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Abstract
A metaheuristic is a high-level problem independent algorithmic framework that provides a set of guidelines or strategies 
to develop heuristic optimization algorithms. Metaheuristic algorithms attempt to find the best solution out of all possible 
solutions of an optimization problem. A very active area of research is the design of nature-inspired metaheuristics. Nature 
acts as a source of concepts, mechanisms and principles for designing of artificial computing systems to deal with complex 
computational problems. In this paper, a new metaheuristic algorithm, inspired by the behavior of emperor penguins which is 
called Emperor Penguins Colony (EPC), is proposed. This algorithm is controlled by the body heat radiation of the penguins 
and their spiral-like movement in their colony. The proposed algorithm is compared with eight developed metaheuristic 
algorithms. Ten benchmark test functions are applied to all algorithms. The results of the experiments to find the optimal 
result, show that the proposed algorithm is better than other metaheuristic algorithms.

Keywords  Metaheuristic · Optimization · Emperor penguins colony algorithm · EPC algorithm · Optimization techniques · 
Nature-inspired · Benchmark test functions

1  Introduction

There is no particular algorithm to achieve the best solution 
for all optimization problems. Also, most algorithms can-
not simultaneously provide accuracy and velocity of proper 
convergence for all optimization problems. So up to now, a 
variety of nature-inspired algorithms are proposed for opti-
mization. Nature acts as a source of concepts, mechanisms 
and principles for designing of artificial computing systems 
to deal with complex computational problems [1].

Optimization is the process of creating something better. 
In other words, optimization is the mathematical process, 
the process of adjusting the inputs of a device, or experiment 
to find the minimum or maximum output or result. Inputs 
include variables, such as process or function as cost func-
tion, target function, fitness function, and outputs include 
cost and fitness [2].

Most heuristic and metaheuristic algorithms are taken 
from the behavior of biological systems or physical systems 
in nature. Metaheuristic algorithms can be defined as high-
level methodologies that can be used as a guiding strategy 
in designing underlying heuristics to solve specific optimi-
zation problems [3]. Solving large problems, solving prob-
lems faster, and obtaining robust algorithms are three main 
purposes of modern metaheuristic algorithms to carry out 
global search [4].

Briefly, the main characteristics of metaheuristic methods 
are stated below:

1.	 Unlike heuristic methods, the main purpose of these 
methods is to find effective and efficient solution instead 
of finding approximate solution.

2.	 Metaheuristic methods are policies and strategies that 
guide the search process.
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3.	 Metaheuristic methods are approximate and often uncer-
tain (random).

4.	 Metaheuristic algorithms are used to solve a wide range 
of optimization problems unlike heuristic methods.

5.	 Advanced metaheuristic methods save the experience 
and information obtained during the search process to 
direct searching to better areas of solution space.

In short, it is possible to say that metaheuristic algorithms 
are advanced and general strategies for searching, and sug-
gest steps and criteria that are very effective in not staying 
in local optima trap. An important factor in these methods is 
the dynamic balance between diversification and intensifica-
tion strategies. Diversification refers to widespread searches 
in the solution space, and intensification refers to exploiting 
the experiences gained in the search process and focusing 
on better areas of solution space. Therefore, by creating a 
dynamic balance between these two strategies, the search 
directs to solution space area, that better solutions are found 
in this area.

Metaheuristics are generally classified into three cat-
egories. These categories are physical-based methods, 
evolutionary-based methods, and swarm-based methods. 
In physical-based methods, search agents move across the 
search space according to the laws of physics such as elec-
tromagnetic force, displacement, inertia force, gravity, and 
so on. In evolutionary-based methods, biological evolution 
such as reproduction, recombination, selection, and muta-
tion are inspired. Swarm-based methods are based on the 
collective behavior of social creatures. The collective behav-
ior of social creatures is also combined with a collective 
intelligence that derives from their environment [5]. Some 
of the popular techniques are Genetic Algorithms (GA) 
[6], Differential Evolution (DE) [7], Particle Swarm Opti-
mization (PSO) [8], Ant Colony Optimization (ACO) [9], 
Simulated Annealing (SA) [10], Cuckoo Search (CS) [11], 
Bat-inspired Algorithm (BA) [12], Firefly Algorithm (FA) 
[13], Harmony Search (HS) [14], Tabu Search (TS) [15, 
16], Imperialist Competitive Algorithm (ICA) [17], Artifi-
cial Bee Colony (ABC) [18], Krill Herd Algorithm (KHA) 
[19], Invasive Weed Optimization (IWO) [20], Shuffled Frog 
Leaping Algorithm (SFLA) [21], Intelligent Water Drops 
(IWD) [22], Grey Wolf Optimizer (GWO) [23], Squirrel 
Search Algorithm (SSA) [5], Owl Search Algorithm (OSA) 
[24], Atom Search Optimization (ASO) [25], Salp Swarm 
Algorithm (SSA) [26], Ant Lion Optimizer (ALO) [27], 
Whale Optimization Algorithm (WOA) [28], Moth-Flame 
Optimization (MFO) [29], and Grasshopper Optimization 
Algorithm (GOA) [30].

In this paper, a new metaheuristic algorithm inspired 
by the behavior of emperor penguins called Emperor Pen-
guins Colony (EPC) is proposed. The emperor penguins in 
the colony seek to create the appropriate heat and regulate 

their body temperature, and this heat is completely coor-
dinated and controlled by the movement of the penguins.

Rest of the paper is structured as follows: Sect.  2 
describes emperor penguins in the nature. Section  3 
describes Emperor Penguins Colony (EPC) algorithm. 
Section 4 includes experimental results and discussion. 
Section 5 represents conclusions.

