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Abstract The combinatorial explosion problem prevents complete algorithms from solving
many real-life combinatorial optimization problems. In many situations, heuristic search methods
are needed. This chapter describes the principles of Guided Local Search (GLS) and Fast Local
Search (FLS) and surveys their applications. GLS is a penalty-based meta-heuristic algorithm
that sits on top of other local search algorithms, with the aim to improve their efficiency and
robustness. FLS is a way of reducing the size of the neighborhood so as to improve the efficiency
of local search. The chapter also provides guidance for implementing and using GLS and FLS.
Four problems, representative of general application categories, are examined with detailed
information provided on how to build a GLS-based method in each case.
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1 INTRODUCTION

Many practical problems are NP-hard in nature, which means complete, constructive
search is unlikely to satisfy our computational demand. For example, suppose we have
to schedule 30 jobs to 10 machines, satisfying various production constraints. The
search space has 1030 leaf nodes. Let us assume that we use a very clever backtracking
algorithm that explores only one in every 1010 leaf nodes. Let us generously assume
that our implementation examines 1010 nodes per second (with today’s hardware, even
the most naïve backtracking algorithm should be expected to examine only 105 nodes
per second). This still leaves us with approximately 300 years to solve the problem, in
the worst case. Many real life problems cannot be realistically and reliably be solved by
complete search. This motivates the development of local search, or heuristic methods.
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In this paper, we describe GLS, a general meta-heuristic algorithm and its applica-
tions. GLS sits on top of other heuristic methods with the aim to improve their efficiency
or robustness. GLS has been applied to a non-trivial number of problems, and found
to be efficient and effective. It is relatively simple to implement and apply, with few
parameters to tune.

The rest of this chapter will be divided into two parts: the first part describes the GLS
and surveys its applications. The second part provides guidelines on how to implement
and use GLS in practical applications.

Part I: Survey of Guided Local Search

2 BACKGROUND

Local search (LS) is the basis of most heuristic search methods. It searches in the
space of candidate solutions, such as the assignment of one machine to each job in
the above example. The solution representation issue is significant, though it is not the
subject of our discussion here. Starting from a (possibly randomly generated) candidate
solution, LS moves to a “neighbor” that is “better” than the current candidate solution
according to the objective function. LS stops when all neighbors are inferior to the
current solution.

LS can find good solutions very quickly. However, it can be trapped in local
optima—positions in the search space that are better than all their neighbors, but not
necessarily representing the best possible solution (the global optimum). To improve
the effectiveness of LS, various techniques have been introduced over the years. Sim-
ulated Annealing (SA), Tabu Search (TS) and Guided Local Search (GLS) all attempt
to help LS escape local optimum. This chapter focuses on GLS.

GLS is a meta-heuristic algorithm generalized and extended from a neural-network
based method called GENET (Wang and Tsang, 1991, 1994; Davenport et al., 1994;
Tsang et al., 1999). GLS was inspired by ideas from the area of Search Theory on how
to distribute the searching effort (e.g. see Koopman, 1957; Stone, 1983). GENET is a
weighted method for constraint satisfaction. Though originated from neural networks,
GENET resembles the min-conflict heuristic repair method by Minton et al. (1992).

The principles of GLS can be summarized as follows. As a meta-heuristic method,
GLS sits on top of LS algorithms. To apply GLS, one defines a set of features for the
candidate solutions. When LS is trapped in local optima, certain features are selected
and penalized. LS searches using the objective function as this is augmented by the
accumulated penalties. The novelty of GLS is in the way that it selects features to
penalize. GLS effectively distributes the search effort in the search space, favoring
areas where promise is shown.

3 GUIDED LOCAL SEARCH

As mentioned earlier, GLS augments the given objective function with penalties. To
apply GLS, one needs to define features for the problem. For example, in the travelling
salesman problem, a feature could be “whether the candidate tour travels immediately
from city A to city B” . GLS associates a cost and a penalty to each feature. The costs can
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often be defined by taking the terms and their coefficients from the objective function.
For example, in the travelling salesman problem, the cost of the above feature can
simply be the distance between cities A and B. The penalties are initialized to 0 and
will only be increased when the local search reaches a local optimum. Given an objective
function g that maps every candidate solution s to a numerical value, GLS defines a
function h that will be used by LS (replacing g):

where s is a candidate solution, is a parameter to the GLS algorithm, i ranges over
the features, is the penalty for feature (all are initialized to 0) and is an
indication of whether s exhibits feature i:

Sitting on top of local search algorithms, GLS helps them to escape local optima
in the following way. Whenever the local search algorithm settles in a local optimum,
GLS augments the cost function by adding penalties to selected features. The novelty of
GLS is mainly in the way that it selects features to penalize. The intention is to penalize
“unfavorable features” or features that “matter most” when a local search settles in a
local optimum. The feature that has high cost affects the overall cost more. Another
factor that should be considered is the current penalty value of that feature. The utility
of penalizing feature i, under a local optimum is defined as follows:

where is the cost and is the current penalty value of feature i. In other words,
if a feature is not exhibited in the local optimum (indicated by ), then the utility of
penalizing it is 0. The higher the cost of this feature (the greater ), the greater the
utility of penalizing it. Besides, the more times that it has been penalized (the greater

), the lower the utility of penalizing it again. In a local optimum, the feature with the
greatest util value will be penalized. When a feature is penalized, its penalty value is
always increased by 1. The scaling of the penalty is adjusted by .

By taking cost and the current penalty into consideration in selecting the feature to
penalize, GLS focuses its search effort on more promising areas of the search space:
areas that contain candidate solutions that exhibit “good features”, i.e. features involv-
ing lower cost. On the other hand, penalties help to prevent the search from directing
all effort to any particular region of the search space. Following is the general GLS
procedure (a more detailed pseudo-code for GLS will be given in Section 7.1):

Procedure GLS (L, g, I, c)
/* g is an objective function; L is a LS strategy; I and c are

arrays of features and their costs; is a scaling number)
1. Generate a starting candidate solution randomly or

heuristically;
2. Initialize all the penalty values to 0;
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3. Repeat the following until a termination condition
(e.g. a maximum number of iterations or time limit)
has been reached:
3.1. Perform local search (using L) according to the

function h (which is g plus the penalty values,

as defined in Eq. 1 above) until a local optimum
LM has been reached;

3.2. For each feature i which is exhibited in LM
compute

3.3. Penalize every feature i such that is
maximum:

4. Return the best candidate solution found so far

according to the objective function g.
End of Procedure GLS

Naturally the choice of the features, their costs and the setting of may affect
the efficiency of a search. Experience shows that the features and their costs normally
come directly from the objective function. In many problems, the performance of GLS
is not too sensitive to the value . This means one does not require too much effort to
apply GLS to a new problem. In certain problems, one needs expertise in selecting the
features and the parameter. Current research aims to reduce the sensitivity of the
parameter (Mills and Tsang, 2000b).

4 FAST LOCAL SEARCH

One factor which affects the efficiency ofa local search algorithm is the size of the neigh-
borhood. If too many neighbours are considered, then the search could be very costly.
This is especially true if the search takes many steps to reach a local optima, and/or
each evaluation of the objective function requires a significant amount of computation.
Bentley (1992) presented the approximate 2-Opt method to reduce the neighborhood of
2-Opt in the TSP. We have generalised this method to a method called Fast Local Search
(FLS). The principle is to, guided by heuristics, ignore neighbors that are unlikely to
lead to improving moves in order to enhance the efficiency of a search.

The neighborhood choosen for the problem is broken down into a number of small
sub-neighborhoods and an activation bit is attached to each one of them. The idea is to
scan continuously the sub-neighborhoods in a given order, searching only those with the
activation bit set to 1. These sub-neighborhoods are called active sub-neighborhoods.
Sub-neighborhoods with the bit set to 0 are called inactive sub-neighborhoods and they
are not being searched. The neighborhood search process does not restart whenever
we find a better solution but it continues with the next sub-neighborhood in the given
order. This order may be static or dynamic (i.e., change as a result of the moves
performed).

