Your Brain on Java—A Learner’s Guide

2nd Edition - Covers Java 5.0

P— VYo B A s P

can change your life v

[Fae
by wabat
H.'ﬂl_-,'
drroads (Has
waikl? b

Mlif':.ﬁ

Make Java concepts
stick to your brain

Fool around in
the Java Library

Avoid embarassing
OO0 mistakes

Bend your mind

around 42
Make attractive

Java puzzler@
' :_I _ and useful GUIs
O REILLY* Kathy Sierra & Bert Bates

http://www.freepdf-bboks.com/

http://www.allitebooks.org
http://www.a-pdf.com/?tr-demo

Table of Contents (summary)

Intro xx1
1 Breaking the Surface: a quick dip 1
2 A'Trip to Objectville: yes, there will be objects 27
3 Know Your Variables: primitwes and references 49
4 How Objects Behave: object state affects method behavior 71
5 Extra-Strength Methods: flow control, operations, and more 95
6 Using the Java Library: so you don’t have to write it all yourself 125
7 Better Living in Objectville: planning for the future 165
8 Serious Polymorphism: explotting abstract classes and interfaces 197
9 Life and Death of an Object: constructors and memory management 235
10 Numbers Matter: math, formatting, wrappers, and statics 273
11 Risky Behavior: exception handling 315
12 A Very Graphic Story: ntro to GUL event handling, and inner classes 353
13 Work on Your Swing: layout managers and components 399
14 Saving Objects: serialization and 1/0 429
15 Make a Connection: networking sockets and multithreading 471
16 Data Structures: collections and generics 529
17 Release Your Code: packaging and deployment 581
18 Distributed Computing: RMI with a dash of servlets, I;JB, and jJini 607
A Appendix A: Final code kitchen 649
B Appendix B: Top Ten Things that didn’t make it into the rest of the book 659

Index 677

Table of Contents (the fu]] version)
® Intro

Your brain on Java. Here you are trying to learn something, while here your brain
is doing you a favor by making sure the learning doesn't stick. Your brain’s thinking, “Better
leave room for more important things, like which wild animals to avoid and whether naked
snowboarding is a bad idea.” So how do you trick your brain into thinking that your life
depends on knowing Java?

Who is this book for? xxil
What your brain is thinking XXill
Metacognition XXV
Bend your brain into submission XxVil
What you need for this book XXVIil
Technical editors XXX
Acknowledgements XXXi
ix

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Breaking the Surface

Java takes you to new places. From its humble release to the public as the
(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented
features, memory management, and best of all—the promise of portability. We'll take a quick
dip and write some code, compile it,and run it. We're talking syntax, loops, branching, and what

makes Java so cool. Dive in.

. The way Java works 2
Virtual ,
. Code structure in Java 7
Machines
Anatomy of a class 8
The main() method 9
Method Party() Looping I
0 .aload_O Conditional branching (if tests) 13
1 invokespe-
cial #1 <Method Coding the “99 bottles of beer” app 14
java.lang.Object()> .
Phrase-o-matic 16
4 return
. Fireside chat: compiler vs. JVM 18
ccmplled Exercises and puzzles 20
bytecode
A Trip to Objectville
| was told there would be objects. inchapter 1, we put all of our code
in the main() method. That's not exactly object-oriented. So now we've got to leave that
procedural world behind and start making some objects of our own. We'll look at what
makes object-oriented (OO) development in Java so much fun. We'll look at the difference
between a class and an object. We'll look at how objects can improve your life.
DOG Chair Wars (Brad the OO guy vs. Larry the procedural guy) 28
size one class Inheritance (an introduction) 31
Overriding methods (an introduction) 32
What'’s in a class? (methods, instance variables) 34
Making your first object 36
Using main() 38
Guessing Game code 39
many objects Exercises and puzzles 42

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Know Your Variables

Variables come in two flavors: primitive and reference.

