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Abstract. Nature-inspired algorithms are among the most powerful al-
gorithms for optimization. This paper intends to provide a detailed de-
scription of a new Firefly Algorithm (FA) for multimodal optimization
applications. We will compare the proposed firefly algorithm with other
metaheuristic algorithms such as particle swarm optimization (PSO).
Simulations and results indicate that the proposed firefly algorithm is
superior to existing metaheuristic algorithms. Finally we will discuss its
applications and implications for further research.

1 Introduction

Biologically inspired algorithms are becoming powerful in modern numerical
optimization [1, 2, 4, 6, 9, 10], especially for the NP-hard problems such as
the travelling salesman problem. Among these biology-derived algorithms, the
multi-agent metaheuristic algorithms such as particle swarm optimization form
hot research topics in the start-of-the-art algorithm development in optimization
and other applications [1, 2, 9].

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart
in 1995 [5], based on the swarm behaviour such as fish and bird schooling in
nature, the so-called swarm intelligence. Though particle swarm optimization
has many similarities with genetic algorithms, but it is much simpler because
it does not use mutation/crossover operators. Instead, it uses the real-number
randomness and the global communication among the swarming particles. In
this sense, it is also easier to implement as it uses mainly real numbers.

This paper aims to introduce the new Firefly Algorithm and to provide the
comparison study of the FA with PSO and other relevant algorithms. We will first
outline the particle swarm optimization, then formulate the firefly algorithms
and finally give the comparison about the performance of these algorithms. The
FA optimization seems more promising than particle swarm optimization in the
sense that FA can deal with multimodal functions more naturally and efficiently.
In addition, particle swarm optimization is just a special class of the firefly
algorithms as we will demonstrate this in this paper.
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2 Particle Swarm Optimization

2.1 Standard PSO

The PSO algorithm searches the space of the objective functions by adjusting the
trajectories of individual agents, called particles, as the piecewise paths formed
by positional vectors in a quasi-stochastic manner [5, 6]. There are now as many
as about 20 different variants of PSO. Here we only describe the simplest and
yet popular standard PSO.

The particle movement has two major components: a stochastic component
and a deterministic component. A particle is attracted toward the position of
the current global best g∗ and its own best location x∗

i in history, while at the
same time it has a tendency to move randomly. When a particle finds a location
that is better than any previously found locations, then it updates it as the
new current best for particle i. There is a current global best for all n particles.
The aim is to find the global best among all the current best solutions until the
objective no longer improves or after a certain number of iterations.

For the particle movement, we use x∗
i to denote the current best for particle

i, and g∗ ≈ min or max{f(xi)}(i = 1, 2, ..., n) to denote the current global best.
Let xi and vi be the position vector and velocity for particle i, respectively. The
new velocity vector is determined by the following formula

vt+1
i = vt

i + αε1 � (g∗ − xt
i) + βε2 � (x∗

i − xt
i). (1)

where ε1 and ε2 are two random vectors, and each entry taking the values between
0 and 1. The Hadamard product of two matrices u � v is defined as the entrywise
product, that is [u � v]ij = uijvij . The parameters α and β are the learning
parameters or acceleration constants, which can typically be taken as, say, α ≈
β ≈ 2. The initial values of xt=0

i can be taken as the bounds or limits a =
min(xj), b = max(xj) and vt=0

i = 0. The new position can then be updated by

xt+1
i = xt

i + vt+1
i . (2)

Although vi can be any values, it is usually bounded in some range [0,vmax].
There are many variants which extend the standard PSO algorithm, and the

most noticeable improvement is probably to use inertia function θ(t) so that vt
i

is replaced by θ(t)vt
i where θ takes the values between 0 and 1. In the simplest

case, the inertia function can be taken as a constant, typically θ ≈ 0.5 ∼ 0.9.
This is equivalent to introducing a virtual mass to stabilize the motion of the
particles, and thus the algorithm is expected to converge more quickly.