Initially, all sub-neighborhoods are active. If a sub-neighborhood is examined and
does not contain any improving moves then it becomes inactive. Otherwise, it remains
active and the improving move found is performed. Depending on the move performed,
a number of other sub-neighborhoods are also activated. In particular, we activate all
the sub-neighborhoods where we expect other improving moves to occur as a result
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of the move just performed. As the solution improves the process dies out with fewer
and fewer sub-neighborhoods being active until all the sub-neighborhood bits turn to 0.
The solution formed up to that point is returned as an approximate local optimum.

The overall procedure could be many times faster than conventional local search.
The bit setting scheme encourages chains of moves that improve specific parts of the
overall solution. As the solution becomes locally better the process is settling down,
examining fewer moves and saving enormous amounts of time which would otherwise
be spent on examining predominantly bad moves.

Although fast local search procedures do not generally find very good solutions,
when they are combined with GLS they become very powerful optimization tools.
Combining GLS with FLS is straightforward. The key idea is to associate features to
sub-neighborhoods. The associations to be made are such that for each feature we know
which sub-neighborhoods contain moves that have an immediate effect upon the state
of the feature (i.e. moves that remove the feature from the solution).

By reducing the size of the neighbourhood, one may significantly reduce the amount
ofcomputation involved in each local search iterations. The hope is to enable more local
search iterations in a fixed amount of time. The danger of ignoring certain neighbours is
that some improvements may be missed. The hope is that the gain out-weighs the loss.

5 GLS AND OTHER METAHEURISTICS

GLS is closely related to other heuristic and meta-heuristic methods. Recently, Choi
et al. (forthcoming) show the relationship between GENET (GLS’s predecesor) and
the Lagrangean Method. In this section, we shall discuss the relationship between GLS
and Tabu Search (TS), Genetic Algorithms (GA).

5.1 GLS and Tabu Search

GLS is closely related to Tabu Search (TS). For example, penalties in GLS can be seen
as soft taboos in TS that guide LS away from local minima. There are many ways to
adopt TS ideas in GLS. For example, taboo lists and aspiration ideas have been used
in later versions of GLS. Penalties augment the original objective function. They help
the local search to escape local optimum. However, if too many penalties are built up
during the search, the local search could be misguided. Resembling the taboo lists idea,
a limited number of penalties are used when GLS is applied to the quadratic assignment
problem. When the list is full, old penalties will be overwritten (Voudouris and Tsang,
1998).

In our current work, aspiration (inspired by TS) is used to favor promising moves.
Details of this work will be presented in another occasion (Mills and Tsang, 2000b).

5.2 GLS and Genetic Algorithms

As a meta-heuristic method, GLS can also sit on top of genetic algorithms (GA)
(Holland, 1975; Goldberg, 1989). This has been demonstrated in Guided Genetic
Algorithm (GGA) (Lau and Tsang, 1997 1998; Lau, 1999).

GGA is a hybrid of GA and GLS. It is designed to extend the domain of both GA
and GLS. One major objective is to further improve the robustness of GLS. It can
be seen as a GA with GLS to bring it out of local optimum: if no progress has been
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made after a specific of iterations (this number is a parameter to GGA), GLS modifies
the fitness function (which is the objective function) by means of penalties, using the
criteria defined in equation (3). GA will then use the modified fitness function in future
generations. The penalties are also used to bias crossover and mutation in GA – genes
that contribute more to the penalties are made more susceptive to changes by these two
GA operators. This allows GGA to be more focussed in its search.

On the other hand, GGA can roughly be seen as a number of GLS’s from different
starting points running in parallel, exchanging material in a GA manner. The difference
is that only one set of penalties is used in GGA whereas parallel GLS’s could have used
one independent set of penalties per run. Besides, learning in GGA is more selective
than parallel GLS: the updating of penalties is only based on the best chromosome
found at the point of penalization.

6 APPLICATIONS

GLS, FLS and their descendents have been applied to a non-trivial number of problems
and achieved world-class results.

6.1 Radio Link Frequency Assignment Problem

In the radio link frequency assignment problem (RLFAP), the task is to assign available
frequencies to communication channels satisfying constraints that prevent interference
(Bouju et al., 1995). In some RLFAPs, the goal is to minimize the number of frequencies
used. Bouju et al. (1995) is an early work that applied GENET to radio length frequency
assignment. For the CALMA set of benchmark problems, which has been widely
used, GLS+FLS reported the best results compared to all work published previously
(Voudouris and Tsang, 1996). In the NATO Symposium on RLFAP in Denmark, 1998,
GGA was demonstrated to improve the robustness of GLS (Lau and Tsang, 1998). In
the same symposium, new and significantly improved results by GLS were reported
(Voudouris and Tsang, 1998). GLS and GGA hold some of the best results in the
CALMA set of benchmark problems.

6.2 Workforce Scheduling Problem

In the workforce scheduling problem (WSP) (Azarmi and Abdul-Hameed, 1995),
the task is to assign technicians from various bases to serve the jobs, which may
include customer requests and repairs, at various locations. Customer requirements
and working hours restrict the times that certain jobs can be served by certain tech-
nicians. The objective is to minimize a function that takes into account the travelling
cost, overtime cost and unserved jobs. In the WFS, GLS+FLS holds the best-published
results in the benchmark problem available to the authors (Tsang and Voudouris, 1997).

6.3 Travelling Salesman Problem

The most significant results of GLS and FLS are probably in their application to the
travelling salesman problem (TSP). The Lin-Kernighan algorithm (LK) is a specialized
algorithm for TSP that has long been perceived as the champion of this problem (Lin
and Kernighan, 1973; Martin and Otto, 1996). We tested GLS+FLS+2Opt against
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LK (Voudouris and Tsang, 1999) in a set of benchmark problems from the public TSP
library (Reinelt, 1991). Given the same amount of time (we tested 5 and 30 cpu min
on a DEC Alpha 3000/600), GLS+FLS+2Opt found better results than LK in aver-
age. GLS+FLS+2Opt also out-performed Simulated Annealing (Johnson, 1990), Tabu
Search (Knox, 1994) and Genetic Algorithm (Freisleben and Merz, 1996) implemen-
tations reported on the TSP. One must be cautious when interpreting such empirical
results as they could be affected by many factors, including implementation issues.
But given that the TSP is an extensively studied problem, it takes something special
for an algorithm to out-perform the champions under any reasonable measure (“find
me the best results within a given amount of time” must be a realistic requirement). It
must be emphasized that LK is specialized for TSP but GLS and FLS are much simpler
general-purpose algorithms.

GLS hybrids have also been proposed for the TSP including the combination
of GLS with Memetic Algorithms (Holstein and Moscato, 1999) and also with the,
dynamic-programming based, Dynasearch technique with some encouraging prelimi-
nary results reported (Congram and Potts, 1999). Finally, Padron and Balaguer (2000)
have applied GLS to the related Rural Postman Problem (RPP).

6.4 Function Optimization

GLS has also been applied to general function optimization problems to illustrate that
artificial features can be defined for problems in which the objective function suggests
no obvious features. Results show that, as expected, GLS spreads its search effort
across solution candidates depending on their quality (as measured by the objective
function). Besides, GLS consistently found solutions in a landscape with many local
sub-optimals (Voudouris, 1998).

6.5 Satisfiability and Max-SAT problem

Given a set of propositions in conjunctive normal form, the Satisfiability (SAT) problem
is to determine whether the propositions can all be satisfied. The MAX-SAT problem
is a SAT problem in which each clause is given a weight. The task is to minimize the
total weight of the violated clauses. In other words, the weighted MAX-SAT problem
is an optimization problem. Many researchers believe that many problems, including
scheduling and planning can be formulated as SAT and MAX-SAT problems, hence
these problems have received significant attention in recent years, e.g., see Gent et al.
(2000).

GLSSAT, an extension of GLS, was applied to both the SAT and weighted MAX-
SAT problem (Mills and Tsang, 2000a). On a set SAT problems from DIMACS,
GLSSAT produced results comparable to those produced by WalkSAT (Selman and
Kautz, 1993), a variation of GSAT (Selman et al., 1992), which was specifically
designed for the SAT problem.

