MFO	TLBO	DE
F1	$2.85 \mathrm{E}-11$	$2.88 \mathrm{E}-11$	2.52E-11	$\cdots \sqrt{2 \mathrm{E}-11}$	3.6. ${ }^{-1}$	$3.02 \mathrm{E}-11$					
F2	$2.72 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$4.56 \mathrm{E}-11$	$3.02 \mathrm{~F}-1$	3 ก2E-11	$3.02 \mathrm{E}-11$					
F3	$2.71 \mathrm{E}-11$	$2.63 \mathrm{E}-11$	$2.79 \mathrm{E}-11$	- $22-11$.02E-11	$3.02 \mathrm{E}-11$					
F4	$2.62 \mathrm{E}-11$	$2.84 \mathrm{E}-11$	$2.62 \mathrm{E}^{-1}$	$3.0<{ }^{11}$	$3.02 \mathrm{E}-11$						
F5	$2.62 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	2.72 F 11	$3.02 \mathrm{E}-1_{1}$	$3.02 \mathrm{E}-11$						
F6	$2.72 \mathrm{E}-11$	$2.71 \mathrm{E}-11$	$2.6{ }^{-}-1+$	2.02E-11	$3.02 \mathrm{E}-11$	$2.25 \mathrm{E}-04$	$3.02 \mathrm{E}-11$				
F7	2.52E-11	$2.71 \mathrm{E}-11$	$9.19 \mathrm{E}-11$	3.c ${ }^{\text {n }}$-11	$3.69 \mathrm{E}-11$	$3.02 \mathrm{E}-11$					
F8	7.83E-09	$2.71 \mathrm{E}-11$	- . 09	$3.02 \mathrm{E}-11$							
F9	$9.49 \mathrm{E}-13$	$1.00 \mathrm{E}-12$	NaN	$1.21 \mathrm{E}-12$	$4.35 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$4.57 \mathrm{E}-12$	$1.21 \mathrm{E}-12$
F10	$1.01 \mathrm{E}-12$	$1.14 \mathrm{E}-12$	1.05,-12	$1.21 \mathrm{E}-12$	$1.16 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$4.46 \mathrm{E}-13$	$1.21 \mathrm{E}-12$
F11	$9.53 \mathrm{E}-13$	9.57E-13	9. -13	$1.21 \mathrm{E}-12$	$2.79 \mathrm{E}-03$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	NaN	$1.21 \mathrm{E}-12$
F12	$2.63 \mathrm{E}-11$	$2.51{ }^{\top} 11$?.63E-土	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$1.01 \mathrm{E}-08$	$3.02 \mathrm{E}-11$	$1.07 \mathrm{E}-06$	$3.02 \mathrm{E}-11$
F13	2.51E-11	2.7 - ${ }^{\text {d }}$	2.61F 11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$5.49 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$2.00 \mathrm{E}-06$	$3.02 \mathrm{E}-11$

Table 21: p-values of the Wilcoxon rank-sum test with 5% significance for F1-F13 with 100 dimensions (p-values ≥ 0.05 are shown in bold face)

	GA	PSO	BBO	FPA	GWO	BAT	FA	CS	MFO	TL	DE
F1	$2.98 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	2.52E-11	$3.01 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3. $22 \overline{\mathrm{E}-11}$	2E-11
F2	$2.88 \mathrm{E}-11$	$2.72 \mathrm{E}-11$	$2.72 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11		$3.02 \mathrm{E}-11$				
F3	$2.72 \mathrm{E}-11$	$2.72 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	3.02E-11	3.02111	$3.02 \mathrm{E}-11$
F4	$2.40 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$2.51 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	$3.02 \mathrm{E}-1$	3.01 -11	$3.02 \mathrm{E}-11$
F5	$2.72 \mathrm{E}-11$	$2.62 \mathrm{E}-11$	2.84E-11	$3.02 \mathrm{E}-11$	E-11	$3.02 \mathrm{E}-11$					
F6	$2.52 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	3.02 E	3.02 L	$3.02 \mathrm{E}-11$
F7	$2.71 \mathrm{E}-11$	$2.79 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	3.02F-11	' E -10	E-11
F8	$2.72 \mathrm{E}-11$	$2.51 \mathrm{E}-11$	$2.83 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$5.57 \mathrm{E}-10$	3 ,2E- 1	$3.02 \mathrm{~L}-11$	$3.02 \mathrm{E}-11$
F9	1.06E-12	$9.57 \mathrm{E}-13$	$9.54 \mathrm{E}-13$	$1.21 \mathrm{E}-12$.21E-	4E-01	$1.21 \mathrm{E}-12$				
F10	9.56E-13	$9.57 \mathrm{E}-13$	$1.09 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	${ }^{1} 1 \mathrm{~F} 12$	4.16E-14	$1.21 \mathrm{E}-12$				
F11	1.06E-12	9.55E-13	9.56E-13	$1.21 \mathrm{E}-12$	1.21. ${ }^{12}$	NaN	$1.21 \mathrm{E}-12$				
F12	$2.72 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02 F	$3.02 \mathrm{E}-1 \pm$	3.02E-11	$3.02 \mathrm{E}-11$
F13	2.72E-11	$2.72 \mathrm{E}-11$	2.52E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02-11$	3.02×11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$