2 � Emperor Penguins in the nature

The Southern Ocean ecosystem is unique because of 
the presence of Krill (Euphausia superba) that directly 
or indirectly feeds creatures such as whales, squid, fish, 
seals, and sea birds such as penguins [31]. Penguins are a 
species of aquatic birds that cannot fly. Except Galapagos 
penguin, the rest of the penguin species live exclusively in 
the southern hemisphere. The number of species are still 
unknown. But so far about 17–20 species are identified. 
The Emperor Penguin (Aptenodytes forsteri) is the largest 
species of penguins [32]. The height of a mature emperor 
penguin is between 110 and 130 cm. Of course, this height 
is related to the penguin that is walking and extending its 
neck. The penguin may be less than 80 cm, if stands in the 
cold, pulls its head in his body and the body supported by 
tail and intratarsal joints [33]. It is possible that these birds 
are the best divers among the birds. Figure 1 shows a com-
parison between heights of different species of penguins 
that live in Antarctica.

The emperor penguins in the Antarctica are breeding on 
sea ice [34]. This kind of birds is the only vertebrate spe-
cies that grows in the harsh winter conditions in Antarc-
tica [35]. In this environment, air temperature may reaches 
− 40 °C. To resistance this harsh environment and energy-
saving, the emperor penguins have a significant behavioral, 
morphological and physiological adaptation [35].

Fig. 1   Heights of different penguin species. Image by Natural Envi-
ronment Research Council (NERC)/British Antarctic Survey (BAS). 
Available in: https​://www.bas.ac.uk/

https://www.bas.ac.uk/
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2.1 � Behaviors

The emperor penguin is a totally social animal [36]. These 
birds reach their full growth within 3 years, and then they 
can breed. The female penguin lays one egg then transfers 
the egg to the male penguin due to the end of nutrition 
reserves and tiredness and goes to the sea for eating about 
2 months [37]. The body weight of the male penguin is 
much higher than the female, and its fat makes it possible 
to spend the winter and take care of the egg [32]. The egg 
needs 115 days to become a chick, during this time the 
penguin is in its colony. To escape from cold males huddle 
together [38].

2.2 � Colonies

In recent decades, coloniality is considered very much, and 
many researches are done about its evolution and perfor-
mance [39]. Colonial breeding is widespread especially in 
birds. About 98% of sea birds grow in their colonies [40]. 
The emperor penguins have no nests to breed their chicks. 
They make clusters of thousands penguins called huddles. 
By forming the huddles, they are protected against cold and 
wind [41]. Huddling often occurs during chick breeding and 
in the middle of winter. Unlike other penguin species, only 
the male emperor penguin take care of the egg by placing 
the egg on top of the legs and under the abdomen [42]. In 
a huddle, the body surface temperature of a penguin can 
reach 37 °C in less than 2 h [37]. The emperor penguins can 
keep their body temperature high and minimize heat loss 
[33]. Keeping body temperature high during the incubation 
period is very important, because the full growth of the fetus 
requires a temperature about 35 °C [37]. Huddling poses 
an interesting physical problem [43]. If the density of the 
huddle is too low, the penguins lose a lot of energy, and if 
the density is too high, the internal reconstruction becomes 
impossible, and the penguins that are around cannot easily 
reach the huddle center which is warmer.

The classic view is that huddles keep their dense form 
for a few hours or a few days. During this time, the huddle 
moves slowly. These huddles can be composed of hundreds 
of penguins and the densities can be reached to 10 birds/m2 
[37]. Figure 2 shows a sample of emperor penguin huddling 
group.

2.3 � Movement in huddles

As already mentioned, the emperor penguins are a com-
pletely social species with no dominance hierarchy. They 
do not defend any territory and do not attack usually. All 
individuals benefit the same from huddling for breeding. 
Huddling behavior of the emperor penguins is a very com-
plicated behavior that is previously described. Birds may 

create huddle many times during the day. Heterogeneity 
within the general huddling group ensures that everyone 
becomes warm enough. In this way, the emperor penguins 
make the coolest environments to the warm environment by 
huddling together [37].

At the center of the huddle, there is much more heat. 
To use heat by individuals, they do a spiral-like movement 
toward the center [44]. This spiral-like movement causes the 
same heat used by individuals. Figure 3 shows a coordinated 
spiral-like movement in huddle.

Figure 4 shows the markers indicate the positions of the 
neighboring penguin pairs (connected by white dotted lines). 
The front penguin of a pair is labeled in red and the rear 
penguin in blue [35]. Chart in the Fig. 4 shows trajectories 
from neighboring penguins with similar vertical (y) posi-
tions show correlated steps in the horizontal (x) direction. 
The circles represent the measured positions [35]. These 
figures and the indicated movement direction in the figures 
show that there is a kind of coordinated spiral movement in 
the huddle. This spiral movement makes the heat inside the 
huddle reach as much as the penguin needs.

Fig. 2   Emperor penguin huddling group. Picture of the wintering 
group at Pointe Géologie, which consists of about 2500 males. Avail-
able in Gilbert et al. [37]

Fig. 3   In a colony of penguins spiral-like behavior of the individuals 
can be observed. Original image is in landscapes & cycles: An envi-
ronmentalist’s journey to climate skepticism by Jim Steele
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3 � Emperor Penguins Colony (EPC) algorithm

In this section, the proposed algorithm is described in 
detail. Before describing the algorithm, we point out that 
a paper with the same idea has been published [45]. How-
ever, that paper algorithm, method, and solution are dif-
ferent from the proposed EPC algorithm in this paper. The 
proposed method in [45] introduces a mechanism based 
on the huddle boundary of emperor penguins, which is 
named the EPO. In that method, the temperature profile 
around the huddle is calculated, and the algorithm has 
vector-based equations, while we calculated the body tem-
perature and body heat radiation of each penguin and then 
due to distance and attractiveness each penguin performs 
the spiral-like movement. For more details, the proposed 
algorithm has been described as follows:

3.1 � The proposed algorithm

All penguins are scattered throughout the environment. 
The position of each penguin and its cost are calculated. 
The cost of penguins are compared with each other. Pen-
guins are always moving towards a penguin that has a low 
cost (high heat intensity) of absorption. This cost is deter-
mined by the heat intensity and the distance. Attraction is 
done, a new solution is evaluated and the heat intensity is 
updated. All solutions are sorted and the best is selected. 
Damping ratio for heat radiation, movement, and heat 
absorption is applied. Algorithm 1 describes pseudo code 
of the EPC algorithm. For this algorithm, there are some 
rules as follows:

1)	 All penguins in the initial population have heat radiation 
and attract to each other due to absorption coefficient.