There’s gotta be more to life than integers, Strings, and arrays. What if you have a PetOwner
object with a Dog instance variable? Or a Car with an Engine? In this chapter we’ll unwrap
the mysteries of Java types and look at what you can declare as a variable, what you can put
in a variable, and what you can do with a variable. And we'll finally see what life is truly like
on the garbage-collectible heap.

Declaring a variable (Java cares about type) 50
Primitive types (“I'd like a double with extra foam, please™) 51
Java keywords 53
Reference variables (remote control to an object) 54
Object declaration and assignment 55
Objects on the garbage-collectible heap 57
Arrays (a first look) 59
Exercises and puzzles 63

Dog reference

How Objects Behave

State affects behavior, behavior affects state. we know that objects
have state and behavior, represented by instance variables and methods. Now we’ll look
at how state and behavior are related. An object’s behavior uses an object’s unique state.

In other words, methods use instance variable values. Like,"if dog weight is less than 14
pounds, make yippy sound, else...” Let’s go change some state!

Methods use object state (bark different) 73
pass—by—va_i weans Method arguments and return types 74
paSS"bY"cOEy Pass-by-value (the variable is always copied) 77
Getters and Setters 79
C°P}’ of Encapsulation (do it or risk humiliation) 80
x . .
— A Using references in an array 83
0\\,\ 00\\ .

© 000 Exercises and puzzles 88

.. X -. Z

int int

foo.go (x); void go(int z){ }
Xi

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Extra-Strength Methods

Let’s put some muscle in our methods. You dabbled with variables,
played with a few objects, and wrote a little code. But you need more tools. Like
operators. And loops. Might be useful to generate random numbers. And turn
a String into an int, yeah, that would be cool. And why don’t we learn it all by building
something real, to see what it’s like to write (and test) a program from scratch. Maybe a

puild the game, like Sink a Dot Com (similar to Battleship).
WC,Y'C QV\V\a ame
E Dot Com ¥
Sk 3 Building the Sink a Dot Com game 96
A Starting with the Simple Dot Com game (a simpler version) 98
B Writing prepcode (pseudocode for the game) 100
c S Test code for Simple Dot Com 102
‘: Coding the Simple Dot Com game 103
D| Y Pets.com
. Final code for Simple Dot Com 106
Generating random numbers with Math.random() 111
F
Ready-bake code for getting user input from the command-line 112
G
Asl*Me.com Looping with for loops 114
0 1 2 3 4 5 6 . L . . .
Casting primitives from a large size to a smaller size 117
Converting a String to an int with Integer.parselnt() 117
Exercises and puzzles 118
Using the Java Library
Java ships with hundreds of pre-built classes. Youdon'thave to
reinvent the wheel if you know how to find what you need from the Java library, commonly
known as the Java APL. You've got better things to do. If you're going to write code, you
might as well write only the parts that are custom for your application.The core Java library
is a giant pile of classes just waiting for you to use like building blocks.
Analying the bug in the Simple Dot Com Game 126
“Good. to know there’s an ArrayList in ArrayList (taking advantage of the Java API) 132
the java. util package. But by m’?J self, how Fixing the DotCom class code 138
would I have figured that out?
Building the 7eal game (Sink a Dot Com) 140
- Julia, 31, hand model Prepcode for the real game 144
Code for the real game 146
boolean expressions 151
Using the library (Java API) 154
Using packages (import statements, fully-qualified names) 155
Using the HI'ML API docs and reference books 158
Exercises and puzzles 161

Xii

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Better Living in Objectville

Plan your programs with the future in mind. what if you could write
code that someone else could extend, easily? What if you could write code that was flexible,
for those pesky last-minute spec changes? When you get on the Polymorphism Plan, you'll

learn the 5 steps to better class design, the 3 tricks to polymorphism, the 8 ways to make

flexible code, and if you act now—a bonus lesson on the 4 tips for exploiting inheritance.