 ≥ 0.05 are shown in bold face)

	GA	PSO	BBO	FPA	GWO	BAT	FA	CS	MFO	TLBO	DE
F1	$2.94 \mathrm{E}-11$	$2.79 \mathrm{E}-11$	2.72E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	2E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$
F2	$2.52 \mathrm{E}-11$	$2.63 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$? $02 \mathrm{E}-11$	3.0 E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$
F3	$2.88 \mathrm{E}-11$	2.52E-11	$2.72 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.0 - ${ }^{11}$	3.r E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$
F4	$2.25 \mathrm{E}-11$	2.52E-11	$2.59 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	72E-1+	. $02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$
F5	$2.72 \mathrm{E}-11$	2.72E-11	$2.72 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.0<{ }^{\text {- }} 1$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$
F6	2.52E-11	2.52E-11	$2.52 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02F		$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	$3.02 \mathrm{E}-11$
F7	$2.52 \mathrm{E}-11$	$2.79 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-1$	3.02E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$4.98 \mathrm{E}-11$	$3.02 \mathrm{E}-11$
F8	$2.52 \mathrm{E}-11$	2.72E-11	$2.63 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$. ${ }^{\text {P }}$ - -11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$
F9	$1.06 \mathrm{E}-12$	$1.06 \mathrm{E}-12$	$1.06 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$		$121 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	NaN	$1.21 \mathrm{E}-12$
F10	$9.57 \mathrm{E}-13$	$9.57 \mathrm{E}-13$	$1.06 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	1.21E-12	1.2 E-1 ${ }^{5}$	1.21E-12	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	6.14E-14	$1.21 \mathrm{E}-12$
F11	$9.57 \mathrm{E}-13$	$9.57 \mathrm{E}-13$	$1.06 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-1$?	$1.21{ }_{\text {L }}$ L	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	NaN	$1.21 \mathrm{E}-12$
F12	$2.52 \mathrm{E}-11$	2.52E-11	$2.79 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-1$	- 2 E -1	$3.02 \mathrm{E}-11$				
F13	$2.79 \mathrm{E}-11$	$2.52 \mathrm{E}-11$	$2.72 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$? U- ${ }^{11}$	3.02E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$

Table 23: p-values of the Wilcoxon rank-sum test w. h 5% significance for F1-F13 with 1000 dimensions (p-values ≥ 0.05 are shown in bold face)

	GA	PSO	BBO	FPA	GW	BAT	FA	CS	MFO	TLBO	DE
F1	$3.01 \mathrm{E}-11$	2.52E-11	2.52E-11	$3.02{ }^{11}$	3.02 E -	$3.02 \mathrm{E}-11$	3.02E-11				
F2	$2.63 \mathrm{E}-11$	$1.21 \mathrm{E}-12$	$2.72 \mathrm{E}-11$	3. ${ }^{2} \mathrm{E}-1+$	${ }^{2} 02 \mathrm{~F} 11$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$3.02 \mathrm{E}-11$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$
F3	$2.86 \mathrm{E}-11$	2.52E-11	$2.52 \mathrm{E}-11$	J2E-11	3. ${ }^{\text {c }}$ - 11	$3.02 \mathrm{E}-11$					
F4	1.93E-11	2.52E-11	$2.07 \mathrm{E}-11$	3.02F 1	3 n2E-11	$3.02 \mathrm{E}-11$					
F5	$2.72 \mathrm{E}-11$	2.52E-11	$2.52 \mathrm{E}-11$	n2 -11	$02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$					
F6	$2.63 \mathrm{E}-11$	$2.63 \mathrm{E}-11$	$2.63 \mathrm{E}^{-}$	$3.0 L^{11}$	$3.02 \mathrm{E}-11$						
F7	$2.63 \mathrm{E}-11$	2.52E-11	2.52 F 11	$3.02 \mathrm{E}-1+$	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	3.02E-11	$3.02 \mathrm{E}-11$
F8	$2.52 \mathrm{E}-11$	2.52E-11	$2.55^{\text {j }}$-1	2.02E-11	$3.02 \mathrm{E}-11$						
F9	$1.01 \mathrm{E}-12$	$1.06 \mathrm{E}-12$	9.5/E-13	1.2 ${ }^{-}-12$	$1.21 \mathrm{E}-12$	NaN	$1.21 \mathrm{E}-12$				
F10	$1.01 \mathrm{E}-12$	$1.01 \mathrm{E}-12$	-13	$1.21 \mathrm{E}-12$	8.72E-14	$1.21 \mathrm{E}-12$					
F11	$1.06 \mathrm{E}-12$	$1.01 \mathrm{E}-12$	9.57 E 13	$1.21 \mathrm{E}-12$	1.21E-12	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.21 \mathrm{E}-12$	$1.17 \mathrm{E}-13$	$1.21 \mathrm{E}-12$
F12	$2.52 \mathrm{E}-11$	2.52E-11	?.72-11	$3.02 \mathrm{E}-11$							
F13	$2.52 \mathrm{E}-11$	$2.63 \mathrm{E}^{-11}$	2.. ${ }^{-11}$	$3.02 \mathrm{E}-11$	3.02E-11	3.02E-11					