2)	 The body surface area of all penguins is considered 
equal to each other.

3)	 Penguin absorbs the full heat radiation and the effect of 
the earth’s surface and the atmosphere are not regarded.

4)	 The heat radiation of penguins is considered linear.

5)	 The attraction of penguin is done according to the 
amount of heat in the distance between two penguins. 
In the longer distance, the less heat is received and in 
the shorter distance, the more heat is received.

6)	 The penguin spiral movement during the absorption pro-
cess is not monotonous and has a deviation with uniform 
distribution.

Algorithm 1: Pseudo code of the Emperor Penguins 
Colony (EPC) algorithm. 
generate initial population array of EPs (Colony Size); 
generate position of each EP; 
generate cost of each EP; 
determine initial heat absorption coefficient; 
for I t=1   to MaxIteration do 
     generate repeat copies of population array; 
     for  i=1   to  n  population do  
          for   j=1  to   n  population do 
               if costj   <  costi  then 
                  calculate heat radiation (Eq. 6); 
                  calculate attractiveness (Eq .11); 
                  calculate coordinated spiral movement (Eq. 18); 
                  determine new position (Eq. 19); 
                  evaluate new solutions; 
               end 
          end 
     end   
     sort and find best solution; 
     update heat radiation (decrease); 
     update mutation coefficient (decrease); 
     update heat absorption coefficient (increase); 
end 

To calculate the heat intensity and attractiveness, the heat 
radiation transfer must be calculated. To calculate the heat 
radiation of each penguin, the calculation of the body sur-
face area of each penguin is needed. The above mentioned 
quantities are described in subsections. Also, the indirectly 
movement of penguins is inspired by the coordinated spiral 
movements of penguins, as described in Sect. 3.5.

Fig. 4   Left: Markers indicate 
the positions of the neighbor-
ing penguin pairs. Right: 
Trajectories from neighboring 
penguins. Image and graph 
created by Gerum and Zitterbart 
and available in paper with title 
“The origin of traveling waves 
in an emperor penguin huddle”, 
published by the open access 
new journal of physics [35]
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3.2 � Body surface area

A simple measured model of an emperor penguin, which is 
standing still in the cold, including main body, head, beak, 
flippers and feet is represented in Fig. 5 [38, 46].

Through Eq. 1, the main body surface area (prolate sphe-
roid) Atrunk (m2) is obtained.

where e =
√
a2 − b2 and a is semi-major and b is minor 

axes lengths. a a is half the body length, of the neck where 
the color of the penguin feathers is white, to the abdomen 
(0.34 m), b is half the diameter of the main trunk (0.16 m).

Through the cone equation, the beak area is calculated.

where the radius r is the half of the largest sectional area 
of the beak (0.02 m) and s is the hypotenuse that is consid-
ered as the beak length (0.11 m).

Through the sphere equation, head area is calculated. The 
equation is,

where the width (0.11 m) measured from the bottom of 
black head plumage and r as above and the diameter d is 
taken to be the mean of head height.

The flippers are considered as a rectangle of length l and 
width w obtained by Eq. 4.

(1)Atrunk = 2�
ab

e
sin−1e + 2�b2,

(2)Abeak = �rs,

(3)Ahead = �d2 − �r2,

(4)Aflipper = l × w,

the length l is 0.28 m and the width w is 0.065 m.
By placing each foot on a 1mm2 graph paper, the area of 

each foot is achieved. The main surface area of one foot in con-
tact with the ground is 0.0036 m2. Therefore, the total surface 
of the foot is almost twice the surface measured. The emperor 
penguins often rest on the tarsometatarsus joint, so this area is 
also calculated and is 0.0006 m2. t is the thickness of the foot 
and is calculated by the mean thickness of metatarsi (0.014 m).

So, the total body surface area of the emperor penguin 
becomes 0.56 m2. Table 1 describes calculated surface area 
and percentage of total surface area.

3.3 � Heat transfer

Heat transfer is a process function or path function. Therefore, 
the amount of heat transferred in the thermodynamic process 
that changes the state of the system depends on how this pro-
cess occurs and how the initial and final status of the system. 
The heat transfer is calculated with the heat transfer coefficient 
and actually calculates the proportion between the heat flux and 
the thermodynamic heat, that is, the heat transfer is accompa-
nied by the change in the internal energy of the material and 
always is carried out from the warmer object to the cooler 
object. Heat flux is a quantitative, vectorial representation of 
heat-flow through a surface. The thermal equilibrium occurs 
when the objects involved and their environment reach the same 
temperature.

Heat transfer is classified into various mechanisms, such as 
thermal conduction, thermal convection and thermal radiation 
[47]. Heat conduction is the direct exchange of kinetic energy 
particles through the boundary between the two systems that 
occur at the microscopic level. Heat convection occurs when 
bulk flow of a fluid (gas or liquid) carries heat along with the 
flow of matter in the fluid. Thermal radiation occurs through a 
vacuum or any transparent medium (solid or fluid). This energy 
transfer is done by using photons in electromagnetic waves [48].