On a popular set of benchmark weighted MAX-SAT problems, GLSSAT produced
better or comparable solutions, more frequently than state-of-the-art algorithms, includ-
ing DLM (Shang and Wah, 1998), WalkSAT (Selman and Kautz, 1993) and GRASP
(Resende and Feo, 1996).
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6.6 Generalized Assignment Problem

The Generalized Assignment Problem is a generic problem in which the task is to
assign agents to jobs. Each job can only be handled by one agent, and each agent
has a finite resource capacity that limits the number of jobs that it can be assigned.
Assigning different agents to different jobs bear different utilities. On the other hand,
different agents will consume different amounts of resources when doing the same job.
In a set of benchmark problems, GGA found results as good as those produced by a
state-of-the-art algorithm (which was also a GA algorithm) by Chu and Beasley (1997),
with improved robustness (Lau and Tsang, 1998).

6.7 Processor Configuration Problem

In the Processors Configuration Problem, one is given a set of processors, each of
which with a fixed number of connections. In connecting the processors, one objective
is to minimize the maximum distances between processors. Another possible objective
is to minimize the average distance between pairs of processors (Chalmers, 1994).
In applying GGA to the Processors Configuration Problem, representation was a key
issue. To avoid generating illegal configurations, only mutation is used. GGA found
configurations with shorter average communication distance than those found by other
algorithms reported previously (Lau and Tsang, 1997, 1998).

6.8 Vehicle Routing Problem

In a vehicle routing problem, one is given a set of vehicles, each with its specific
capacity and availability, and a set of customers to serve, each with specific weight
and/or time demand on the vehicles. The vehicles are grouped in one or more depots.
Both the depots and the customers are geographically distributed. The task is to serve
the customers using the vehicles, satisfying time and capacity constraints. This is
a practical problem. Like many practical problems, it is NP-hard.

Kilby et al. (1999, 2000) applied GLS vehicle routing problems and achieved out-
standing results. As a result, their work were incorporated in Dispatcher, a commercial
package developed by ILOG (http://www.ilog.fr/html/products/) (Backer et al., 2000).

6.9 Constrained Logic Programming

Lee and Tam (1995) and Stuckey and Tam (1998) embedded GENET in logic pro-
gramming languages in order to enhance programming efficiency. In these logic
programming implementations, unification is replaced by constraint satisfaction. This
enhances efficiency and extends applicability of logic programming.

6.10 Other Applications of GENET and GLS

We have also applied GLS and FLS to a variety of other problems, including the
Maximum Channel Assignment problem, a Bandwidth Packing problem variant, graph
colouring, car sequencing problem. GLS and FLS have also been successfully applied
to the 3-D Bin Packing Problem by Faroe et al. (1999). Other applications of GENET
include rail traffic control (Jose and Boyce, 1997).
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Part II: Practical Guidelines for Using Guided Local Search

7 IMPLEMENTING GUIDED LOCAL SEARCH

As explained in previous sections, a local search procedure for the particular problem
is required. Guided Local Search is repeatedly using this procedure to optimize the
augmented objective function of the problem. The augmented objective function is
modified each time a local minimum is reached by increasing the penalties of one or
more of the features present in the local minimum. These features are selected by using
the utility function (3) described in Section 3. The pseudo-codes for implementing a
Guided Local Search method and a Guided Fast Local Search method are presented
and explained in the sections below.

7.1 Pseudo-code for Guided Local Search

The pseudo-code for the Guided Local Search procedure is the following:

procedure GuidedLocalSeach(p, g, M)
begin

ConstructionMethod(p);
/* set all penalties to 0 */
for until M do

/* define the augmented objective function */
*

while StoppingCriterion do
begin

ImprovementMethod
/* compute the utility of features */
for until M do

/* penalize features with maximum utility */
for each i such that is maximum do

k k+1;
end
s* best solution found with respect to objective

function g;
return s*;

end

where p: problem, g: objective function, h: augmented objective function, lambda
parameter, indicator function offeature cost of feature i, M: number of features,

penalty of feature i, ConstructionMethod(p): method for constructing a initial
solution for problem p, and method for improving solution

according to the augmented objective function h.
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7.2 Guidelines for Implementing the GLS Pseudo-code

To understand the pseudo-code, let us explain first the methods for constructing a
solution and improving a solution, which are contained in there and they are both
prerequisites in order to build a GLS algorithm.

7.2.1 Construction Method

As with other meta-heuristics, Guided Local Search requires a construction method
to generate an initial (starting) solution for the problem. In the pseudo-code, this is
denoted by ConstructionMethod. This method can be generating a random solution or
a heuristic solution based on some known technique for constructing solutions for the
particular problem. Guided Local Search is not very sensitive to the starting solution
given that sufficient time is allocated to the algorithm to explore the search space of
the problem.

7.2.2 Improvement Method

A method for improving the solution is also required. In the pseudo-code, this is denoted
by ImprovementMethod. This method can be a simple local search algorithm or a more
sophisticated one such as Variable Neighborhood Search (Hansen and Mladenovic,
1999), Variable Depth Search (Lin and Kernighan, 1973), Ejection Chains (Glover and
Laguna, 1997) or combinations of local search methods with exact search algorithms
(Pesant and Gendreau, 1999).

It is not essential for the improvement method to generate high quality local minima.
Experiments with GLS and various TSP heuristics reported in (Voudouris and Tsang,
1999) have shown that high quality local minima take time to produce, resulting in less
intervention by GLS in the overall allocated search time. This may sometimes lead to
inferior results compared to a simple but more computationally efficient improvement
method.

Note also that the improvement method is using the augmented objective function
instead of the original one.

7.2.3 Indicator Functions and Feature Penalization

Given that a construction and an improvement method are available for the problem,
the rest of the pseudo-code is straightforward to apply. The penalties of features are ini-
tialized to zero and they are incremented for features that maximize the utility formula,
after each call to the improvement method.

The indicator functions for the features rarely need to be implemented. Look-
ing at the values of the decision variables can directly identify the features present in
a local minimum. When this is not possible, data structures with constant time dele-
tion/addition operations (e.g. based on double-linked lists) can incrementally maintain
the set of features present in the working solution avoiding the need for an expensive
computation when GLS reaches a local minimum.

The selection of features to penalize can be efficiently implemented by using the
same loop for computing the utility formula for features present in the local minimum
(the rest can be ignored) and also placing features with maximum utility in a vector.
With a second loop, the features with maximum utility contained in this vector have
their penalties incremented by one.
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7.2.4 The Lambda Parameter

The lambda parameter is the only parameter to the GLS method (at least in its basic
version) and in general, it is instance dependent. Fortunately, for several problems, it
has been observed that good values for lambda can be found by dividing the value of
the objective function in a local minimum with the average number of features present.
In these problems, lambda is dynamically computed after the first local minimum and
before penalties are applied to features for the first time. The user only provides an
alpha parameter, which is relatively instance independent. The recommended formula
for lambda as a function of alpha is the following:

where g is the objective function of the problem. Tuning alpha can result in lambda
values, which work for many instances of a problem class.

Another benefit from using is that, if tuned, it can be fixed in industrialized
versions of software, resulting in ready-to-use GLS algorithms for the end-user.

7.2.5 Augmented Objective Function and Move Evaluations

With regard to the objective function and the augmented objective function, the program
should keep track of the actual objective value in all operations relating to storing the
best solution or finding a new best solution. Keeping track of the value of the augmented
objective value (e.g. after adding the penalties) is not necessary since local search
methods will be looking only at the differences in the augmented objective value when
evaluating moves.