Table 24: p-values of the 「 'ilcr xon ank-sum test with 5% significance for F14-F29 problems(p-values ≥ 0.05 are shown in bold face)

	GA	PSO	BBO	FPA	GWO	BAT	FA	CS	MFO	TLBO	DE
F14	8.15E-02	${ }^{\text {? }}$. $89 \mathrm{E}-08$	$8.15 \mathrm{E}-03$	$1.08 \mathrm{E}-01$	$5.20 \mathrm{E}-08$	$7.46 \mathrm{E}-12$	$1.53 \mathrm{E}-09$	$6.13 \mathrm{E}-14$	9.42E-06	8.15E-02	$1.00 \mathrm{E}+00$
F15	$2.78 \mathrm{E}-11$		$2.51 \mathrm{E}-11$	$9.76 \mathrm{E}-10$	$1.37 \mathrm{E}-01$	$3.34 \mathrm{E}-11$	$3.16 \mathrm{E}-10$	$8.69 \mathrm{E}-10$	$5.00 \mathrm{E}-10$	5.08E-06	$3.92 \mathrm{E}-02$
F16	$1.0{ }^{\text {r }}$-12	9. $53 \mathrm{E}-13$	$9.49 \mathrm{E}-13$	NaN	NaN	$5.54 \mathrm{E}-03$	NaN	NaN	NaN	NaN	NaN
F17	1.\& E-12	1.8 さ-12	$2.06 \mathrm{E}-12$	$1.61 \mathrm{E}-01$	$1.61 \mathrm{E}-01$	$5.97 \mathrm{E}-01$	$1.61 \mathrm{E}-01$	$1.61 \mathrm{E}-01$	$1.61 \mathrm{E}-01$	1.61E-01	$1.61 \mathrm{E}-01$
F18	Na	9.5: Ј-13	NaN	NaN	$1.09 \mathrm{E}-02$	$1.34 \mathrm{E}-03$	NaN	NaN	NaN	NaN	NaN
F19	2.50	$5 \quad 4 \mathrm{E}-02$	$1.91 \mathrm{E}-09$	$1.65 \mathrm{E}-11$	$1.06 \mathrm{E}-01$	$5.02 \mathrm{E}-10$	$1.65 \mathrm{E}-11$	$1.65 \mathrm{E}-11$	$4.54 \mathrm{E}-10$	$1.65 \mathrm{E}-11$	$1.65 \mathrm{E}-11$
F2 ${ }^{1}$	8.74E-03	$2.54 \mathrm{E}-04$	$8.15 \mathrm{E}-03$	$6.15 \mathrm{E}-03$	$5.74 \mathrm{E}-06$	$5.09 \mathrm{E}-06$	$1.73 \mathrm{E}-07$	NaN	$1.73 \mathrm{E}-04$	$1.73 \mathrm{E}-04$	$1.73 \mathrm{E}-04$
F2.	1.42	$6.25 \mathrm{E}-05$	$5.54 \mathrm{E}-03$	$1.91 \mathrm{E}-08$	$5.54 \mathrm{E}-03$	$6.85 \mathrm{E}-07$	$1.71 \mathrm{E}-07$	$1.91 \mathrm{E}-08$	$9.42 \mathrm{E}-06$	$1.73 \mathrm{E}-04$	$1.79 \mathrm{E}-04$
F22	64 ,-07	$5.00 \mathrm{E}-10$	$8.15 \mathrm{E}-08$	$2.51 \mathrm{E}-11$	$8.15 \mathrm{E}-08$	$6.63 \mathrm{E}-07$	$5.24 \mathrm{E}-04$	$1.73 \mathrm{E}-08$	$8.15 \mathrm{E}-08$	$8.81 \mathrm{E}-10$	$1.21 \mathrm{E}-12$
F23	1. E-05	$5.00 \mathrm{E}-10$	$8.88 \mathrm{E}-08$	$2.51 \mathrm{E}-11$	$8.88 \mathrm{E}-08$	$1.73 \mathrm{E}-08$	$5.14 \mathrm{E}-04$	$1.69 \mathrm{E}-08$	8.88E-08	$8.81 \mathrm{E}-10$	NaN
F24	2.44 '-01	$4.69 \mathrm{E}-08$	$1.64 \mathrm{E}-05$	$1.17 \mathrm{E}-05$	$2.84 \mathrm{E}-04$	$3.02 \mathrm{E}-11$	$3.03 \mathrm{E}-03$	$3.08 \mathrm{E}-08$	8.89E-10	$8.35 \mathrm{E}-08$	$3.20 \mathrm{E}-09$
F25	$1.21 \mathrm{E}-12$										
F26	$1.21 \mathrm{E}-12$										
F27	$1.21 \mathrm{E}-12$										
F28	0.012732	$1.17 \mathrm{E}-09$	$5.07 \mathrm{E}-10$	0.001114	$1.01 \mathrm{E}-08$	$3.02 \mathrm{E}-11$	$2.37 \mathrm{E}-10$	$2.02 \mathrm{E}-08$	$8.35 \mathrm{E}-08$	0.446419	$2.71 \mathrm{E}-11$
F29	$1.85 \mathrm{E}-08$	$6.52 \mathrm{E}-09$	$3.02 \mathrm{E}-11$	$1.29 \mathrm{E}-06$	7.12E-09	$3.02 \mathrm{E}-11$	1.17E-09	$3.02 \mathrm{E}-11$	$3.02 \mathrm{E}-11$	$2.6 \mathrm{E}-08$	$3.02 \mathrm{E}-11$