In the EPC algorithm the criterion of the heat transfer by 
radiation is used; And two other criteria, conduction and con-
vection, are neglected. Radiation is a criterion of the attrac-
tiveness of penguins. If the distance between a penguin and a 

Fig. 5   Measured model of emperor penguin. Original image taken by 
Stephanie Jenouvrier, Woods Hole Oceanographic Institution

Table 1   Calculated surface area, percentage of total surface area

Body parts Surface area

(m2) (%)

Trunk (excluding flippers) 0.471 83.8
Head and Beak 0.040 7.2
Flippers (outside surface only) 0.036 6.5
Feet 0.014 2.5
Total surface area (Atotal) 0.56 100
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warmer penguin is less, the warmer penguin is more attractive. 
In the following the heat transfer by radiation is calculated.

A distributed heat transfer model is considered to estimate 
the heat exchange for an emperor penguin. In this model, the 
heat transfer from each body area (trunk, head, flippers and 
feet) is assembled and it is assumed that the penguin is in a 
thermal equilibrium with its environment [49],

But the radiation must be calculated. Radiation emitted 
from each body part of surface area and determined accord-
ing to,

where Qpenguin is heat transfer per unit time (W), A is total 
surface area which is calculated in the previous subsection 
and is 0.56 m2. � is emissivity of bird plumage which is 
considered 0.98 according to [50], � is the Stefan–Boltz-
mann constant (5.6703×10−8 W/m2K4) and Ts is absolute 
temperature in Kelvin (K) which is considered 35 °C equal 
to 308.15 K.

3.4 � Heat intensity and attractiveness

We know that, in heat transfer by radiation, photons do carry 
the energy. The photon can be absorbed by increasing rota-
tional or vibrational quantized energy levels, not just elec-
tronic energy levels [51, 52]. Photon sources can be homo-
geneous or concentrated. The latter can be also divided into 
surface sources, point sources and linear sources [53].

In the surface sources, if the source is I0 , the equation of 
receiving the heat photons in I is as follows,

In the above equation, since the source area is assumed 
to be infinite, so the heat source will not be attenuation. Fig-
ure 6a is a subjective perception of surface sources.

In the point sources, if the source is I0 , at distance r , the 
intensity of the heat received in I is obtained according to 
Eq. 8. Figure 6b is a subjective perception of point sources.

(5)qtotal = qtrunk + qhead + qflippers + qfeet.

(6)Qpenguin = A��T4
s
,

(7)I = I0.

(8)I =
I0

r2
.

If the heat source is linear, with the initial value I0 at 
distance r , which irradiates vertically on I , the equation of 
the heat received intensity in I is as follows,

In this case, the heat attenuation is less than the point heat 
source. According to the distance between penguins and the 
type of body physics, in the EPC algorithm, the heat source 
is considered linear. Figure 6c is a subjective perception of 
linear sources.

Photons are not slowed down and stopped by matter, but 
attenuated and scattered. So we need photon attenuation 
equation that uses linear source Eq. 9. Photon attenuation is,

where � is attenuation coefficient and x is distance 
between two linear sources. I0 is initial heat intensity and I 
is heat intensity. Finally, the attractiveness Q is defined as,

3.5 � Coordinated spiral‑like movements

Figure 7 shows a spiral-like huddle in which the clockwise 
movement is done around a constant center. In this case, 
the structure of the system has uncertain boundaries with a 
spiral pattern around the center.

The temperature is warmest in the center of the huddle 
and much colder at the perimeter. Penguins do not jostle to 
gain individual advantage. There is very slow spiral motion 
of the entire huddle whereby each penguin will have his turn 
at all positions in the formation [54].

Suppose there are two penguins i and j . Moving always 
is from the penguin that needs heat to the penguin that is 
warmer. Here the spiral movement is from i to j , because in 
this case the penguins j is warmer. (See Fig. 8).

In this paper, the spiral type is considered as a logarithmic 
spiral. The logarithmic spiral equation is considered as,

where � is the angle of the x-axis, a and b are constant and 
are selected arbitrary and r shows the distance from the ori-
gin. The logarithmic spiral is also known as the equiangular 

(9)I =
I0

r
.

(10)I = I0e
−�x,

(11)Q = A��T4
s
e−�x.

(12)r = aeb� ,

Fig. 6   a Subjective perception 
of surface sources. b Subjective 
perception of point sources. c 
Subjective perception of linear 
sources
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spiral, growth spiral, and spiral mirabilis. It can be expressed 
parametrically as,

According to [55], the logarithmic spiral can be constructed 
from equally spaced rays by starting at a point along one ray, 
and drawing the perpendicular to a neighboring ray. As the 
number of rays approaches infinity, the sequence of segments 
approaches the smooth logarithmic spiral.

In Fig. 8, the penguin i is attracted into j and starts the 
spiral-like movement. The value of the attractiveness Q is a cri-
terion for the rate of distance traveled by the penguin i towards 
j . Due to the attractiveness value, it does not reach the destina-
tion, and stops after a long distance. k is the new position of 
penguin i . This personal experience of spiral-like movement 
can be used in future moves or can be shared across the entire 
population. To obtain the equation of this spiral-like move-
ment, first the distance between two penguins i and j must be 
calculated according to the equation below,

(13)
x = r cos � = a cos �eb�

y = r sin � = a sin �eb� .

(14)

Dij =

j

∫
i

ds =

�j

∫
�i

��
dr

d�

�2

+ r2d�

=

�j

∫
�i

√
a2b2e2b� + a2e2b�d�

= a
√
b2 + 1

�j

∫
�i

eb�d�

=
a

b

√
b2 + 1

�
eb�j − e�i

�
.

The result is multiplied by attractiveness Q to obtain the 
equation of distance i to k,

Now, the relation between Cartesian and Polar coordinates 
are used. For �,

and for xk and yk , there are the following equations,

At the end, the x and y components of the position k are 
obtained in terms of the components x and y of points i , j , and 
attractiveness Q . The equation can be considered as follows,

(15)

Dik = Q
a

b

√
b2 + 1

�
eb�j − e�i

�

=

k

∫
i

ds

= Q
a

b

√
b2 + 1

�
eb�k − e�i

�
.