Java is
byi:«e Understanding inheritance (superclass and subclass relationships) 168
M . threa, g/‘kh Designing an inheritance tree (the Animal simulation) 170
akc I'e Sf| é k wait0) ;/ Avoiding duplicate code (using inheritance) 171
rotify0) Overriding methods 172
ol areed. et are b, IS-A and HAS-A (bathtub gir]) 177
Roses arereg Viﬂfe, the reverse isn't trye, What do you inherit from your superclass? 180
Beers., Dri;,k’obff :C: ;2’ :;'(;r_ . What does inheritance really buy you? 182
OK, your tyr N.Make on ¥inks are beey Polymorphism (using a supertype reference to a subclass object) 183
V\;aryi-n;ss of the |- releatti';?,ts::ows the one- Rules for overriding (don’t touch those arguments and return types!) 190
A eXxtendsy, X [s_4 mustpr.n':T((ej ;Z:fem- Method overloading (nothing more than method name re-use) 191
Exercises and puzzles 192

Object o = al.get(id);
Dog d = (Dog) o;

———
d.bark();

Serious Polymorphism

Inheritance is jUSt the beginning. To exploit polymorphism, we need
interfaces.We need to go beyond simple inheritance to flexibility you can get only by
designing and coding to interfaces. What's an interface? A 100% abstract class.What's an
abstract class? A class that can’t be instantiated. What's that good for? Read the chapter...

Some classes just should 7ot be instantiated 200
Abstract classes (can’t be instantiated) 201
Abstract methods (must be implemented) 203
Polymorphism in action 206
Class Object (the ultimate superclass of everything) 208

211
Compiler checks the reference type (before letting you call a method) 213

Taking objects out of an ArrayList (they come out as type Object)

Get in touch with your inner object 214
Polymorphic references 215
Casting an object reference (moving lower on the inheritance tree) 216
Deadly Diamond of Death (multiple inheritance problem) 223
Using interfaces (the best solution!) 224
Exercises and puzzles 230
xiii

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Life and Death of an Object

Objects are born and objects die. You're in charge. You decide when and
how to construct them.You decide when to abandon them. The Garbage Collector (gc)

reclaims the memory. We'll look at how objects are created, where they live, and how to

keep or abandon them efficiently. That means we’'ll talk about the heap, the stack, scope,
constructors, super constructors, null references, and gc eligibility.

ne talls The stack and the heap, where objects and variables live 236

When :8"\ ::C,H\od, this Methods on the stack 237

%\:LE is a\oandoncd- tis Where local variables live 238

ov\\\[\re‘ccvc“tc Eas \:ch ‘Where wnstance variables live 239

‘-cvrogva"‘"&d koY The miracle of object creation 240

o\d\zb aikk ecent et Constructors (the code that runs when you say new) 241

Initializing the state of a new Duck 243

. Overloaded constructors 247

ock 0‘0\00 Re Superclass constructors (constructor chaining) 250

‘d’ is assigned a new Duttk ob\")cc{:, |cavxtﬁ_x‘:£ E;:l:fnjnc}:):l;ided constructors using fis() ;22
original (Fiest) Duek object abandone ‘ . . -

Livst Duek is toast.- Garbage Collection (and making objects eligible) 260

Exercises and puzzles 266

10

Static variables
are shared by
all instances of

Numbers Matter

Do the Math. The Java API has methods for absolute value, rounding, min/max, etc.
But what about formatting? You might want numbers to print exactly two decimal points,
or with commas in all the right places. And you might want to print and manipulate dates,
too. And what about parsing a String into a number? Or turning a number into a String?

a class. We'll start by learning what it means for a variable or method to be static.
statie variable:
iceCream . .
, . kid instance $wo Math class (do you really need an instance of it?) 274
kid instante © static methods 275
instance vaviables: static variables 277
one per instance Constants (static final variables) 282
skatic vavigbles: Math methods (random(), round(), abs(), etc.) 286
one per ¢lass Wrapper classes (Integer, Boolean, Character, etc.) 287
Llass
Autoboxing 289
Number formatting 294
Date formatting and manipulation 301
Static imports 307
Exercises and puzzles 310

Xiv

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Risky Behavior

Stuff happens. The file isn’t there.The server is down.No matter how good a
programmer you are, you can’t control everything. When you write a risky method, you need
code to handle the bad things that might happen. But how do you know when a method is
risky? Where do you put the code to handle the exceptional situation? In this chapter, we're
going to build a MIDI Music Player, that uses the risky JavaSound API, so we better find out.