Acknowledgments

This research is funded by Zhejiang Provincial Natural Science Fr mndation of China
 We also acknowledge the comments of anonymous reviewers.

References

[1] R. Abbassi, A. Abbassi, A. A. Heidari, S. Mirjalili, An efficient salp swarm-inspired ; gorit for parameters identification of photovoltaic cell models, Energy Conversion and Management 179 (2019) 362-372.
[2] H. Faris, A. M. Al-Zoubi, A. A. Heidari, I. Aljarah, M. Mafarja, M. A. Hassonah, H. ı. ita, An intelligent system for spam detection and identification of the most relevant features based on evolutionary rar uin weighu networks, Information Fusion 48 (2019) $67-83$.
[3] J. Nocedal, S. J. Wright, Numerical optimization 2nd, 2006.
[4] G. Wu, Across neighborhood search for numerical optimization, Information Srionct. non 2016) 597-618.
[5] G. Wu, W. Pedrycz, P. N. Suganthan, R. Mallipeddi, A variable reduction st ategy ${ }^{f \sim n}$ evolutionary algorithms handling equality constraints, Applied Soft Computing 37 (2015) 774-786.
[6] J. Dréo, A. Pétrowski, P. Siarry, E. Taillard, Metaheuristics for hard optimizauın: mf nods and case studies, Springer Science \& Business Media, 2006.
[7] E.-G. Talbi, Metaheuristics: from design to implementation, volume 74, John W 'ey \& Sons, 2009.
[8] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulatec nnealing. science 220 (1983) 671-680.
[9] J. H. Holland, Genetic algorithms, Scientific american 267 (1992) 66-73.
[10] J. Luo, H. Chen, Y. Xu, H. Huang, X. Zhao, et al., An improved grasshı. ner optimization algorithm with application to financial stress prediction, Applied Mathematical Modelling 64 (2018) 654-668
[11] M. Wang, H. Chen, B. Yang, X. Zhao, L. Hu, Z. Cai, H. Huang, 'Tong, Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in edical diagnoses, Neurocomputing 267 (2017) 69-84.
[12] L. Shen, H. Chen, Z. Yu, W. Kang, B. Zhang, H. Li, B. Yang, ' - . Fivolving support vector machines using fruit fly optimization for medical data classification, Knowledge-Based Systems 96 (. 116`6ı-75. [13] Q. Zhang, H. Chen, J. Luo, Y. Xu, C. Wu, C. Li, Chaos fnhance bacterial foraging optimization for global optimization, IEEE Access (2018). [14] A. A. Heidari, R. A. Abbaspour, A. R. Jordehi, An efficient ch otı vater cycle algorithm for optimization tasks, Neural Computing and Applications 28 (2017) 57-85. [15] M. Mafarja, I. Aljarah, A. A. Heidari, A. I. Hammourı, 'Tarıs, A.-Z. AlaM, S. Mirjalili, Evolutionary population dynamics and grasshopper optimization approaches for feature selection p. hlems, Knowledge-Based Systems 145 (2018) \(25-45\). [16] M. Mafarja, I. Aljarah, A. A. Heidari, H. Faris, P. Fournier-Viger, X. Li, S. Mirjalili, Binary dragonfly optimization for feature selection using time-varying transfer functions, .now. dge-Based Systems 161 (2018) \(185-204\). [17] I. Aljarah, M. Mafarja, A. A. Heidari, H. Far s, Y. Zhe ıg, S. Mirjalili, Asynchronous accelerating multi-leader salp chains for feature selection, Applied Soft Computing 71 (\(\wedge^{\wedge 18}\)) 96<-979. [18] S. Mirjalili, A. Lewis, The whale optimizat' n algoı. ' . ., Advances in Engineering Software 95 (2016) 51-67. [19] H. Faris, M. M. Mafarja, A. A. Heidari, I Alja sh, A.-Z. AlaM, S. Mirjalili, H. Fujita, An efficient binary salp swarm algorithm with crossover scheme for feature selectic nr slem \(\quad\) Knowledge-Based Systems 154 (2018) 43-67. [20] J. R. Koza, Genetic Programming II, f atomı : \(n\) I scovery of Reusable Subprograms, MIT Press, Cambridge, MA, 1992. [21] R. Storn, K. Price, Differential evolu \({ }^{+}\)on-a simpı and efficient heuristic for global optimization over continuous spaces, Journal of global optimization 11 (1997) 341355 [22] D. Simon, Biogeography-based optimization, EEE transactions on evolutionary computation 12 (2008) 702-713. [23] O. K. Erol, I. Eksin, A new