(16)� = tan−1
y

x
,

(17)
xk = a cos �ke

b�k

yk = a sin �ke
b�k .

Fig. 7   Spiral-like movement in huddle. Original image taken by Fred 
https​://www.Olivi​er/natur​epl.com

Fig. 8   Subjective perception of emperor penguin coordinated spiral 
movement

https://www.Olivier/naturepl.com
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Because the angle information is pre-determined, the spiral-
like movement may become monotonous. It’s better not to be 
limited to monotonous spiral path. So a random component 
is needed to increase diversity. In this way, the penguin i will 
move spirally then it’s summed with a random vector and is 
transported to a new position. The equation can be considered 
as follows,

where � is the mutation factor in the change of path and � is 
a random vector. In this way, the coefficient of a random vector 
is added. � can be Uniform, Normal or Lévy distribution. In the 
EPC algorithm a Uniform distribution is used. The function of 
this equation is exactly the same as the function of a mutation, 
which is performed after the crossover in the GA algorithm.

4 � Experimental results and discussion

In this section the details of conducting the experiment to 
evaluate the efficiency of the EPC algorithm are described. 
For evaluating the performance of the proposed algorithm, 
ten standard benchmark test functions are used. The results 
of the algorithm performance evaluation are compared 
with eight well-known metaheuristic algorithms.

4.1 � Benchmark functions

Test functions are known as artificial landscapes in applied 
mathematics. These functions are very useful for evaluat-
ing the characteristics of optimization algorithms. Perfor-
mance, accuracy, overall performance, and convergence 
rates are some of the characteristics that can be evaluated 
with these functions. These functions are listed below [56]:

Ackley function: Usually, most authors use Ackley func-
tion in their optimization algorithm experiments [57]. This 
function has many local minima and places the risk of 
being trapped in one of these local minima for an optimi-
zation algorithm [58]. The Ackley function is,

(18)
xk = ae

b
1

b
ln

{
(1−Q)e

b tan−1
yi
xi +Qe

b tan−1
yj
xj

}

cos

{
1

b
ln

{
(1 − Q)e

b tan−1
yi

xi + Qe
b tan−1

yj

xj

}}

yk = ae
b
1

b
ln

{
(1−Q)e

b tan−1
yi
xi +Qe

b tan−1
yj
xj

}

sin

{
1

b
ln

{
(1 − Q)e

b tan−1
yi

xi + Qe
b tan−1

yj

xj

}}
.

(19)Eq. 18 + ��i,

(20)
f (x) = −ae

⎛
⎜⎜⎝
−b

����1

d

d�
i=1

x2
i

⎞
⎟⎟⎠
− e

�
1

d

d�
i=1

cos
�
cxi

��

+ a + e(1),

 where a = 20 , b = 0.2 and c = 2� are recommended vari-
able values. For all i = 1,… , d the function is evaluated on 
the hypercube xi ∈ [−32.768, 32.768] , although it may be 
restricted to a smaller domain. At x∗ = (0,… , 0) the global 
minimum is f (x∗) = 0 [59].

Sphere function: Except for the global one the Sphere 
function has d local minima [58]. It is unimodal, convex 
and continuous. For all i = 1,… , d , the function is evalu-
ated on the hypercube xi ∈ [−5.12, 5.12] . The Sphere func-
tion is [60],

 where at x∗ = (0,… , 0) , the global minimum is f (x∗) = 0.
Rosenbrock function: For gradient-based optimiza-

tion algorithms the Rosenbrock function is a popular test 
problem. The global minimum lies in a narrow valley and 
the function is unimodal [58]. Convergence to the mini-
mum is difficult even if this valley is easy to find. For all 
i = 1,… , d the function is usually evaluated on the hyper-
cube xi ∈ [−5, 10] , although for all i = 1,… , d it may be 
restricted to the hypercube xi ∈ [−2.048, 2.048] . The func-
tion is [60],

where at x∗ = (1,… , 1) , the global minimum is 
f (x∗) = 0.

Rastrigin function: This function has several local 
minima. Although locations of the minima are regu-
larly distributed, but it is highly multimodal [61]. For all 
i = 1,… , d the function is usually evaluated on the hyper-
cube xi ∈ [−5.12, 5.12] . The Rastrigin function is,

where at x∗ = (0,… , 0) , the global minimum is f (x∗) = 0.
Griewank function: The Griewank function has many wide-

spread local minima, which are regularly distributed [58]. For 
all i = 1,… , d the function is usually evaluated on the hyper-
cube xi ∈ [−600, 600] . The Griewank function is,

(21)f (x) =

d∑
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x2
i
,

(22)f (x) =

d−1∑
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[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
,

(23)f (x) = 10d +

d∑
i=1

[
x2
i
− 10 cos(2�xi)

]
,
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where at x∗ = (0,… , 0) , the global minimum is f (x∗) = 0.
Bukin function: The Bukin function has many local minima, 

all of which lie in a ridge [56]. The Bukin function is usually 
evaluated on the rectangle x1 ∈ [−15, − 5] , x2 ∈ [−3, 3] . 
The function is,

where at x∗ = (−10… , 1) , the global minimum is 
f (x∗) = 0.