Making a music machine (the BeatBox) 316

What if you need to call risky code? 319

\\\QO\NS o Ftio EXCCptiOZlS say “something byad may have happened...” 320
The compiler guarantees (it checks) that you're aware of the risks 321

Catching exceptions using a &ry/catch (skateboarder) 322

Flow control in #ry/catch blocks 326

The finally block (no matter what happens, turn off the oven!) 327

your code [Catching multiple exceptions (the order matters) 329
risky method Declaring an exception (just duck it) 335

Handle or declare law 337

Code Kitchen (making sounds) 339

Exercises and puzzles 348

A Very Graphic Story

Face it, you need to make GUIs. Even if you believe that for the rest of your
life you'll write only server-side code, sooner or later you'll need to write tools, and you'll
want a graphical interface. We'll spend two chapters on GUIs, and learn more language
features including Event Handling and Inner Classes. We'll put a button on the screen,

class MyOuter { we'll paint on the screen, we'll display a jpeg image, and we’ll even do some animation.
class MyInner {
void go() { Your first GUI 355
} } Getting a user event 357
Implement a listener interface 358
! @ Getting a button’s ActionEvent 360
The outer and inner objects Pumng gra?hlcs ona GUI 363
are now intimately linked. . Fun with paintComponent() 365
o The Graphics2D object 366
. the . Putting more than one button on a screen 370
These bwo R T T The imes Tnner cl h ke your | inner cl 376
heap have 3 pecia s nner classes to the rescue (make your listener an inner class)
W
ner tan (““d{t‘_i: versd Animation (move it, paint it, move it, paint it, move it, paint it...) 382
. 3 e~
vaciables tan Code Kitchen (painting graphics with the beat of the music) 386
Exercises and puzzles 394
XV

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Work on your Swing

Swing is €asy. Unless you actually care where everything goes. Swing code looks
easy, but then compile it, run it, look at it and think, “hey, that’s not supposed to go there.”
The thing that makes it easy to code is the thing that makes it hard to control—the Layout
Manager. But with a little work, you can get layout managers to submit to your will. In
this chapter, we'll work on our Swing and learn more about widgets.

Swing Components 400

COW\YO'\CW{'} n 806 Layout Managers (they control size and placement) 401
the east a““\i_ E 7 — Y;) Three Layout Managers (border, flow, box) 403
w:i'é?;t:’ \:\‘;) | BorderLayout (cares about five regions) 404
¥ ‘ FlowLayout (cares about the order and preferred size) 408

Things in the | West | Center \ Erol BoxLayout (like flow, but can stack components vertically) 411

:::J:C: ;:: . T},c center g crf;s | JTextField (for single-line user input) 413
pre ferved height. V%I%lafcver s lc«p{; i JTextArea (for multi-line, scrolling text) 414
’ A H 1 JCheckBox (is it selected?) 416

¢ e >4 JList (a scrollable, selectable list) 417

Code Kitchen (The Big One - building the BeatBox chat client) 418

Exercises and puzzles 424

Saving Objects

Objects can be flattened and inflated. objects have state and behavior.
Behavior lives in the class, but state lives within each individual object. If your program
needs to save state, you can do it the hard way, interrogating each object, painstakingly
writing the value of each instance variable. Or, you can do it the easy 00 way—you simply
freeze-dry the object (serialize it) and reconstitute (deserialize) it to get it back.