optir .IZa on method: big bang-big crunch, Advances in Engineering Software 37 (2006) 106-111. [24] R. A. Formato, Central force or imiz tion, progress in Electromagnetic Research77 (2007) 425-491. [25] E. Rashedi, H. Nezamabadi-Pout, © saryazdi, Gsa: a gravitational search algorithm, Information sciences 179 (2009) \(2232-2248\). [26] S. Salcedo-Sanz, Modern me \({ }^{+}\)-heuris. a based on nonlinear physics processes: A review of models and design procedures, Physics Reports 655 (2016) 1-70. [27] F. Glover, Tabu searchpa. i. C RSA sournal on computing 1 (1989) 190-206. [28] M. Kumar, A. J. Kulkarni, S. \(\mathcal{C}\) S tapathy, Socio evolution \& learning optimization algorithm: A socio-inspired optimization methodology, Future \(\Gamma\)-neration \({ }^{2}\) omputer Systems 81 (2018) 252-272. [29] R. V. Rao, V. J. Savs ni, D. V. tharia, Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems, . formati a Sciences 183 (2012) 1-15. [30] A. Baykasoğlu, F. P O ne Evolutionary and population-based methods versus constructive search strategies in dynamic combinatorial of imizati \(n\), Information Sciences 420 (2017) 159-183. [31] A. A. Heidari, I. Faris, Aljarah, S. Mirjalili, An efficient hybrid multilayer perceptron neural network with grasshopper optimization, So Comp ing (2018) 1-18. [32] R. Eberhart. J. Kenıuy, A new optimizer using particle swarm theory, in: Micro Machine and Human Science, 1995. MHS'95., Proceedings ग un. \({ }^{\sim}{ }^{+}\)h International Symposium on, IEEE, pp. 39-43. [33] M. Dorigo, V. If aiezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybei otics, Part B (Cybernetics) 26 (1996) 29-41. [34] A. H. Gandomi, A.-S. Yang, A. H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Engineering with computers 29 (2013) 17-35. [35] X.-S. Yang, Review of meta-heuristics and generalised evolutionary walk algorithm, International Journal of Bio-Inspired Computation 3 (2011) 77-84. [36] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE transactions on evolutionary computation 1 (1997) 67-82. [37] J. C. Bednarz, Cooperative hunting in harris' hawks (parabuteo unicinctus), Science 239 (1988) 1525 [38] L. Lefebvre, P. Whittle, E. Lascaris, A. Finkelstein, Feeding innovations and forebrain size in birds _f imal Behaviour 53 (1997) 549-560. [39] D. Sol, R. P. Duncan, T. M. Blackburn, P. Cassey, L. Lefebvre, Big brains, enhanced cognitior d response of birds to novel environments, Proceedings of the National Academy of Sciences of the United States of Amerir \& 10< (2005) 5460-5465. [40] F. Dubois, L.-A. Giraldeau, I. M. Hamilton, J. W. Grant, L. Lefebvre, Distraction sneakers decr, ee t' e expected level of aggression within groups: a game-theoretic model, The American Naturalist 164 (2004) E32-E45. [41] EurekAlertAAAS, Bird iq test takes flight, 2005. [42] N. E. Humphries, N. Queiroz, J. R. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. \({ }^{-\cdots}\) Fulleı, T. M. Brunnschweiler, T. K. Doyle, J. D. Houghton, et al., Environmental context explains lévy and brownian mover ent p \(\sim^{\circ} \mathrm{ns}\) of marine predators, Nature 465 (2010) 1066-1069. [43] G. M. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince, H. E. Stanley, Lc r flight search patterns of wandering albatrosses, Nature 381 (1996) 413. [44] D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. Bradshaw, J. V. Pitch rd, A. James, M. Z. Ahmed, A. S. Brierley, M. A. Hindell, et al., Scaling laws of marine predator search behaviour, ature 45 (2008) 1098-1102. [45] A. O. Gautestad, I. Mysterud, Complex animal distribution and abundance from mem, endent kinetics, ecological complexity 3 (2006) 44-55. [46] M. F. Shlesinger, Levy flights: Variations on a theme, Physica D: Nonlinear Phe sme a 38 (1989) 304-309. [47] G. Viswanathan, V. Afanasyev, S. V. Buldyrev, S. Havlin, M. Da Luz, E. Rapuı, H. F Stanley, Lévy flights in random searches, Physica A: Statistical Mechanics and its Applications 282 (2000) 1-12. [48] X.