3 Firefly Algorithm

3.1 Behaviour of Fireflies

The flashing light of fireflies is an amazing sight in the summer sky in the trop-
ical and temperate regions. There are about two thousand firefly species, and
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most fireflies produce short and rhythmic flashes. The pattern of flashes is often
unique for a particular species. The flashing light is produced by a process of
bioluminescence, and the true functions of such signaling systems are still debat-
ing. However, two fundamental functions of such flashes are to attract mating
partners (communication), and to attract potential prey. In addition, flashing
may also serve as a protective warning mechanism. The rhythmic flash, the rate
of flashing and the amount of time form part of the signal system that brings
both sexes together. Females respond to a male’s unique pattern of flashing in
the same species, while in some species such as photuris, female fireflies can
mimic the mating flashing pattern of other species so as to lure and eat the male
fireflies who may mistake the flashes as a potential suitable mate.

We know that the light intensity at a particular distance r from the light
source obeys the inverse square law. That is to say, the light intensity I decreases
as the distance r increases in terms of I ∝ 1/r2. Furthermore, the air absorbs
light which becomes weaker and weaker as the distance increases. These two
combined factors make most fireflies visible only to a limited distance, usually
several hundred meters at night, which is usually good enough for fireflies to
communicate.

The flashing light can be formulated in such a way that it is associated with
the objective function to be optimized, which makes it possible to formulate new
optimization algorithms. In the rest of this paper, we will first outline the basic
formulation of the Firefly Algorithm (FA) and then discuss the implementation
as well as its analysis in detail.

3.2 Firefly Algorithm

Now we can idealize some of the flashing characteristics of fireflies so as to
develop firefly-inspired algorithms. For simplicity in describing our new Fireflire
Algorithm (FA), we now use the following three idealized rules: 1) all fireflies
are unisex so that one firefly will be attracted to other fireflies regardless of
their sex; 2) Attractiveness is proportional to their brightness, thus for any two
flashing fireflies, the less brighter one will move towards the brighter one. The
attractiveness is proportional to the brightness and they both decrease as their
distance increases. If there is no brighter one than a particular firefly, it will
move randomly; 3) The brightness of a firefly is affected or determined by the
landscape of the objective function. For a maximization problem, the brightness
can simply be proportional to the value of the objective function. Other forms
of brightness can be defined in a similar way to the fitness function in genetic
algorithms.

Based on these three rules, the basic steps of the firefly algorithm (FA) can
be summarized as the pseudo code shown in Fig. 1.

In certain sense, there is some conceptual similarity between the firefly algo-
rithms and the bacterial foraging algorithm (BFA) [3, 7]. In BFA, the attraction
among bacteria is based partly on their fitness and partly on their distance,
while in FA, the attractiveness is linked to their objective function and mono-
tonic decay of the attractiveness with distance. However, the agents in FA have
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Firefly Algorithm

Objective function f(x), x = (x1, ..., xd)T

Generate initial population of fireflies xi (i = 1, 2, ..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient γ
while (t <MaxGeneration)
for i = 1 : n all n fireflies

for j = 1 : i all n fireflies
if (Ij > Ii), Move firefly i towards j in d-dimension; end if
Attractiveness varies with distance r via exp[−γr]
Evaluate new solutions and update light intensity

end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

Fig. 1. Pseudo code of the firefly algorithm (FA)

adjustable visibility and more versatile in attractiveness variations, which usually
leads to higher mobility and thus the search space is explored more efficiently.

3.3 Attractiveness

In the firefly algorithm, there are two important issues: the variation of light
intensity and formulation of the attractiveness. For simplicity, we can always
assume that the attractiveness of a firefly is determined by its brightness which
in turn is associated with the encoded objective function.