SCV'iahzcd Saving object state 431
g Writing a serialized object to a file 432
Java input and output streams (connections and chains) 433

Object serialization 434

Implementing the Serializable interface 437

Using transient variables 439

Deserializing an object 441

Writing to a text file 447

java.io.File 452

Reading from a text file 454

Splitting a String into tokens with split() 458

CodeKitchen 462

Exercises and puzzles 466

XVi

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Make a Connection

Connect with the outside world. it’s easy. All the low-level networking
details are taken care of by classes in the java.net library. One of Java's best features is

that sending and receiving data over a network is really just I/0 with a slightly different
connection stream at the end of the chain. In this chapter we'll make client sockets. We’'ll
make server sockets. We'll make clients and servers. Before the chapter’s done, you'll have a

fully-functional, multithreaded chat client. Did we just say multithreaded?
SOC’(C{ COhn

ettion
o: {,;:: Ejioro Chat program overview 473
/ ‘)Alé‘l'./.log ot Connecting, sending, and receiving 474
Network sockets 475
TCP ports 476
Reading data from a socket (using BufferedReader) 478
Writing data to a socket (using PrintWriter) 479
Writing the Daily Advice Client program 480
Writing a simple server 483
Daily Advice Server code 484
Writing a chat client 486
Multiple call stacks 490
Launching a new thread (make it, start it) 492
The Runnable interface (the thread’s job) 494
Three states of a new Thread object (new, runnable, running) 495
The runnable-running loop 496
Thread scheduler (it’s his decision, not yours) 497
Putting a thread to sleep 501
Making and starting two threads 503
Concurrency issues: can this couple be saved? 505
The Ryan and Monica concurrency problem, in code 506
Locking to make things atomic 510
Every object has a lock 511
The dreaded “Lost Update” problem 512
Synchronized methods (using a lock) 514
Deadlock! 516
Multithreaded ChatClient code 518
Ready-bake SimpleChatServer 520
Exercises and puzzles 524
Xvii

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Data Structures

Sorting isa snap in Java. You have all the tools for collecting and manipulating
your data without having to write your own sort algorithms The Java Collections
Framework has a data structure that should work for virtually anything you'll ever need

to do.Want to keep a list that you can easily keep adding to? Want to find something by
name? Want to create a list that automatically takes out all the duplicates? Sort your co-
workers by the number of times they've stabbed you in the back?

Collections 533
Sorting an ArrayList with Collections.sort() 534
Generics and type-safety 540
Sorting things that implement the Comparable interface 547
Sorting things with a custom Comparator 552
The collection API—1ists, sets, and maps 557
Avoiding duplicates with HashSet 559
Opverriding hashCode() and equals() 560
HashMap 567
Using wildcards for polymorphism 574
Exercises and puzzles 576

]

com
MyApp. jar foo
————————

MyApp.jar

XViii

Release Your Code

It’s time to let gO. You wrote your code.You tested your code.You refined your code.
You told everyone you know that if you never saw a line of code again, that'd be fine.But in
the end, you've created a work of art. The thing actually runs! But now what? In these final
two chapters, we'll explore how to organize, package, and deploy your Java code. We'll look
at local, semi-local, and remote deployment options including executable jars, Java Web
Start, RMI, and Servlets. Relax. Some of the coolest things in Java are easier than you think.

Deployment options 582
Keep your source code and class files separate 584
Making an executable JAR (Java ARchives) 585
Running an executable JAR 586
Put your classes in a package! 587
Packages must have a matching directory structure 589
Compiling and running with packages 590
Compiling with -d 591
Making an executable JAR (with packages) 592
Java Web Start (JWS) for deployment from the web 597
How to make and deploy a JWS application 600
Exercises and puzzles 601

Distributed Computing

Being remote doesn’t have to be a bad thing. sure, things are easier
when all the parts of your application are in one place, in one heap, with one JVM to rule
them all. But that’s not always possible. Or desirable. What if your application handles
powerful computations? What if your app needs data from a secure database? In this
chapter, we'll learn to use Java’s amazingly simple Remote Method Invocation (RMI). We'll
also take a quick peek at Servlets, Enterprise Java Beans (EJB) , and Jini.