-S. Yang, Nature-inspired metaheuristic algorithms, Luniver press, 2010. [49] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE 「. \({ }^{-}\)?nsaction on Evolutionary computation 3 (1999) 82-102. [50] J. G. Digalakis, K. G. Margaritis, On benchmarking functions for g netıc \({ }^{\prime}{ }^{\text {oor }}{ }^{\prime}\) nms, International journal of computer mathematics 77 (2001) 481-506. [51] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-nar. etric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real pa. neter optimization, Journal of Heuristics 15 (2009) 617. [52] X.-S. Yang, A. Hossein Gandomi, Bat algorithm: a novel approach for e' \({ }^{\prime}\) bal engineering optimization, Engineering Computations 29 (2012) 464-483. [53] X.-S. Yang, M. Karamanoglu, X. He, Flower pollination algorir m: nuvel approach for multiobjective optimization, Engineering Optimization 46 (2014) 1222-1237. [54] A. H. Gandomi, X.-S. Yang, A. H. Alavi, Mixed variable s \({ }^{+}{ }^{+}\)uraı ptimization using firefly algorithm, Computers \& Structures 89 (2011) 2325-2336. [55] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optiminer, Aa znces in Engineering Software 69 (2014) 46-61. [56] S. Mirjalili, Moth-flame optimization algorithm: A nove natue nspired heuristic paradigm, Knowledge-Based Systems 89 (2015) 228-249. [57] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelliger e a a \(\boldsymbol{a}_{\iota}\) rithms, Swarm and Evolutionary Computation 1 (2011) 3-18. [58] X.-S. Yang, Firefly algorithm, stochastic test fu ctions aı. I design optimisation, International Journal of Bio-Inspired Computation 2 (2010) 78-84. [59] F. Van Den Bergh, A. P. Engelbrecht, A udy or a cicle swarm optimization particle trajectories, Information sciences 176 (2006) 937-971. [60] S. Mirjalili, A. H. Gandomi, S. Z. Mirja! : S. jarer A, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Advar es 1 H . \({ }_{\mathrm{ng}}\); ،eering Software (2017). [61] H. Eskandar, A. Sadollah, A. Bahrei nejad, M. Aamdi, Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering opti iiza \(\cap\) n problems, Computers \& Structures 110 (2012) 151-166. [62] S. Saremi, S. Mirjalili, A. Lewis, Grasshoppt. ptimisation algorithm: Theory and application, Advances in Engineering Software 105 (2017) 30-47. [63] C. A. C. Coello, Use of a self-ad stiv penalty approach for engineering optimization problems, Computers in Industry 41 (2000) 113-127. [64] M. Zhang, W. Luo, X. Wans Differ tial evolution with dynamic stochastic selection for constrained optimization, Information Sciences 178 (2008) 3043-3r 74. [65] S. Mirjalili, S. M. Mirjali A. Aata lou, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Computing and Applications - (20 6) 495-513. [66] H. Liu, Z. Cai, Y. W .s, Hybrı ızing particle swarm optimization with differential evolution for constrained numerical and engineering optimizat on, App. ad Soft Computing 10 (2010) 629-640. [67] A. Sadollah, A. Bahr ninejad, A. Eskandar, M. Hamdi, Mine blast algorithm: A new population based algorithm for solving constrained engineering _ tim Lation problems, Applied Soft Computing 13 (2013) 2592-2612. [68] J.