In the simplest case for maximum optimization problems, the brightness I of
a firefly at a particular location x can be chosen as I(x) ∝ f(x). However, the
attractiveness β is relative, it should be seen in the eyes of the beholder or judged
by the other fireflies. Thus, it will vary with the distance rij between firefly i and
firefly j. In addition, light intensity decreases with the distance from its source,
and light is also absorbed in the media, so we should allow the attractiveness to
vary with the degree of absorption. In the simplest form, the light intensity I(r)
varies according to the inverse square law I(r) = Is/r2 where Is is the intensity
at the source. For a given medium with a fixed light absorption coefficient γ, the
light intensity I varies with the distance r. That is I = I0e

−γr, where I0 is the
original light intensity. In order to avoid the singularity at r = 0 in the expression
Is/r2, the combined effect of both the inverse square law and absorption can be
approximated using the following Gaussian form

I(r) = I0e
−γr2

. (3)

Sometimes, we may need a function which decreases monotonically at a slower
rate. In this case, we can use the following approximation
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I(r) =
I0

1 + γr2
. (4)

At a shorter distance, the above two forms are essentially the same. This is
because the series expansions about r = 0

e−γr2 ≈ 1 − γr2 +
1
2
γ2r4 + ...,

1
1 + γr2

≈ 1 − γr2 + γ2r4 + ..., (5)

are equivalent to each other up to the order of O(r3).
As a firefly’s attractiveness is proportional to the light intensity seen by ad-

jacent fireflies, we can now define the attractiveness β of a firefly by

β(r) = β0e
−γr2

, (6)

where β0 is the attractiveness at r = 0. As it is often faster to calculate 1/(1+r2)
than an exponential function, the above function, if necessary, can conveniently
be replaced by β = β0

1+γr2 . Equation (6) defines a characteristic distance Γ =
1/

√
γ over which the attractiveness changes significantly from β0 to β0e

−1.
In the implementation, the actual form of attractiveness function β(r) can be

any monotonically decreasing functions such as the following generalized form

β(r) = β0e
−γrm

, (m ≥ 1). (7)

For a fixed γ, the characteristic length becomes Γ = γ−1/m → 1 as m → ∞.
Conversely, for a given length scale Γ in an optimization problem, the parameter
γ can be used as a typical initial value. That is γ = 1

Γ m .

3.4 Distance and Movement

The distance between any two fireflies i and j at xi and xj , respectively, is the
Cartesian distance

rij = ||xi − xj || =

√
√
√
√

d∑

k=1

(xi,k − xj,k)2, (8)

where xi,k is the kth component of the spatial coordinate xi of ith firefly. In 2-D
case, we have rij =

√

(xi − xj)2 + (yi − yj)2.
The movement of a firefly i is attracted to another more attractive (brighter)

firefly j is determined by

xi = xi + β0e
−γr2

ij (xj − xi) + α (rand − 1
2
), (9)

where the second term is due to the attraction while the third term is random-
ization with α being the randomization parameter. rand is a random number
generator uniformly distributed in [0, 1]. For most cases in our implementation,
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we can take β0 = 1 and α ∈ [0, 1]. Furthermore, the randomization term can
easily be extended to a normal distribution N(0, 1) or other distributions. In
addition, if the scales vary significantly in different dimensions such as −105 to
105 in one dimension while, say, −0.001 to 0.01 along the other, it is a good
idea to replace α by αSk where the scaling parameters Sk(k = 1, ..., d) in the d
dimensions should be determined by the actual scales of the problem of interest.

The parameter γ now characterizes the variation of the attractiveness, and
its value is crucially important in determining the speed of the convergence and
how the FA algorithm behaves. In theory, γ ∈ [0,∞), but in practice, γ = O(1) is
determined by the characteristic length Γ of the system to be optimized. Thus,
in most applications, it typically varies from 0.01 to 100.

3.5 Scaling and Asymptotic Cases

It is worth pointing out that the distance r defined above is not limited to the
Euclidean distance. We can define many other forms of distance r in the n-
dimensional hyperspace, depending on the type of problem of our interest. For
example, for job scheduling problems, r can be defined as the time lag or time
interval. For complicated networks such as the Internet and social networks, the
distance r can be defined as the combination of the degree of local clustering
and the average proximity of vertices. In fact, any measure that can effectively
characterize the quantities of interest in the optimization problem can be used
as the ‘distance’ r. The typical scale Γ should be associated with the scale in the
optimization problem of interest. If Γ is the typical scale for a given optimization
problem, for a very large number of fireflies n � m where m is the number of local
optima, then the initial locations of these n fireflies should distribute relatively
uniformly over the entire search space in a similar manner as the initialization
of quasi-Monte Carlo simulations. As the iterations proceed, the fireflies would
converge into all the local optima (including the global ones) in a stochastic
manner. By comparing the best solutions among all these optima, the global
optima can easily be achieved. At the moment, we are trying to formally prove
that the firefly algorithm will approach global optima when n → ∞ and t � 1. In
reality, it converges very quickly, typically with less than 50 to 100 generations,
and this will be demonstrated using various standard test functions later in this
paper.