Q Client DID Server Java Remote Method Invocation (RMI), hands-on, very detailed 614
- = Servlets (a quick look) 625
RMI STUB RME’SKELETON Enterprise JavaBeans (EJB), a very quick look 631
P Jini, the best trick of all 632

X Sep ¥ y
\ Tient pot® ice T Sy o Building the really cool universal service browser 636
i The End 648

Appendix A
The final Code Kitchen project. All the code for the full client-server chat

beat box. Your chance to be a rock star.

BeatBoxFinal (client code) 650

MusicServer (server code) 657

Appendix B
The Top Ten Things that didn’t make it into the book. we can't send

you out into the world just yet. We have a few more things for you, but this is the end of the
book. And this time we really mean it.

Top Ten List 660

i Index 677

Xix

how to use this book

Intro

neweYy H"Cb

I s section

atg, why DID ey

.{.‘\.\a{: n o

wn wbm ?
W-Sa?a c\woﬁran\mms boOk 3

I can't believe they
put thatina Java
programming book!

xxi

how to use this book

Who is this book for?

If you can answer “yes” to all of these:

®' Have you done some programming?
@ Do you want to learn Java?

Do you prefer stimulating dinner party
conversation to dry, dull, technical

lectures?

this book is for you.

Who should probably back away from this book?

xXxil

If you can answer “yes” to any one of these:

@ is your programming background limited
to HTML only, with no scripting language

experience?

(If you've done anything with looping, or if/then
logic, you'll do fine with this book, but HTML
tagging alone might not be enough.)

@ Are you a kick-butt C++ programmer
looking for a reference book?

@ Are you afraid to try something different?
Would you rather have a root canal than
mix atripes with plaid? Do you believe

than a technical book can’t be serious if
there’s a picture of a duck in the memory

management section?

this book is not for you.

intro

[n?& ‘Fro-m markeﬁn3= who took out the
this book is for aP&OhC with 3 valid ¢red

about that ué'wc
distusced. . ~Fred]

e §ift of

Iarﬁ about how

: tard? And what
Jav3” holiday promotion we

This is NOT a reference
book. Head First Javais a
book designed for learning,
not an encyclopedia of
Java facts.

the intro

We know what you're thinking.

“How can this be a serious Java programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?”

“Do I smell pizzar”

And we know what your brainis thinking.

Your brain craves novelty. It's always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tger snack. But your brain’s still
looking. You just never know.

So what does your brain do with all the routine, ordinary, normal
things you encounter? Everything it can to stop them from
interfering with the brain's 7eal job—recording things that master. It
doesn’t bother saving the boring things; they never make it past the
“this is obvicusly not important” filter.

How does your brain know what’s important? Suppose you're out for
a day hike and a tiger jumps in front of you, what happens inside your
head?

Neurons fire. Emodons crank up. Chemicals surge

Great, Only
637 more dull, dry,

And that’s how your brain knows... boring pages.

This must be Important! Don't forget itl

But imagine you’re at home, or in a library. [t's a safe, warm, tgerfree TRIS e
zone. You're studying. Getting ready for an exam. Or trying to learn saviny ;
some tough technical topic¢ your boss thinks will take a week, ten days \

at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obuviously non-important content
doesn’t clutter up scarce resources. Resources that are better
spent storing the really big things. Like tigers. Like the danger of
fire. Like how you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how
little I'm registering on the emotional richter scale right now, I
really dowant you to keep this stuff around.”

you are here » XXil

xxlv

how to use this book

We think of a “Head First Java” reader as a Jearner.

So what does It take to learn something? First, you have to get it, then make sure
you don't forgetit. It’s not about pushing facts Into your head. Based on the
latest research In cognitive sclence, neuroblology, and educational psychology,
learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make It visual. Images are far more memorable than words
alone, and make learning much more effective (Up to 89%
improvernent in recall and transfer studies).(t also makes
things more understandable. Put the words within
or near the graphles they relate to, rather than on the
bottom or on another page, and learners wilt be up to twice
as likely to solve probiems related to the content.