However, the move evaluation mechanism needs to be revised to work efficiently
with the augmented objective function. Normally, the move evaluation mechanism is
not directly evaluating the objective value of the new solution generated by the move.
Instead, it calculates the difference in the objective function. This difference should
be combined with the difference in the amount of penalties. This can be easily done
and has no significant impact on the time needed to evaluate a move. In particular,
we have to take into account only features that change state (being deleted or added).
The penalties of the features deleted are summed together. The same is done for the
penalties of features added. The change in the amount of penalties due to the move is
then simply given by the difference:

which then has to be multiplied by lambda and added to
Another minor improvement is to monitor the actual objective value not only for

the solutions accepted by local search but also for those evaluated. Since local search
is using the augmented objective function, a move that generates a new best solution
may be missed. From our experience, this modification does not improve significantly
the performance of the algorithm although it can be proved useful when GLS is used
to find new best-known solutions to hard benchmark instances.
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7.2.6 Stopping Criterion

There are many choices possible for the StoppingCritetion. Since GLS is not trapped in
local minima, there is no obvious point when to stop the algorithm. Like in other meta-
heuristics, we usually resort to a measure related to the length of the search process.
For example, we may choose to set a limit on the number of moves performed, the
number of moves evaluated, or the CPU time spend by the algorithm. If a lower bound
is known, we can utilize it as a stopping criterion by setting the excess above the lower
bound that we require to be achieved. Criteria can also be combined to allow for a more
flexible way to stop the GLS method.

In the next section, we look at the combination of Guided Local Search with Fast
Local Search resulting in the Guided Fast Local Search method.

8 IMPLEMENTING GUIDED FAST LOCAL SEARCH

Guided Fast Local Search (GFLS) is more sophisticated than the basic GLS algorithm
using a number of sub-neighborhoods, which are enabled/disabled during the search
process. The main advantage of GFLS lies in its ability to provide search focus after the
penalties of features are increased. This can dramatically shorten the time required by
an improvement method to re-optimize the solution each time the augmented objective
function is modified

Guided Fast Local Search has been described in Section 4 of this chapter. In the
following sections, we provide the pseudo-code for the method and also some sugges-
tions on how to achieve an efficient implementation. We first look at the pseudo-code
for Fast Local Search, which is part of the overall Guided Fast Local Search algorithm.

8.1 Pseudo-code for Fast Local Search

The pseudo-code for Fast Local Search is the following:

procedure FastLocalSeach(s,h, h ,   L)
begin

/* i.e. while active sub-neighborhood exists */
for until L do
begin

/* search sub-neighborhood i */
begin

Moves MovesForSubneighborhood(i) ;
for each move m in Moves do
begin

/* is the result of move m */
if  then

/* minimization case is assumed here */
begin

/* spread activation */
ActivateSet

while do

if then
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SubneighborhoodsForMove(m);

for each sub-neighborhood j

in ActivateSet do

goto ImprovingMoveFound

end

end

/* no improving move found */

end

ImprovingMoveFound:
continue;

end;

return s;

end

where s: solution, h: augmented objective function, L: number of sub-neighborhoods,
activation bit for sub-neighborhood i, MovesForSubneighborhood(i): method

which returns the set of moves contained in sub-neighborhood i, and Subneighbor-
hoodsForMove(m): method which returns the set of sub-neighborhoods to activate
when move m is performed.

8.2 Guidelines for Implementing the FLS Pseudo-code

As explained in section (4), the problem’s neighborhood is broken down into a number
of sub-neighborhoods and an activation bit is attached to each one of them. The idea is to
examine sub-neighborhoods in a given order, searching only those with the activation
bit set to 1. The neighborhood search process does not restart whenever we find a
better solution but it continues with the next sub-neighborhood in the given order. The
pseudo-code given above is flexible since it does not specify which bits are initially
switched on or off, something which is an input to the procedure. This allows the
procedure to be focused to certain sub-neighborhoods and not the whole neighborhood,
which may be a large one.

The procedure has two points that need to be customized. The first is the
breaking-down of the neighborhood into sub-neighborhoods (MovesForSubneigh-
borhood method in pseudo-code). The second is the mapping from moves to
sub-neighborhoods for spreading activation (SubneighborhoodsForMove method in
pseudo-code). Both these points are strongly dependent on the move operator used.

In general, the move operator depends on the solution representation. Fortunately,
several problems share the same solution representation which is typically based on
some well-known simple or composite combinatorial structure (e.g., selection, permu-
tation, partition, composition, path, cyclic path, tree, graph, etc.). This allows us to
use the same move operators for many different problems (e.g. 1-Opt, 2-Opt, Swaps,
Insertions, etc.).

8.2.1 Breaking Down the Neighborhood into Sub-neighborhoods

The method for mapping sub-neighborhoods to moves, which is denoted in the pseudo-
code by SubneighbourhoodToMoves, can be defined by looking at the implementation
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of a typical local search procedure for the problem. This implementation, at its core,
will usually contain a number of nested for-loops for generating all possible move
combinations. The variable in the outer-most loop in the move generation code can be
used to define the sub-neighborhoods. The moves in each sub-neighborhood will be
those generated by the inner loops for the particular sub-neighborhood index value at
the outer-most loop.

In general, the sub-neighborhoods can be overlapping. Fast local search is usually
examining limited numbers of moves compared to exhaustive neighborhood search
methods and therefore duplication of moves is not a problem. Moreover, this can be
desirable sometimes to give a greater range to each sub-neighborhood. Since not all
sub-neighborhoods are active in the same iteration, if there is no overlapping, some of
improving moves may be missed.

8.2.2 Spreading Activation When Moves are Executed

The method for spreading activation, denoted by SubneighbourhoodsForMove, returns
a set of sub-neighborhoods to activate after a move is performed. The lower bound for
this set is the sub-neighborhood where the move originated. The upper bound (although
not useful) is all the sub-neighborhoods in the problem.

A way to define this method is to look at the particular move operator used. Moves
will affect part of the solution directly or indirectly while leaving other parts unaffected.
If a sub-neighborhood contains affected parts then it needs to be activated since an
opportunity could arise there for an improving move as a result of the original move
performed.

The Fast Local Search loop is settling down in a local minimum when all the bits
of sub-neighborhoods turn to zero (i.e. no improving move can be found in any of the
sub-neighborhoods). Fast Local Search to that respect is similar to other local search
procedures. The main differences are that the method can be focused to search particular
parts of the overall neighborhood and secondly, it is working in a opportunistic way
looking at parts of the solution which are likely to contain improving moves rather than
the whole solution. In the next section, we look at Guided Fast Local Search, which
uses Fast Local Search as its improvement method.

8.3 Pseudo-code for Guided Fast Local Search

The pseudo-code for Guided Fast Local Search is given below:

procedure GuidedFastLocalSearch(p, g,
M, L)

begin

s0 ConstructionMethod(p);
/* set all penalties to 0 */
for until M do

/* set all sub-neighborhoods to the active state */
for until L do

/* define the augmented objective function */
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while StoppingCriterion do
begin

FastLocalSearch
/* compute the utility of features */
for until M do

/* penalize features with maximum utility */
for each i such that is maximum do
begin

/* activate sub-neighborhoods related
to penalized feature i */
ActivateSet SubneighborhoodsForFeature(i);
for each sub-neighborhood j in ActivateSet do

end

end
s* best solution found with respect to objective

function g;
return s*;

end

where p: problem, g: objective function, h: augmented objective function, lambda
parameter, indicator function of feature i, cost of feature i, M: number of features,

penalty of feature i, L: number of sub-neighborhoods, : activation bit for sub-
neighborhood i, ConstructionMethod(p): method for constructing a initial solution for
problem p, the fast local search method
as depicted in section 8.1, and SubneighborhoodsForFeature(i): method which returns
the set of sub-neighborhoods to activate when feature i is penalized.

8.4 Guidelines for Implementing the GFLS Pseudo-code

This pseudo-code is similar to that of Guided Local Search explained in Section 7. All
differences relate to the manipulation of activation bits for the purpose of focusing Fast
Local Search. These bits are initialized to 1. As a result, the first call to Fast Local
Search is examining the whole neighborhood for improving moves.

Subsequent calls to Fast Local Search examine only part of the neighborhood
and in particular all the sub-neighborhoods that relate to the features penalized
by GLS.