There are two important limiting cases when γ → 0 and γ → ∞. For γ → 0,
the attractiveness is constant β = β0 and Γ → ∞, this is equivalent to say that
the light intensity does not decrease in an idealized sky. Thus, a flashing firefly
can be seen anywhere in the domain. Thus, a single (usually global) optimum
can easily be reached. This corresponds to a special case of particle swarm op-
timization (PSO) discussed earlier. Subsequently, the efficiency of this special
case is the same as that of PSO.

On the other hand, the limiting case γ → ∞ leads to Γ → 0 and β(r) → δ(r)
(the Dirac delta function), which means that the attractiveness is almost zero in
the sight of other fireflies or the fireflies are short-sighted. This is equivalent to
the case where the fireflies fly in a very foggy region randomly. No other fireflies
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can be seen, and each firefly roams in a completely random way. Therefore, this
corresponds to the completely random search method. As the firefly algorithm
is usually in somewhere between these two extremes, it is possible to adjust the
parameter γ and α so that it can outperform both the random search and PSO. In
fact, FA can find the global optima as well as all the local optima simultaneously
in a very effective manner. This advantage will be demonstrated in detail later in
the implementation. A further advantage of FA is that different fireflies will work
almost independently, it is thus particularly suitable for parallel implementation.
It is even better than genetic algorithms and PSO because fireflies aggregate
more closely around each optimum (without jumping around as in the case of
genetic algorithms). The interactions between different subregions are minimal
in parallel implementation.

4 Multimodal Optimization with Multiple Optima

4.1 Validation

In order to demonstrate how the firefly algorithm works, we have implemented it
in Matlab. We will use various test functions to validate the new algorithm. As
an example, we now use the FA to find the global optimum of the Michalewicz
function

f(x) = −
d∑

i=1

sin(xi)[sin(
ix2

i

π
)]2m, (10)

where m = 10 and d = 1, 2, .... The global minimum f∗ ≈ −1.801 in 2-D occurs
at (2.20319, 1.57049), which can be found after about 400 evaluations for 40
fireflies after 10 iterations (see Fig. 2 and Fig. 3). Now let us use the FA to find
the optima of some tougher test functions. This is much more efficient than most
of existing metaheuristic algorithms. In the above simulations, the values of the
parameters are α = 0.2, γ = 1 and β0 = 1.
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Fig. 2. Michalewicz’s function for two independent variables with a global minimum
f∗ ≈ −1.801 at (2.20319, 1.57049)
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Fig. 3. The initial 40 fireflies (left) and their locations after 10 iterations (right)

We have also used much tougher test functions. For example, Yang described
a multimodal function which looks like a standing-wave pattern [11]

f(x) =
[

e−
∑d

i=1(xi/a)2m − 2e−
∑ d

i=1 x2
i

]

·
d∏

i=1

cos2 xi, m = 5, (11)

is multimodal with many local peaks and valleys, and it has a unique global
minimum f∗ = −1 at (0, 0, ..., 0) in the region −20 ≤ xi ≤ 20 where i = 1, 2, ..., d
and a = 15. The 2D landscape of Yang’s function is shown in Fig. 4.