Use a convarsational and personallzed style.(n recent studies,
students performed up to 40% better on post-learning tests if the content spoke
directly to the reader, using a first-person, conversational style rather than
taking a formal tone. Teli storles instead of lecturing. Use casual language. Don't
take yourself too seriously. Which would you pay more attention to: a stimulating
dinner party companion, or a lecture?

It really sucks to be an
abstract method, You
don’t have a body,

Get the learner to think more deeply. In other words, unless
you actively flex your neurons, nothing much happens in your head.
A reader has to be motivated, engaged, curious, and inspired to
solve problems, draw conclusions, and generate new knowledge.
And for that, you need challenges, exercises, ang thought-
bid roam(); provoking guestions, and activities that involve both sides .

Does it make sense to
say Tub IS-A Bathraom?
Bathroom IS-A Tub? Oris
it a HAS-A relationship?

Get—and keaep—the reader's attentlon. We've il

" s P
had the "I really want to learn this but! can‘t stay awake past ,‘ _ i z ‘
page one” experience. Your brain pays attention to things that are out
of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, ;
tough, technical toplc doesn't have to be boring. Your brain will learn much more quickly if it’s not.

Touch their amotlons. We now know that your abllity to remember something is largely
dependent an Its emotional content. You remember what you care 2bout. You remember when
yau feel something. No we're not talking heart-wrenching stories about a boy and his dog.
We're talking emotions like surprise, curlosity, fun,“what the...?", and the feeling of “I Rule!”
that comes when you solve a puzzle, learn something everybody else thinks Is hard, or realize
you know someathing that “I'm more technical than thou”Bob from engineering doesn’t.

intro

the intro

Metacognition: thinking about thinking.

I wonder how T
can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more deeply,
pay atiention to how you pay attention. Think about how you think. Learn how
you learn.

Most of us did not take courses on metacognition or Jearning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

o0

But we assume that if you’re holding this book, you want to learn Java. And you
probably don’t want to spend a lot of time.

To get the most from this book, or @ny book or learning experience, take
responsibility for your brain. Your brain on that content.

The trick is to get your brain to see the new material you're Jearning
as Really Imporant. Crucial to your well-being. As important as
a tiger. Otherwise, you're in for a constant battle, with your brajn
doing its best to keep the new content from sticking.

So just how DO you get your brain to treat Java like It
was a hungry tiger?

There's the slow, tedious way, or the faster, more effectve way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep pounding

on the same thing. With enougbh repetition, your brain says, “This doesn’t fee!
important to him, but he keeps looking at the same thing over and over and over, so
I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different types
of brain activity. The things on the previous page are a big part of the solution,
and they're all things that have been proven to help your brain work in your favor.
For example, studies show that putting words within the pictures they describe (as
opposed to somewhere else in the page, like a caption or in the body text) causes
your brain to try to makes sense of how the words and picture relate, and this
causes more neurons to fire. More neurons firing = more chances for your brain
to get that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they're in a conversation, since they're expected to follow along and
hold up their end. The amazing thing is, your brain doesn’t necessarnily care that
the “conversation” is between you and a book! On the other hand, if the writing
style is formal and dry, your brain perceives it the same way you experience being
lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

you are here » XXV

how to use this book

Here's what WE did:

We used prictures, because your brain is tuned for visuals, not text. As far as your
brain’s concemed, a picture really s worth 1024 words. And when text and pictures
work together, we embedded the text in the pictures because your brain works
more effectively when the text is within the thing the text refers to, as opposed to in
a caption or buried in the text somewhere.

We used repetition, saying the same thing in different ways and with different media
types, and multiple senses, 10 increase the chance that the content gets coded coded
into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for
novelty, and we used pictures and ideas with at least some emotional content, because
your brain is tuned to pay attention to the biochemistry of emotions. That which
causes you to feel something is more likely to be remembered, even if that feeling is
nothing more than a little humor, surprise, or interest,

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you're in a conversation than if it thinks you’re passively
listening to a presentation. Your brain does this even when you're reading.