8.4.1 Identifying Sub-neighborhoods to Activate When Features are Penalized

Identifying the sub-neighborhoods that are related to a penalized feature is the task
of SubneighborhoodsForFeature method. The role of this method is similar to that of
SubneighborhoodsForMove method in Fast Local Search (see Section 8.2.2).

The SubneighborhoodsForFeature method is usually defined based on an analysis
of the move operator. After the application of penalties, we are looking for moves which
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remove or have the potential to remove penalized features from the solution. The sub-
neighborhoods, which contain such moves, are prime candidates for activation. Specific
examples will be given later in the chapter and in the context of GLS applications.

Guided Fast Local Search is much faster than basic Guided Local Search especially
in large problem instances where repeatedly and exhaustively searching the whole
neighborhood is computationally expensive.

9 USEFUL FEATURES FOR COMMON APPLICATIONS

Apart from the necessary specialization of the algorithms explained in previous
sections, applying Guided Local Search or Guided Fast Local Search to a problem
requires identifying a suitable set of features to guide the search process. As explained
in section 3, features need to be defined in the form of indicator functions that given
a solution return 1 if the feature is present in the solution or 0 otherwise.

Features provide the heuristic search expert with quite a powerful tool since any
solution property can be potentially captured and used to guide local search. Usually,
we are looking for solution properties, which have a direct impact on the objective
function. These can be modeled as features with feature costs equal or analogous
to their contribution to the objective function value. By applying penalties to features,
GLS can guide the improvement method to avoid costly (“bad”) properties, converging
faster towards areas of the search space, which are of high quality.

Features are not necessarily specific to a particular problem and they can be used in
several problems of similar structure. Real world problems, which sometimes incorpo-
rate elements from several academic problems, can benefit from using more than one
feature-sets to guide local search to optimize better all different terms of a complex
objective function.

Below, we provide examples of features that can be deployed in the context of
various problems. The reader may find them helpful and use them in his/her own
optimization application.

9.1 Routing/Scheduling Problems

In routing/scheduling problems, one is seeking to minimize the time required by a vehi-
cle to travel between customers or for a resource to be setup from one activity to
the next. Problems in this category include the Traveling Salesman Problem, Vehicle
Routing Problem, Machine Scheduling with Sequence Dependent Set-up Times and
others.

Travel or setup times are modeled as edges in a path or graph structure commonly
used to represent the solution of these problems. The objective function (or at least part
of it) is given by the sum of lengths for the edges used by the solution.

Edges are ideal GLS features. A solution either contains an edge or not. Further-
more, each edge has a cost equal to its length. We can define a feature for each possible
edge and assign a cost to it equal to the edge length. GLS quickly identifies and penal-
izes long and costly edges guiding local search to high quality solutions, which use as
much as possible the short edges available.



Guided Local Search 201

9.2 Assignment Problems

In assignment problems, a set of items has to be assigned to another set of items (e.g.,
airplanes to flights, locations to facilities, people to work etc.). Each assignment of
item i to item j usually carries a cost and depending on the problem, a number of
constraints required to be satisfied (e.g., capacity or compatibility constraints). The
assignment of item i to item j can be seen as a solution property which is either present
in the solution or not. Since each assignment also carries a cost, this is another good
example of a feature to be used in a GLS implementation.

In some variations of the problem such as the Quadratic Assignment Problem, the
cost function is more complicated and assignments are having an indirect impact to the
cost. Even in these cases, we found the GLS can generate good results by assigning
to all features the same feature costs (e.g. equal to 1 or some other arbitrary value).
Although, GLS is not guiding the improvement method to good solutions (since this
information is difficult to extract from the objective function), it can still diversify
the search because of the penalty memory incorporated and it is capable of producing
results comparable to popular heuristic methods.

9.3 Resource Allocation Problems

Assignment problems can be used to model resource allocation applications. A spe-
cial but important case in resource allocation is when the resources available are not
sufficient to service all requests. Usually, the objective function will contain a sum of
costs for the unallocated requests, which is to be minimized. The cost incurred when
a request is unallocated will reflect the importance of the request or the revenue lost in
the particular scenario.

A possible feature to consider for these problems is whether a request is unallocated
or not. If the request is unallocated then a cost is incurred in the objective function,
which we can use as the feature cost to guide local search. The number of features in
a problem is equal to the number of requests that may be left unallocated, one for each
request. There may be hard constraints which state that certain requests should always
be allocated a resource, there is no need to define a feature for them. Problems in
this category include the Path Assignment Problem (Anderson et al., 1993), Maximum
Channel Assignment Problem (Simon, 1989), Workforce Scheduling Problem (Azarmi
and Abdul-Hameed, 1995) and others.

9.4 Constrained Optimization Problems

Constraints are very important in capturing processes and systems in the real world.
A number of combinatorial optimization problems deals with finding a solution, which
satisfies a set of constraints or, if that is not possible, minimizes the number of constraint
violations (relaxations). Constraint violations may have costs (weights) associated to
them, in which case the sum of constraint violation costs is to be minimized.

Local search usually considers the number of constraint violations (or their weighted
sum) as the objective function even in cases where the goal is to find a solution,
which satisfies all the constraints. Constraints by their nature can be easily used as
features. They can be modeled by indicator functions and they also incur a cost (i.e.,
when violated/relaxed), which can be used as their feature cost. Problems which can
benefit from this modeling include the Constraint Satisfaction and Partial Constraint
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Satisfaction Problem (Tsang, 1993), the famous SAT and its MAX-SAT variant, Graph
Coloring, various Frequency Assignment Problems (Murphey et al., 1999) and others.

The features proposed in past sections, we would see them used in case problems.
In particular, we examine the application of GLS to the following:

Traveling Salesman Problem (Routing/Scheduling category),
Quadratic Assignment Problem (Assignment Problem category),
Workforce Scheduling Problem (Resource Allocation category),
Radio Link Frequency Assignment Problem (Constraint Optimization category).

For each case problem, we provide a short problem description along with guidelines
on how to build a basic local search procedure, implement GLS and also GFLS when
applicable.

10 TRAVELING SALESMAN PROBLEM (TSP)

10.1 Problem Description

There are many variations of the Traveling Salesman Problem (TSP). In here, we
examine the classic symmetric TSP. The problem is defined by N cities and a symmetric
distance matrix which gives the distance between any two cities i and j.
The goal in TSP is to find a tour (i.e. closed path), which visits each city exactly once
and is of minimum length. A tour can be represented as a cyclic permutation on the
N cities if we interpret to be the city visited after city The cost
of a permutation is defined as:

and gives the cost function of the TSP.

10.2 Local Search

10.2.1 Solution Representation

The solution representation usually adopted for the TSP is that of a vector which
contains the order of the cities in the tour. For example, the i-th element of the vector
will contain an identifier for the i-th city to be visited. Since the solution of the TSP
is a closed path there is an edge implied from the last city in the vector to the first one
in order to close the tour. The solution space of the problem is that off all possible
permutations of the cities as represented by the vector.

10.2.2 Construction Method

A simple construction method is to generate a random tour. If the above solution
representation is adopted then all that is required is a simple procedure, which generates
a random permutation of the identifiers of the cities. More advanced TSP heuristics
can be used if we require a higher quality starting solution to be generated (Reinelt,
1994). This is useful in real time/online applications where a good tour may be needed
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very early in the search process in case the user interrupts the algorithm. If there are no
concerns like that then a random tour generator suffices since the GLS meta-heuristic
tends to be relatively insensitive to the starting solution and capable of finding high
quality solutions even if left to run for a relatively short time.

10.2.3 Improvement Method

Most improvement methods for the TSP are based on the k-Opt moves. Using k-Opt
moves, neighboring solutions can be obtained by deleting k edges from the current tour
and reconnecting the resulting paths using k new edges. The k-Opt moves are the basis
of the three most famous local search heuristics for the TSP, namely 2-Opt (Croes,
1958), 3-Opt (Lin, 1965) and Lin-Kernighan (LK) (Lin and Kernighan, 1973).