Bohachevsky functions: The Bohachevsky functions all 
have the same similar bowl shape [56]. For all i = 1, 2 the func-
tions are usually evaluated on the square xi ∈ [−100, 100] . 
The Bohachevsky function is,

where at x∗ = (0, 0) , the global minimum is f (x∗) = 0.
Zakharov function: Except the global one The Zakharov 

function has no local minima [56]. For all i = 1,… , d the 
function is usually evaluated on the hypercube xi ∈ [−5, 10] . 
The Zakharov function is,

where at x∗ = (0,… , 0) , the global minimum is f (x∗) = 0.
Booth function: For all i = 1, 2 the Booth function is usually 

evaluated on the square xi ∈ [−10, 10] . The function is [56],

where at x∗ = (1, 3) , the global minimum is f (x∗) = 0.
Michalewicz function: The Michalewicz function is mul-

timodal and it has d! local minima. The parameter m in this 
function defines the steepness of they valleys and ridges; a 
larger m leads to a more difficult search [58]. The recom-
mended value of m is m = 10 . For all i = 1,… , d the func-
tion is usually evaluated on the hypercube xi ∈ [0, �] . The 
function is,

where the global minimum at d = 2 is f (x∗) = −1.8013 , 
at x∗ = (2.20, 1.57).
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4.2 � Algorithms used for comparisons

To validate the performance of the proposed algorithm, the 
eight well-known algorithms are chosen for comparison. 
These are Genetic Algorithm (GA) [6], Imperialist Com-
petitive Algorithm (ICA) [17], Particle Swarm Optimization 
(PSO) [8], Artificial Bee Colony (ABC) [18], Differential 
Evolution (DE) [7], Harmony Search (HS) [14], Invasive 
Weed Optimization (IWO) [20], and Grey Wolf Optimizer 
(GWO) [23].

4.3 � Settings for algorithms

In order that, the experiment results be comparable, the set-
tings of all algorithms are similar to each other. The number 
of iteration in each run is considered 100. The initial popula-
tion is considered 20 in all algorithms. Also, the number of 
decision variables for each algorithm is 5.

The experiment process is as follows: Each algorithm was 
run 30 times, as mentioned, each run has 100 iterations. So 
the mean of 30 results was considered. The standard devia-
tion of 30 runs was also calculated.

4.4 � Results and discussion

Table 2 shows the mean of 30 runs in using benchmark func-
tions. The table shows that the proposed algorithm in using 
of functions Ackley, Sphere, Rastrigin, Griewank, Boh-
achevsky, Zakharov, Booth, and Michalewicz has the best 
performance. Also, in using of functions that do not have 
the best performance, its performance is acceptable. The 
results show that in the case of the Sphere function, which is 
a simple function without local minima, the EPC algorithm 
gives the best answer, and then the GWO algorithm has a 
better answer. The same result is obtained for the Zakharov 
function, which is a function without a local minima. For 
functions such as Ackley, Rastrigin, Griewank and Michale-
wicz, which have several local minima, the best answer is 
obtained by the EPC algorithm. The Michalewicz function is 
a multi-modal and complex function, but the best answer is 
obtained by the EPC algorithm, that its answer is very close 
to the global minimum. After the EPC algorithm, the GWO 
algorithm gives a better answer in Michalewicz function. 
The results show that due to the variety of experiments, the 
proposed algorithm is suitable for processing under simple 
conditions without local minima and complex conditions 
with local minima. Table 3 shows the standard deviation of 
each algorithm. So, the overall performance of the proposed 
algorithm is acceptable.

The EPC algorithm has a memory, so that knowledge 
of good solutions is maintained by all penguins. In this 
algorithm, each penguin benefits from its past information; 
while this feature does not exist in the genetic algorithm 
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and the previous knowledge of the problem disappears with 
the change in population. In the proposed algorithm, each 
penguin changes its position according to its personal expe-
rience of receiving heat and the experiences of the entire 
community. This feature also exists in the PSO algorithm, 
so that the population share their own information with each 
other. Using the information sharing feature among popula-
tion, the proposed algorithm converges at a very high speed 
in finding a global optimal solution. Also, with regard to 
swarm intelligence and optimization strategy, with increas-
ing number of penguins, it is more flexible against the local 
optimal problem. However, it begins process, with much 
smaller population in comparison with genetic algorithm.

The EPC algorithm can effectively deal with multi-modal 
and nonlinear optimization problems. Unlike the PSO, the 
proposed algorithm does not use velocity and therefore, 
there is no premature convergence. The EPC algorithm 
has the potential for integration with other optimization 

algorithms and does not require a good initial solution to 
start its process. Figure 9 shows variation in performance 
for benchmark functions.

In order to analyze the behavior of the EPC algorithm, it 
has been run with different population sizes (colony sizes) 
and different number of decision variables. In Table 4, the 
mean of best function values with different colony sizes 
varying as 10, 30, and 50 have been presented.

The result of Table  4 is that, with the colony size 
between 20 and 30 and number of decision variables 
between 3 and 10, the proposed algorithm has the best 
performance. Of course, the algorithm performance 
with a large colony sizes is acceptable if the number of 
decision variables is low. We once again performed the 
experiment with increasing dimension. We considered the 
population sizes and decision variables as high numbers. 
Some algorithms fail to find the solutions by increasing 
the dimension.

Table 2   Mean of 30 runs in using benchmark functions

The best value obtained by algorithms in each row are in bold

Functions Algorithms

GA ICA PSO ABC DE HS IWO GWO EPC

Ackley 0.0907 2.6265e-04 6.0895e-04 0.1421 1.7711e-04 2.0935 0.0019 1.9177e-05 3.1821e-08
Sphere 0.0028 4.9481e-06 9.0413e-08 0.0102 1.3381e-08 0.4327 9.2105e-07 2.7557e-12 3.3231e-16
Rosenbrock 2.6388 3.3888 1.7793 15.4923 1.9891 69.4738 9.4521 1.7491 3.8752
Rastrigin 0.9373 1.2083 2.9004 10.7627 0.2993 7.3835 14.9577 2.6374 5.8027e-14
Griewank 0.0437 0.0264 0.0222 0.1333 0.0139 0.0444 0.0435 0.0542 0.0131
Bukin 1.1704 0.0759 0.2298 0.7341 0.8872 1.9679 0.2859 0.1509 0.0956
Bohachevsky 0.0085 3.6398e-13 4.9679e-10 3.0094e-07 8.4519e-13 0.0056 2.0029e-07 7.1826e-10 1.1102e-17
Zakharov 2.2252 0.3906 4.7044e-06 3.9614 0.1830 4.4355 2.4909e-06 1.6946e-08 5.4928e-16
Booth 0.0582 0.0028 8.4872e-11 8.1022e-06 2.7995e-05 0.0160 2.7585e-08 1.9738 7.3392e-18
Michalewicz − 4.5633 − 4.5706 − 4.1158 − 2.8306 − 4.7952 − 4.4896 − 3.9391 − 2.4935 − 1.8030