-F. Tsai, Glob 1 optimization of nonlinear fractional programming problems in engineering design, Engineering Optimization 37 (2005) 399-4 9. [69] T. Ray, P. Sainı Engin ring design optimization using a swarm with an intelligent information sharing among individuals, Engineering Optimı_ - 33 (2001) 735-748. [70] A. Kaveh, 1 . A novel meta-heuristic optimization algorithm: Thermal exchange optimization, Advances in Engineering Software 110 , \(0^{\prime}\) ' () 69-84. [71] H. Salimi, Stocı stic fractal search: a powerful metaheuristic algorithm, Knowledge-Based Systems 75 (2015) 1-18. [72] J. S. Arora, Intro action to optimum design, 1989, McGraw-Mill Book Company (1967). [73] K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA journal 29 (1991) 2013-2015. [74] C. A. C. Coello, E. M. Montes, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Advanced Engineering Informatics 16 (2002) 193-203. [75] A. D. Belegundu, J. S. Arora, A study of mathematical programming methods for structural optimization. part i: Theory, International Journal for Numerical Methods in Engineering 21 (1985) 1583-1599. [76] Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained engineering d sign problems, Engineering Applications of Artificial Intelligence 20 (2007) 89-99. [77] L. Wang, L.-p. Li, An effective differential evolution with level comparison for constrained engil. eering - sign, Structural and Multidisciplinary Optimization 41 (2010) 947-963. [78] Y. Wang, Z. Cai, Y. Zhou, Z. Fan, Constrained optimization based on hybrid evolutionary a', orit, n and adaptive constrainthandling technique, Structural and Multidisciplinary Optimization 37 (2009) 395-413. [79] A. Kaveh, T. Bakhshpoori, Water evaporation optimization: a novel physically inspired ortimiza ' n algorithm, Computers \& Structures 167 (2016) 69-85. [80] A. H. Gandomi, X.-S. Yang, A. H. Alavi, S. Talatahari, Bat algorithm for constrained opt \({ }^{\bullet}\) •ation sks, Neural Computing and Applications 22 (2013) 1239-1255. [81] E. Mezura-Montes, C. A. C. Coello, A simple multimembered evolution strategy tc olvf constrained optimization problems, IEEE Transactions on Evolutionary computation 9 (2005) 1-17. [82] W. Gong, Z. Cai, D. Liang, Engineering optimization by means of an improved unstraineu differential evolution, Computer Methods in Applied Mechanics and Engineering 268 (2014) 884-904. [83] Q. He, L. Wang, A hybrid particle swarm optimization with a feasibility-base rule for constrained optimization, Applied mathematics and computation 186 (2007) 1407-1422. [84] L. dos Santos Coelho, Gaussian quantum-behaved particle swarm optimize ion annroaches for constrained engineering design problems, Expert Systems with Applications 37 (2010) 1676-1683. [85] H. Rosenbrock, An automatic method for finding the greatest or least valu of a f nction, The Computer Journal 3 (1960) 175-184. [86] A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged systeı. search, Acta Mechanica 213 (2010) \(267-289\). [87] M. Montemurro, A. Vincenti, P. Vannucci, The automatic dynamic enalisatic 1 method (adp) for handling constraints with genetic algorithms, Computer Methods in Applied Mechanics and Enginee`ng n ,6 (2013) 70-87.
[88] E. Mezura-Montes, C. Coello Coello, J. Velázquez-Reyes, L. Muñoz-ь'vila, Multiple trial vectors in differential evolution for engineering design, Engineering Optimization 39 (2007) 567-589.
[89] K. Ragsdell, D. Phillips, Optimal design of a class of welded struc res using geometric programming, Journal of Engineering for Industry 98 (1976) 1021-1025.
[90] K. S. Lee, Z. W. Geem, A new structural optimization methr " nod on the harmony search algorithm, Computers \& structures 82 (2004) 781-798.
[91] F.-z. Huang, L. Wang, Q. He, An effective co-evolutionary differer il evolution for constrained optimization, Applied Mathematics and computation 186 (2007) 340-356.
[92] P. Savsani, V. Savsani, Passing vehicle search (pvs): A noveı neu 'euristic algorithm, Applied Mathematical Modelling 40 (2016) 3951-3978.
[93] R. V. Rao, V. J. Savsani, D. Vakharia, Teaching-learıı ${ }^{r}$-basu. optimization: a novel method for constrained mechanical design optimization problems, Computer-Aided Design 43 (2011) e? ?-315.
[94] S. Gupta, R. Tiwari, S. B. Nair, Multi-objective design optimisation of rolling bearings using genetic algorithms, Mechanism and Machine Theory 42 (2007) 1418-1443.