The reader can consider using the simple 2-Opt method, which in addition to its
simplicity is very effective when combined with GLS. With 2-Opt, a neighboring
solution is obtained from the current solution by deleting two edges, reversing one of
the resulting paths and reconnecting the tour. In practical terms, this means reversing
the order of the cities in a contiguous section of the vector or its remainder depending
on which one is the shortest in length.

Computing incrementally the change in solution cost by a 2-Opt move is relatively
simple. Let us assume that edges e1, e2 are removed and edges e3, e4 are added with
lengths dl, d2, d3, d4 respectively. The change in cost is the following:

When we discuss the features used in the TSP, we will explain how this evalua-
tion mechanism is revised to account for penalty changes in the augmented objective
function.

10.3 Guided Local Search

For the TSP, a tour includes a number of edges and the solution cost (tour length) is
given by the sum of the lengths of the edges in the tour (see (6)). As mentioned in
Section 9.1, edges are ideal features for routing problems such as the TSP. First, a tour
either includes an edge or not and second, each edge incurs a cost in the objective
function equal to the edge length, as this is given by the distance matrix of
the problem. A set of features can be defined by considering all possible undirected
edges that may appear in a tour with
feature costs given by the edge lengths Each edge connecting cities i and city
j is attached a penalty initially set to 0 which is increased by GLS during search.
When implementing the GLS algorithm for the TSP, the edge penalties can be arranged
in a symmetric penalty matrix As mentioned in section 3, penalties have
to be combined with the problem’s objective function to form the augmented objective
function which is minimized by local search. We therefore need to consider the auxiliary
distance matrix:

Local search must use instead of D in move evaluations. GLS modifies P and
(through that) whenever local search reaches a local minimum.

In order to implement this, we revise the incremental move evaluation formula (7)
to take into account the edge penalties and also the lambda parameter. If p1, p2, p3, p4
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are the penalties associated to edges e1, e2, e3, and e4, respectively the revised version
of (7) is as follows:

Similarly, we can implement GLS for higher order k-Opt moves.
The edges penalized in a local minimum are selected according to the utility function

(3), which for the TSP takes the form:

where

The only parameter of GLS that requires tuning is the parameter. Alternatively,
we can tune the a parameter which is defined in Section 7.2 and it is relatively instance
independent. Experimenting with a on the TSP, we found that there is an inverse relation
between a and local search effectiveness. Not so effective local search heuristics such
as 2-Opt require higher a values compared to more effective heuristics such as 3-Opt
and LK. This is probably because the amount of penalty needed to escape from local
minima decreases as the effectiveness of the heuristic increases explaining why lower
values for a (and consequently for which is a function ofa) work better with 3-Opt and
LK. For 2-Opt, the following range for a generates high quality solutions for instances
in the TSPLIB (Reinelt, 1991).

The reader may refer to (Voudouris and Tsang, 1999) for more details on the
experimentation procedure and the full set of results.

10.4 Guided Fast Local Search

We can exploit the way local search works on the TSP to partition the neighborhood in
sub-neighborhoods as required by Guided Fast Local Search. Each city in the problem
may be seen as defining a sub-neighborhood, which contains all 2-Opt edge exchanges
removing either one of the edges adjacent to the city. For a problem with N cities, the
neighborhood is partitioned into N sub-neighborhoods, one for each city in the instance.

The sub-neighborhoods to be activated after a move is executed are those of the
cities at the ends of the edges removed or added by the move.

Finally, the sub-neighborhoods activated after penalization are those defined by
the cities at the ends of the edge(s) penalized. There is a good chance that these
sub-neighborhoods will include moves that remove the one or more of the penalized
edges.

11 QUADRATIC ASSIGNMENT PROBLEM (QAP)

11.1 Problem Description

The Quadratic Assignment Problem (QAP) is one of the most difficult problems in
combinatorial optimization. The problem can model a variety of applications but it is
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mainly known for its use in facility location problems. In the following, we describe
the QAP in its simplest form.

Given a set N = {1,2, ..., n} and n × n matrices and the
QAP can be stated as follows:

where p is a permutation of N and is the set of all possible permutations. There are
several other equivalent formulations of the problem. In the facility location context,
each permutation represents an assignment of n facilities to n locations. More specifi-
cally, each position i in the permutation represents a location and its contents p(i) the
facility assigned to that location. The matrix A is called the distance matrix and gives
the distance between any two of the locations. The matrix B is called the flow matrix
and gives the flow of materials between any two of the facilities. For simplicity, we
only consider the Symmetric QAP case for which both the distance and flow matrices
are symmetric.

11.2 Local Search

QAP solutions can be represented by permutations to satisfy the constraint that each
facility is assigned to exactly one location. A move commonly used for the problem is
simply to exchange the contents of two permutation positions (i.e. swap the facilities
assigned to a pair of locations). A best improvement local search procedure starts with
a random permutation. In each iteration, all possible moves (i.e. swaps) are evaluated
and the best is selected and performed. The algorithm reaches a local minimum when
there is no move, which improves further the cost of the current permutation.

An efficient update scheme can be used in the QAP which allows evaluation of
moves in constant time. The scheme works only with best improvement local search.
Move values of the first neighborhood search are stored and updated each time a new
neighborhood search is performed to take into account changes from the move last
executed, see (Taillard, 1995) for details. Move values do not need to be evaluated
from scratch and thus the neighborhood can be fully searched in roughly time
instead of required otherwise.1 To evaluate moves in constant time, we have to
examine all possible moves in each iteration and have their values updated. Because of
that, the scheme can not be easily combined with Fast Local Search, which examines
only a number of moves in each iteration therefore preventing benefiting substantially
from GFLS in this case.

11.3 Guided Local Search

A set of features that can be used in the QAP is the set of all possible assignments of
facilities to locations (i.e. location-facility pairs). This kind of feature is general and
can be used in a variety of assignment problems as explained in Section 9.2. In the
QAP, there are possible location-facility combinations. Because of the structure of

1To evaluate the change in the cost function 13 caused by a move normally requires O(n) time. Since
there are moves to be evaluated, the search of the neighborhood without the update scheme requires

time.
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the objective function, it is not possible to estimate easily the impact of features and
assign to them appropriate feature costs. In particular, the contribution in the objective
function of a facility assignment to a location depends also on the placement of the
other facilities with a non-zero flow to that facility.

Experimenting with the problem, we found that if all features are assigned the same
cost (e.g. 1), the algorithm is still capable of generating high quality solutions. This is
due to the ability of GLS to diversify search using the penalty memory. Since features
are considered of equal cost, the algorithm is distributing search efforts uniformly
across the feature set. Comparative tests we conducted between GLS and the Taboo
Search of (Taillard, 1991) indicate that both algorithms are performing equally well
when applied to the QAPLIB instances (Burkard et al., 1997) with no clear winner
across the instance set. GLS, although not using feature costs in this problem, is still
very competitive to state-of-the-art techniques such as Taboo Search.

To determine in the QAP, one may use the formula below, which was derived
experimentally:

where n is the size of the problem and the flow and distance means are computed over
the distance and flow matrices respectively (including any possible 0 entries which are
common in QAP instances). Experimenting with QAPLIB instances, we found that
optimal performance is achieved for a = 0.75.

12 WORKFORCE SCHEDULING PROBLEM

12.1 Problem Description

We now look at how GLS can be applied to a real-word resource allocation problem with
unallocated requests called the Workforce Scheduling problem (WSP), see (Tsang and
Voudouris, 1997) for more details. The problem is to schedule a number of engineers
to a set of jobs, minimizing total cost according to a function, which is to be explained
below. Each job is described by a triple:

where Loc is the location of the job (depicted by its x and y co-ordinates), Dur is the
standard duration of the job and Type indicates whether this job must be done in the
morning, in the afternoon, as the first job of the day, as the last job of the day, or “don’t
care”.