Table 3   Standard deviation of 30 runs in using benchmark functions

The name of proposed algorithm is in bold

Functions Algorithms

GA ICA PSO ABC DE HS IWO GWO EPC

Ackley 0.0768 3.2035e-04 4.6819e-04 0.0787 8.0917e-05 0.6405 5.7446e-04 5.8496e-05 6.7838e-09
Sphere 0.0048 2.5028e-05 1.3032e-07 0.0066 1.4491e-08 0.3579 5.2142e-07 1.2136e-11 1.3588e-16
Rosenbrock 1.9906 6.8807 1.3998 7.8228 1.2408 63.2841 28.9087 2.0407 0.0435
Rastrigin 0.6570 1.3956 2.0537 3.0770 0.6395 2.2297 7.4386 3.7391 2.5794e-14
Griewank 0.0359 0.0125 0.0140 0.0410 0.0144 0.0114 0.0410 0.1698 0.0118
Bukin 2.7639 0.0509 0.1049 0.4065 0.5171 1.0097 0.1246 0.0922 0.0250
Bohachevsky 0.0358 1.0303e-12 9.8150e-10 5.0249e-07 1.4934e-12 0.0087 2.8608e-07 2.2167e-09 4.4694e-17
Zakharov 3.6876 0.6461 9.7591e-06 2.6351 0.1501 3.2684 1.3890e-06 6.4802e-08 1.8226e-16
Booth 0.1223 0.0147 1.3757e-10 1.4857e-05 4.3622e-05 0.0350 2.6599e-08 0.1435 6.4746e-18
Michalewicz 0.2850 0.3133 0.4863 0.2111 0.0683 0.1596 0.5181 0.4395 0.2612
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Fig. 9   Variation in performance for benchmark functions
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Table 5 shows that the proposed algorithm does not fail 
to find solutions with large dimension. The solutions may 
not have high quality, but with increasing the iteration, the 
better solution can be achieved. The mean of best function 
values with different colony sizes varying as 100, 500, and 
1000 have been presented. Figures 10, 11 and 12 show the 
emperor penguin population in consequent iterations.

To find significant differences between the results 
obtained by algorithms, statistical analysis is used. To 
detect significant differences in the results, Friedman 
and Iman-Davenport tests are employed [62, 63]. Table 6 
shows the ranking of algorithms based on the results of 
Table 2 using the Friedman test. As expected, the EPC 
algorithm is first in the ranking, then the DE algorithm is 
located. In the next ranks, the algorithms are PSO, ICA, 
GWO, IWO, GA, ABC and HS, respectively. Table  7 
shows the results of the Friedman and Iman-Davenport 
tests. In this table, there is the Chi-Square value with 8 
degrees of freedom, and also there is asymptotic signifi-
cance of the test (p-value) with very close to zero value. 
Being close to zero value of the asymptotic significance, 
the hypothesis is rejected. Therefore, it can be concluded 

Table 4   Mean of best function values obtained for 300 iterations by EPC algorithm under different colony sizes

Functions Colony size/Number of decision variables

10/3 10/10 30/3 30/10 30/20 50/5 50/20 50/30

Ackley 0 3.0964 0 0.0385 0.7608 0 3.2611e-04 0.3296
Sphere 0.0169 2.7661 1.4094e-45 8.3873e-44 0.1539 8.3867e-45 3.7835e-43 0.0287
Rosenbrock 9.4344 1.0586e + 03 0.0504 9.3333 61.6074 0.9358 18.8678 61.7444
Rastrigin 1.7764e-14 4.3343e-13 0 3.2401e-13 9.5821e-13 2.9132e-14 8.7791e-13 1.6769e-12
Griewank 0.0086 0.3059 0 0 0.0237 0.0036 2.6302e-04 0.0073
Bukin 0.1079 0.0965 0.1010 0.0945 0.0987 0.0989 0.0977 0.0935
Bohachevsky 1.2212e-16 1.4433e-16 0 0 0 0 0 0
Zakharov 0.6459 23.7024 1.9280e-45 0.2126 9.4870 1.3624e-44 1.4947 7.4937
Booth 0 0 0 0 0 0 0 0
Michalewicz − 2.5055 − 5.6178 − 2.7947 − 6.9287 − 11.0801 − 4.5589 − 12.0014 − 15.5106

Table 5   Mean of best function 
values obtained for 100 
iterations by EPC algorithm 
under different colony sizes 
with high dimensions

Functions Colony size/Number of decision variables

100/50 100/100 500/250 500/500 1000/500 1000/1000

Ackley 0.1311 0.7872 3.7043 7.4912 7.0212 10.1354
Sphere 0.0308 0.7395 8.0030 14.1387 11.4389 72.5916
Rosenbrock 48.8622 50.4598 139.8044 146.2557 143.9585 149.5585
Rastrigin 3.1264e-12 3.1554e-11 2.2336e-10 2.3311e-10 3.2256e-09 3.5654e-09
Griewank 0.6487 1.1116 1.4209 1.6501 1.5365 1.8579
Bukin 0.1001 0.1001 0.1000 0.1004 0.1002 0.1005
Bohachevsky 0 0 0 2.1147e-08 2.6632e-07 3.1719e-07
Zakharov 10.3383 12.4809 42.8094 45.6094 50.1223 53.2556
Booth 1.8235e-08 2.1242e-08 1.2396e-09 1.0810e-09 3.1689e-10 7.6893e-10
Michalewicz − 7.1370 − 9.5135 − 27.9260 − 28.9260 − 18.3652 − 32.6665
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Fig. 10   Convergence in 2nd iteration
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that there is a significant difference in the performance of 
algorithms.