Ali Asghar Heidari is now a Ph.D. research intern at the Sc' on of Computing, National University of Singapore (NUS). Currently, he is also aı exceptionally talented Ph.D. candidate at the University of Tehran an he is awarded and funded by Iran's National Elites Foundation (INEF). H. m m in research interests are advanced machine learning, evolutionary coms $_{1}$ 'tativ- meta-heuristics, prediction, information systems, and spatial modeli~r. Ho has published more than ten papers in international journals such as Infr ... + tion Fusion, Energy Conversion and Management, Applied Soft Comp ing, and Knowledge-Based
Systems.

Seyedali Mirjalili is a lecturer at Griffith Ut iverr and internationally recognised for his advances in Swarm Intelligence (S1) and cptimisation, including the first set of SI techniques from a synthetic inteluy nce standpoint - a radical departure from how natural systems are typica. ${ }^{\text {. }}$. und rstood - and a systematic design framework to reliably benchmark, ev ' ${ }^{\prime} \cdot 1$ ate, and propose computationally cheap robust optimisation algorithms. Г .injum has published over 80 journal articles, many in high-impact journals with ove 7000 citations in total with an H -index of 29 and G-index of 84. From Google Scholar mett 's, it is globally the 3rd most cited researcher in Engineering Optimisation and Robust Optimis 'inn. ${ }^{\top} \mathrm{e}$ is serving an associate editor of Advances in Engineering Software and the journal of Algorith. १s.

Hossam Faris is at Assc iate professor at Business Information Technology department/King Au'‥llah II School for Information Technology/ The University of Jordan (Jorda 1). 'Iossam Faris received his BA, M.Sc. degrees (with excellent rates) in Comp. \quad. Sc ence from Yarmouk University and Al-Balqa` Applied University in ' 004 anc 2008 respectively in Jordan. Since then, he has been awarded a full-time com $_{\perp}$ +ition-based PhD scholarship from the Italian Ministry of Educatic 1 ar d Research to peruse his PhD degrees in e-Business at University of Salento, Italy, where he or hed his PhD degree in 2011. In 2016, he worked as a Postdoctoral researcher with GeNev a term a the Information and Communication Technologies Research Center (CITIC), University u $^{-}$r, ran da (Spain). His research interests include: Applied Computational Intelligence, Evolv unary computation, Knowledge Systems, Data mining, Semantic Web and Ontologies.

Ibrahim Aljarah is an assistant professor of BIG Data Mining 2 2d Computational Intelligence at the University of Jordan - Department of Bin ness Information Technology, Jordan. He obtained his bachelor degree in Computeı J̄cience from Yarmouk University - Jordan, 2003. Dr. Aljarah also ob dine ، his master degree in computer science and information systems from the, rrdan University of Science and Technology - Jordan in 2006. He also obtainea' is Ph.D. In computer Science from the North Dakota State University (N^{\top} JSI ;, TSA ${ }^{\text {TS }}$, in May 2014. He organized and participated in many conferences in the field of data minu., machine learning, and Big data such as NTIT, CSIT, IEEE NABIC, CASON, and BIGD 11 A Congress. Furthermore, he contributed in many projects in USA such as Vehicle Class Dete tion S stem (VCDS), Pavement Analysis Via Vehicle Electronic Telemetry (PAVVET), and 1 drm cioud Storage System (CSS) projects. He has published more than 35 papers in refereed i te natir nal conferences and journals. His research focuses on data mining, Machine Learning, 1 : D..., MapReduce, Hadoop, Swarm intelligence, Evolutionary Computation, Social Network Analysis (SNA), and large scale distributed algorithms.

Majdi Mafarja received hı $\iota \varsigma_{c}$. Software Engineering and M.Sc in Computer Information Systems from 1 ' 'iladelphia University and The Arab Academy for Banking and Financial --iences, Jordan in 2005 and 2007 respectively. Dr. Mafarja did his PhD in Computer Science at National University of Malaysia (UKM). He wa a men ber in Datamining and Optimization Research Group (DMO). Now he - a assistant professor at the Department of Computer Science at Sirz it IJniversity. His research interests include Evolutionary Computation, Meta-heuristics ard $\left\llcorner+{ }^{2} \mathrm{r}\right.$ ining.

Huili g Chen is currently an associate professor in the department of computer scienc. it V enzhou University, China. He received his Ph.D. degree in the d partment of computer science and technology at Jilin University, China. His p esent r , search interests center on evolutionary computation, machine learning, and Aata uuning, as well as their applications to medical diagnosis and bankruptcy pred stion. He has published more than 100 papers in international journals and … erence proceedings, including Pattern Recognition, Expert Systems with Application , rewledge-Based Systems, Soft Computing, Neurocomputing, Applied Mathematical Modeling, IE, E ACCESS, PAKDD, and among others.

- A mathematical model is proposed to simulate the hunting behaviour of $H_{\text {arris' }}$ Hawks
- An optimization algorithm is proposed using the mathematical model
- The proposed HHO algorithm is tested on several benchmarks
- The performance of HHO is also examined on several engineering c. sig problems
- The results show the merits of the HHO algorithm as compared to ex. ing algorithms

[^0]: *Corresponding author: Huiling Chen (chenhuiling.jlu@gmail.com)

[^1]: ${ }^{2}$ Interested readers can refer to the following documentary videos: (a) https://bit.ly/2Qew2qN, (b) https: //bit.ly/2qsh8Cl, (c) https://bit.ly/2P70MvH, (d) https://bit.ly/2DosJdS
 ${ }^{3}$ These images were obtained from (a) https://bit.ly/2qAsODb (b) https://bit.ly/2zBFo91