4.2 Comparison of FA with PSO and GA

Various studies show that PSO algorithms can outperform genetic algorithms
(GA) [4] and other conventional algorithms for solving many optimization prob-
lems. This is partially due to that fact that the broadcasting ability of the current
best estimates gives better and quicker convergence towards the optimality. A
general framework for evaluating statistical performance of evolutionary algo-
rithms has been discussed in detail by Shilane et al. [8]. Now we will compare
the Firefly Algorithms with PSO, and genetic algorithms for various standard
test functions. For genetic algorithms, we have used the standard version with
no elitism with a mutation probability of pm = 0.05 and a crossover probability
of 0.95. For the particle swarm optimization, we have also used the standard
version with the learning parameters α ≈ β ≈ 2 without the inertia correction
[4, 5, 6]. We have used various population sizes from n = 15 to 200, and found
that for most problems, it is sufficient to use n = 15 to 50. Therefore, we have
used a fixed population size of n = 40 in all our simulations for comparison.

After implementing these algorithms using Matlab, we have carried out ex-
tensive simulations and each algorithm has been run at least 100 times so as to
carry out meaningful statistical analysis. The algorithms stop when the varia-
tions of function values are less than a given tolerance ε ≤ 10−5. The results
are summarized in the following table (see Table 1) where the global optima are
reached. The numbers are in the format: average number of evaluations (success
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Fig. 4. Yang’s function in 2D with a global minimum f∗ = −1 at (0, 0) where a = 15

Table 1. Comparison of algorithm performance

Functions/Algorithms GA PSO FA

Michalewicz’s (d=16) 89325 ± 7914(95%) 6922 ± 537(98%) 3752 ± 725(99%)
Rosenbrock’s (d=16) 55723 ± 8901(90%) 32756 ± 5325(98%) 7792 ± 2923(99%)
De Jong’s (d=256) 25412 ± 1237(100%) 17040 ± 1123(100%) 7217 ± 730(100%)
Schwefel’s (d=128) 227329 ± 7572(95%) 14522 ± 1275(97%) 9902 ± 592(100%)
Ackley’s (d=128) 32720 ± 3327(90%) 23407 ± 4325(92%) 5293 ± 4920(100%)

Rastrigin’s 110523 ± 5199(77%) 79491 ± 3715(90%) 15573 ± 4399(100%)
Easom’s 19239 ± 3307(92%) 17273 ± 2929(90%) 7925 ± 1799(100%)

Griewank’s 70925 ± 7652(90%) 55970 ± 4223(92%) 12592 ± 3715(100%)
Shubert’s (18 minima) 54077 ± 4997(89%) 23992 ± 3755(92%) 12577 ± 2356(100%)

Yang’s (d = 16) 27923 ± 3025(83%) 14116 ± 2949(90%) 7390 ± 2189(100%)

rate), so 3752 ± 725(99%) means that the average number (mean) of function
evaluations is 3752 with a standard deviation of 725. The success rate of finding
the global optima for this algorithm is 99%.

We can see that the FA is much more efficient in finding the global optima
with higher success rates. Each function evaluation is virtually instantaneous on
modern personal computer. For example, the computing time for 10,000 evalu-
ations on a 3GHz desktop is about 5 seconds. Even with graphics for displaying
the locations of the particles and fireflies, it usually takes less than a few min-
utes. It is worth pointing out that more formal statistical hypothesis testing can
be used to verify such significance.
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5 Conclusions

In this paper, we have formulated a new firefly algorithm and analyzed its simi-
larities and differences with particle swarm optimization. We then implemented
and compared these algorithms. Our simulation results for finding the global
optima of various test functions suggest that particle swarm often outperforms
traditional algorithms such as genetic algorithms, while the new firefly algorithm
is superior to both PSO and GA in terms of both efficiency and success rate.
This implies that FA is potentially more powerful in solving NP-hard problems
which will be investigated further in future studies.

The basic firefly algorithm is very efficient, but we can see that the solutions
are still changing as the optima are approaching. It is possible to improve the
solution quality by reducing the randomness gradually. A further improvement
on the convergence of the algorithm is to vary the randomization parameter α
so that it decreases gradually as the optima are approaching. These could form
important topics for further research. Furthermore, as a relatively straightfor-
ward extension, the Firefly Algorithm can be modified to solve multiobjective
optimization problems. In addition, the application of firefly algorithms in com-
bination with other algorithms may form an exciting area for further research.
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