Each engineer is described by a 5-tuple:

where Base is the x and y co-ordinates at which the engineer locates, ST and ET are
this engineer’s starting and ending time, OT_limit is his/her overtime limit, and Skill
is a skill factor between 0 and 1 which indicates the fraction of the standard duration
that this engineer needs to accomplish a job. The cost function that is to be minimized
is defined as follows:
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where

NoT = number of engineers,
NoJ = number of jobs,

= Travelling Cost of engineer i,
= Overtime of engineer i,
= Standard duration of job j,
= 1 if job j is unallocated; 0 otherwise,

Penalty = constant (which is set to 60 in the tests).

The traveling cost between is defined as follows:

12.2 Local Search

12.2.1 Solution Representation

We represent a candidate solution (i.e. a possible schedule) by a permutation of the
jobs. Each permutation is mapped into a schedule using the deterministic algorithm
described below:

procedure Evaluation (input: one particular permutation of jobs)

1. For each job, order the qualified engineers in ascending order of the distances
between their bases and the job (such orderings only need to be computed once
and recorded for evaluating other permutations).

2. Process one job at a time, following their ordering in the input permutation.
For each job x, try to allocate it to an engineer according to the ordered list of
qualified engineers:

2.1. to check if engineer g can do job x, make x the first job of g; if that fails to
satisfy any of the constraints, make it the second job of g, and so on;

2.2. if job x can be fitted into engineer g’s current tour, then try to improve g’s
new tour (now with x in it): the improvement is done by a simple 2-opting
algorithm (see section 10), modified in the way that only better tours which
satisfy the relevant constraints will be accepted;

2.3. if job x cannot be fitted into engineer g’s current tour, then consider the next
engineer in the ordered list of qualified engineers for x; the job is unallocated
if it cannot fit into any engineer’s current tour.

3. The cost of the input permutation, which is the cost of the schedule thus created,
is returned.

Here is the absolute difference between and and is the absolute
difference between and The greater of the x and y differences is halved before
summing. Engineers are required to start from and return to their base everyday. An
engineer may be assigned more jobs than he/she can finish.
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12.2.2 Construction Method

The starting point of local search is generated heuristically and deterministically: the
jobs are ordered by the number of qualified engineers for them. Jobs that can be served
by the fewest number of qualified engineers are placed earlier in the permutation.

12.2.3 Improvement Method

Given a permutation, local search is performed in a simple way: a pair of jobs is
examined at a time. Two jobs are swapped to generate a new permutation if the new
permutation is evaluated (using the Evaluation procedure above) to a lower cost than
the original permutation.

Note here that since the problem is also close to the Vehicle Routing Problem (VRP),
one may follow a totally different approach considering VRP move operators such as
insertions, swaps etc. In this case, the solution representation and construction methods
need to be revised. The reader may refer to (Backer et al., 2000) for more information
on the application of GLS to the VRP.

12.3 Guided Local Search

In the workforce scheduling problem, we use the feature type recommended for
resource allocation problems in Section 9.3. In particular, the inability to serve jobs
incurs a cost, which plays the most important part in the objective function. Therefore,
we intend to bias local search to serve jobs of high importance. To do so, we define
a feature for each job in the problem:

The cost of this feature is given by which is equal to the cost
incurred in the cost function (17) when a job is unallocated.

The jobs penalized in a local minimum are selected according to the utility function
(3) which for workforce scheduling takes the form:

WSP exhibits properties found in resource allocation problems (i.e. unallocated
job costs) and also in routing problems (i.e. travel costs). In addition to the above
feature type and for better performance, we may consider introducing a second feature
type based on edges as suggested in section 9.1 for routing problems and explained in
section 10.3 for the TSP. This feature set can help to aggressively optimize the travel
costs also incorporated in the objective function (17). Furthermore, one or both features
sets can be used in conjunction with a VRP based local search method.

12.4 Guided Fast Local Search

To apply Guided Fast Local Search to workforce scheduling, each job permutation posi-
tion defines a separate sub-neighborhood. The activation bits are manipulated according
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to the general FLS algorithm of section (8). In particular:

1. all the activation bits are set to 1 (or “on”) when GFLS starts;

2. the bit for job permutation position x will be switched to 0 (or “off”) if every
possible swap between the job at position x and the other jobs under the current
permutation has been considered, but no better permutation has been found;

3. the bit for job permutation position x will be switched to 1 whenever x is involved
in a swap which has been accepted.

Mapping penalized jobs to sub-neighborhoods is straightforward. We simply acti-
vate the sub-neighborhoods corresponding to the permutation positions of the penalized
jobs. This essentially forces Fast Local Search to examine moves, which swap the
penalized jobs.

13 RADIO LINK FREQUENCY ASSIGNMENT PROBLEM

13.1   Problem Description

The Radio Link Frequency Assignment Problem (RLFAP) (Tiourine et al., 1995; Mur-
phey et al., 1999) is abstracted from the real life application of assigning frequencies to
radio links. The problem belongs to the class of constraint optimization problems men-
tioned in Section 9.4. In brief, the interference level between the frequencies assigned
to the different links has to be acceptable; otherwise communication will be distorted.
The frequency assignments have to comply with certain regulations and physical char-
acteristics of the transmitters. Moreover, the number of frequencies is to be minimized,
because each frequency used in the network has to be reserved at a certain cost. In cer-
tain cases, some of the links may have pre-assigned frequencies which may be respected
or preferred by the frequency assignment algorithm. In here, we examine a simplified
version of the problem considering only the interference constraints. Information on
the application of GLS to the full problem can be found in (Voudouris and Tsang,
1998). A definition of the simplified problem is the following.

We are given a set L of links. For each link i, a frequency has to be chosen from
a given domain Constraints are defined on pairs of links that limit the choice of
frequencies for these pairs. For a pair of links {i, j} these constraints are either of type

or of type

for a given distance Two links i and j involved in a constraint of type (21)
are called interfering links, and the corresponding is the interfering distance. Two
links bound by a constraint of type (22) are referred to as a pair of parallel links; every
link belongs to exactly one such pair.

Some of the constraints may be violated at a certain cost. Such restrictions are called
soft, in contrast to the hard constraints, which may not be violated. The constraints
of type (22) are always hard. Interference costs for violating soft constraints of
type (21) are given. An assignment of frequencies is complete if every link in L has
a frequency assigned to it. We denote by C the set of all soft interference constraints.
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The goal is to find a complete assignment that satisfies all hard constraints and is
of minimum cost:

subject to hard constraints:

for all pairs of links {i, j} involved in the hard constraints,
for all pairs of parallel links { i , j } ,

for all links

where is 1 if the condition within brackets is true and 0 otherwise.
We look next at a local search procedure for the problem.

13.2 Local Search

13.2.1 Using an Alternative Objective Function

When using heuristic search to solve a combinatorial optimization problem, it is not
always necessary to use the objective function as dictated in the problem formula-
tion. Objective functions based on the original one can be devised which result in
smoother landscapes. These objective functions can sometimes generate solutions of
higher quality (with respect to the original objective function) than if the original one
is used.

In the RLFAP, we can define and use a simple objective function g, which is given
by the sum of all constraint violation costs in the solution with all the constraints
contributing equally to the sum instead of using weights as in (23). This objective
function is as follows:

subject to hard constraints:

where is 1 if the condition within brackets is true and 0 otherwise, is
the frequency assigned to link i in solution s, is the set of hard inequality
constraints, C is the set of soft inequality constraints and is the reduced domain for
link i containing only frequencies which satisfy the hard equality constraints.

A solution s with cost 0 with respect to g is satisfying all hard and soft constraints
of the problem.

The motivation to use an objective function such as (24) is closely related to the
rugged landscapes formed in RLFAP, if the original cost function is used. In particular,
high and very low violation costs are defined for some of the soft constraints. This leads
to even higher violation costs to have to be defined for hard constraints. The landscape
is not smooth but full of deep local minima mainly due to the hard and soft constraints
of high cost. Soft constraints of low cost are buried under these high costs.