As discussed, Table 6 compares the proposed algorithm 
with all algorithms in the low dimensions. To compare 
algorithms in high dimensions, we select the top three 
algorithms from Table 6 based on ranking. In this way, 

the EPC, DE and PSO are selected for comparison with 
the high dimensions. Table 5 shows the results of apply-
ing the EPC algorithm on test functions in high dimen-
sions. Table 10 in the Appendix A also shows the results of 
applying the PSO and DE algorithms on test functions for 
100, 500 and 1000 dimensions, and the results of various 
test functions are presented.

Friedman ranking was considered separately for 100, 
500 and 1000 dimensions and once again, the overall rank-
ing was done. The ranking results are presented in Table 8. 
The results show that the DE algorithm does not have a 
good performance in comparison with the both EPC and 
PSO algorithms. The EPC algorithm has the first ranking, 
then the PSO and DE algorithm are located, respectively.

As Table 2 shows, DE has good performance in low 
dimensions. It has excellent convergence speed and explo-
ration abilities. But in high dimensions, DE has lower con-
vergence speed than PSO and EPC. Table 10 in the Appen-
dix A shows that DE does not provide acceptable results 
for functions such as Sphere, Rosenbrock, Zakharov, and 
Michalewicz. DE has difficulties with Rosenbrock func-
tion, especially. The results show that in high dimen-
sions, DE cannot solve them. It seems that the differential 
evaluates to zero in the high dimensions before reaching 
the optimum. PSO has good convergence speed. It has 
good exploration abilities. But the EPC performance is 
much better. EPC has good performance on all explored 
test functions. In high dimensions, PSO has low conver-
gence speed for most test functions than EPC. The EPC 
has excellent exploration abilities. EPC has rich potential 
for local search, global exploration, quick convergence 
and wide divergence. The penguins have abilities and the 
algorithm sets their behavior adaptively during the opti-
mization process. During the optimization process, the 
penguins can explore and learn problems and decide how 
to behave based on their own learning.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 11   Convergence in 3rd iteration
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Fig. 12   Convergence in 4th iteration

Table 6   Ranking of algorithms 
based on performance using 
Friedman’s test

The best rank obtained by Friedman’s test is in bold

Algorithms

GA ICA PSO ABC DE HS IWO GWO EPC

Ranking 6.20 4.00 3.90 7.30 3.40 7.80 5.50 4.50 2.40

Table 7   Results of Friedman’s and Iman–Davenport’s tests based on 
performance

Test method Chi-Square Degrees of 
freedom 
(DF)

p value Hypothesis

Friedman 35.4670 8 2.20e-05 Rejected
Iman–Davenport 7.1677 8 6.12e-07 Rejected
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Table 9 shows the results of the Friedman and Iman-Dav-
enport tests for high dimensions. In this Table the p-value is 
very close to zero. Being close to zero value of the asymp-
totic significance, the hypothesis is rejected and it can be 
concluded that there is a significant difference in the perfor-
mance of algorithms in high dimensional problems.

The Free Search (FS) algorithm [64] is also one of the 
algorithms that works well in high dimensional problems. In 
[65] the authors claim that FS algorithm is better than PSO 
and DE. For example, the FS algorithm has been tested in 100 
dimensions, in all 320 tests on Michalewicz function, success-
ful result has been achieved. Considering the differences in 
the way in which tests are performed and the differences in 
algorithm settings, we cannot correctly compare the results in 
their paper with the results obtained in this paper. Therefore, 
a careful study and comparison of FS algorithm and proposed 
EPC algorithm can be the subject of further researches.

In comparison with the similar algorithm in [45], the pro-
posed EPC algorithm has the following advantages: Compre-
hensive investigation of the emperor penguins lifestyle and 

the extraction of mathematical and physical relations; Using 
the spiral like movement to optimize temperature without 
need to determine the boundary of the huddle; Using the past 
information by individuals; Quick convergence; Possibility 
of starting optimization process with small population; Not 
limited to monotonous spiral path; Using efficient features of 
other algorithms such as PSO; Integration ability with other 
optimization algorithms; acceptable performance to solve 
high-dimensional problems.

5 � Conclusions

In this paper, a new metaheuristic algorithm based on 
the behavior of emperor penguins in their colonies called 
Emperor Penguins Colony (EPC) was proposed. The pro-
posed algorithm is a swarm-based and nature-inspired algo-
rithm that is controlled by the thermal radiation and spiral-
like movement of penguins. The proposed algorithm is a 
fundamental algorithm for optimization in the broad area of 
knowledge such as engineering and science. This algorithm 
can be improved with inspiring other penguin’s behaviors 
in their colonies. However, the results of the experiments 
indicate the acceptable performance of this algorithm.

As future work, we consider improving the algorithm and 
introducing its applications and using it in solving various 
problems such as clustering problem and community detec-
tion in complex networks.
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Appendix A

The results of applying the PSO and DE algorithms on test 
functions for 100, 500 and 1000 dimensions.

See Table 10.

Table 8   Ranking of algorithms based on performance for 100, 500 
and 1000 dimensions using Friedman’s test

The name of proposed algorithm is in bold

Ranking criteria Algorithms

PSO DE EPC

If the dimension is 100 1.80 2.60 1.60
If the dimension is 500 1.80 2.60 1.60
If the dimension is 1000 1.80 2.50 1.70
Total 1.80 2.57 1.63

Table 9   Results of Friedman’s and Iman–Davenport’s tests based on 
performance in high dimensions

Test method Chi-Square Degrees of 
freedom 
(DF)

p-Value Hypothesis

Friedman 14.8667 2 5.91e-04 Rejected
Iman–Davenport 9.5524 2 2.59e-04 Rejected
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