A similar approach to replace the objective function has been used successfully by
(Mills and Tsang, 2000) in the MAX-SAT problem suggesting the universal appeal of
the idea in constraint optimization problems.

for all links
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13.2.2     Solution Representation

An efficient solution representation for the problem takes into account the fact that each
link in RLFAP is connected to exactly one other link via a hard constraint of type (22).
In particular, we can define a decision variable for each pair of parallel links bound
by an equality constraint (22). The domain of this variable is defined as the set of all
pairs of frequencies from the original domains of the parallel links that satisfy the hard
equality constraint.

13.2.3     Construction Method

A construction method can be implemented by assigning to each decision variable
(assigns values to a pair of links) a random value from its domain. In large problem
instances, it is beneficial to consider a domain pre-processing and reduction phase.
Sophisticated techniques based on Arc-Consistency (Tsang, 1993) can be utilized
during that phase to reduce domains based on the problem’s hard constraints. These
domains can then be used instead of the original ones for the random solution generation
and also by the improvement method.

13.2.4    Improvement Method

An improvement method can based on the min-conflicts heuristic of Minton et al. (1992)
for Constraint Satisfaction Problems. A 1-optimal type move is used which changes
the value of one variable at a time. Starting from a random and complete assignment
of values to variables, variables are examined in an arbitrary static order. Each time
a variable is examined, the current value of the variable changes to the value (in the
variable’s domain) which yields the minimum value for the objective function. Ties are
randomly resolved allowing moves which transit to solutions with equal cost. These
moves are called sideways moves (Selman et al., 1992) and enable local search to exam-
ine plateau of solutions occurring in the landscapes of many constraint optimization
problems.

13.3 Guided Local Search

The most important cost factor in the RLFAP is constraint violation costs defined for
soft inequality constraints. Inequality constraints can be used to define a basic feature
set for the RLFAP. Each inequality constraint is interpreted as a feature with the feature
cost given by the constraint violation cost as defined in the problem’s original cost
function (23).

Hard inequality constraints are also modelled as features though the cost assigned
to them is infinity. This results in their utility to be penalized to also tend to infinity.
To implement this in the code, hard constraints are simply given priority over soft
constraints when penalties are applied. This basically forces local search to return back
to a feasible region where penalizing soft constraints can resume.

GLS is especially suited to use the alternative objective function (24) because of
the definition of feature costs as described above. The application of penalties can
force local search toward solutions which satisfy constraints with high violation costs,
to some degree independently from the objective function used by local search while
benefiting from the smoother landscape introduced by (24).
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The parameter can be set to 1 provided that we use (24) as the objective function.
The same value for has also been used in MAX-SAT problems in (Mills and Tsang,
2000) where the same approach is followed with respect to smoothing the landscape.

A variation of the GLS method which seems to significantly improve performance in
certain RLFAP instances is to decrease penalties and not only increase them (Voudouris
and Tsang, 1998). More specifically, the variant uses a circular list to retract the effects
of penalty increases made earlier in the search process, in a way that very much resem-
bles a tabu list. In particular, penalties increased are decreased after a certain number
of penalty increases is performed. The scheme uses an array of size t where the t most
recent features penalised are recorded. The array is treated as a circular list, adding
elements in sequence in positions 1 through t and then starting over at position 1. Each
time the penalty of a feature is increased (by one unit), the feature is inserted in the
array and the penalty of the feature previously stored in the same position is decreased
(by one unit). The rational behind the strategy is to allow GLS to return to regions of
the search visited earlier in the search process, so introducing a search intensification
mechanism.

13.4 Guided Fast Local Search

Best improvement local search for the RLFAP as used in the context of Tabu Search,
for an example see (Hao et al., 1998), evaluates all possible 1-optimal moves over all
variables before selecting and performing the best move. Given the large number of
links in real world instances, greedy local search is a computationally expensive option.
This is especially the case for the RLFAP where we cannot easily devise an incremental
move update mechanism (such as that for the QAP) for all the problem’s variations.
The local search procedure described in Section 13.2 is already a faster alternative than
best improvement. Using Guided Fast Local Search, things can be improved further.

To apply Guided Fast Local Search to RLFAP, each decision variable defines a sub-
neighborhood and has a bit associated to it. Whenever a variable is examined and
its value is changed (i.e., the variable’s parallel links are assigned to another pair
of frequencies because of an improving or sideways move) the activation bit of the
variable remains to 1 otherwise it turns to 0 and the variable is excluded in future
iterations of the improvement loop. Additionally, if a move is performed activation
spreads to other variables which have their bits set to 1. In particular, we set to 1
the bit of variables where improving moves may occur as a result of the move just
performed. These are the variables for which either one of their links is connected via
a constraint to one of the links of the variable that changed value. There are five potential
schemes for propagating activation after changing the value of a variable. They are the
following:

1. Activate all variables connected via a constraint to the variable which changed
value.

2. Activate only variables that are connected via a constraint which is violated. This
resembles CSP local search methods where only variables in conflict have their
neighborhood searched.

3. Activate only variables that are connected via a constraint which has become
violated as a result of the move (subset of condition 2 and also 4).



Guided Local Search 213

4. Activate only variables that are connected via a constraint that changed state (i.e.
violated satisfied or satisfied violated) as a result of the move (superset of
condition 3).

5. Activate variables that fall under either condition 2 or 4.

Experimentation suggests that scheme 5 tends to produce better results for the real
world instances of RLFAP available in the literature. Fast local search stops when all
the variables are inactive or when a local minimum is detected by other means (i.e.
a number of sideways moves is performed without an improving move found).

Finally, when a constraint is penalized we activate the variables connected via the
constraint in an effort to find 1-Opt moves which will satisfy the constraint.

14 SUMMARY AND CONCLUSIONS

For many years, general heuristics for combinatorial optimization problems with most
prominent examples the methods of Simulated Annealing and Genetic Algorithms
heavily relied on randomness to generate good approximate solutions to difficult NP-
Hard problems. The introduction and acceptance of Tabu Search (Glover and Laguna,
1997) by the Operations Research community initiated an important new era for heuris-
tic methods where deterministic algorithms exploiting historical information started
appearing and being used in real world applications.

Guided local search described in this chapter follows this trend. GLS heavily
exploits information (not only the search history) to distribute the search effort in
the various regions of the search space. Important structural properties of solutions are
captured by solution features. Solutions features are assigned costs and local search is
biased to spend its efforts according to these costs. Penalties on features are utilized
for that purpose.

When local search settles in a local minimum, the penalties are increased for selected
features present in the local minimum. By penalizing features appearing in local min-
ima, GLS avoids the local minima visited (exploiting historical information) but also
diversifies choices for the various structural properties of solutions captured by the
solution features. Features of high cost are penalized more times than features of low
cost: the diversification process is directed and deterministic rather than undirected and
random.

In general, several penalty cycles may be required before a move is executed out of
a local minimum. This should not be viewed as an undesirable situation. It is caused
by the uncertainty in the information as captured by the feature costs which makes
necessary the testing of the GLS decisions against the landscape of the problem.

The penalization scheme of GLS is ideally combined with FLS which limits
neighbourhood search to particular parts of the overall solution leading to the GFLS
algorithm. GFLS significantly reduces the computation times required to explore the
area around a local minimum to find the best escape route allowing many more penalty
modification cycles to be performed in a given amount of running time.

The GLS and GFLS methods are still in their early stages and future research
is required to develop them further. The use of incentives implemented as negative
penalties, which encourage the use of specific solution features, is one promising
direction to be explored. Other interesting directions include fuzzy features with indi-
cator functions returning real values in the [0,1] interval, automated tuning of the
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lambda or alpha parameters, definition of effective termination criteria, alternative util-
ity functions for selecting the features penalized and also studies about the convergence
properties of GLS.

We found it relatively easy to adapt GLS and GFLS to the different problems exam-
ined in this chapter. Although local search is problem dependent, the other structures
of GLS and also GFLS are problem independent. Moreover, a step by step procedure
is usually followed when GLS or GFLS is applied to a new problem (i.e. implement
a local search procedure, identify features, assign costs, define sub-neighborhoods,
etc.) something which makes easier the use of the technique by non-specialists (e.g.
software engineers).
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