We included more than 50 exercises , because your brain is tuned to learn and
remember more when you do things than when you 7ad about things. And we
made the exercises challenging-yet-do-able, because that's what most people prefer.

We used muldtiple learning styles, because you might prefer step-by-step procedures,

while someone else wants to understand the big picture first, while someone else

Jjust wants to see a code example. But regardless of your own learning preference,
everyone benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to Jearn and remember, and the Jonger you can
stay focused. Since working one side of the brain often means giving the other side
a chance to rest, you can be more productive at learning for a longer period of
time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make
evaluations and judgements.

We included challenges, with exercises, and by asking gquestions that don't always have
a straight answer, because your brain is tuned to learn and remember when it has
to work at something (just as you can't get your body in shape by watching people

at the gym). But we did our best to make sure that when you're working bard, it’s
on the right things: That you'’re not spending one extra dendrite processing a hard-to-
understand example, or parsing difficult, jargon-laden, or extremely terse text.

We used an 80/20 approach. We assume that if you're going for a PhD in Java,
this won’t be your only book. So we don't talk about everything. Just the stuff you'll
actually use

wxvl intro

BULLET POINTS

gt o

4) Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to
the answer. Imagine that someone really is
asking the question. The more deeply you
force your brain to think, the better chance
you have of learning and remembering.

Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else

do your workouts for you. And don't just
look at the exercises. Use a pendl. There’s
plenty of evidence that physical actvity
while learning can increase the learning.

Read the “There are No Dumb Questions”™
That means ail of them. They’re not

optional side-bars—they're part of the core
content! Sometimes the questions are more
useful than the answers.

Don’t do all your reading in one place.
Stand-up, stretch, move around, change
chairs, change rooms. It'll help your brain
feelsomething, and keeps your learning from
being 100 connected to a particular place.

®

@ Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer
to long-term memory) happens after you put
the book down. Your brain needs time on
its own, to do more processing. If you put in
something new during that processing-time,
some of what you just learned will be lost.

@

®

the intro

Here's what YOU can do to bend your
brain into submission.

So, we did our part. The rest is up to you. These dps are a
startng point; Listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you
ever fee) thirsty) decreases cognitive function.

Talk about it. Out loud.

Speaking activates a different part of

the brain. If you're trying to understand
something, or increase your chance of
remembering it later, say it out loud. Better
still, try to explain it out loud to someone
else. You’ll learn more quickly, and you might
uncover ideas you hadn't known were there
when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s
time for a break. Once you go past a certain
point, you won't learn faster by trying to shove
more in, and you might even hurt the process.

Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad
joke is still better than feeling nothing at all.

Type and run the code.

Type and run the code examples. Then you
can experiment with changing and improving
the code (or breaking it, which is somedmes
the best way to figure out what's really
happening). For long examples or Ready-bake
code, you can download the source files from
headfirstjava.com

you are here » xxvii

how to use this book

What you need for this book:

You do not need any other development tool, such as an Integrated
Development Environment (IDE). We strongly recommend that you not
use anything but a-basic text editor until you complete this book (and
especially not until after chapter 16). An IDE can protect you from some of
the details that really matter, so you're much better off learning from the
command-line and then, once you really understand what's happening,
move 1o a tool that automates some of the process.

—— SETTING UP JAVA

If you don't already have a 1.5 or greater Java 2 Standard Editlon SDK (Software
Development Kit), you need it. If you're on Linux, Windows, or Solaris, you can gel it for free
from java.sun.com (Sun’s website for Java developers). it usually takes no more than two clicks
from the main page to get to the J2SE downioads page. Get the latest non-beta version posted.
The SDK includes everything you need to compile and run Java.

If you're running Mac OS X 10.4, the Java SOK is alreagy installed. it's part of OS X, and you
don't have to do anything else. If you're on an earlier version of OS X, you have an earlier
version of Java that will wark for 85% of the code in this book.

Note: This book is based on Java 1.5, but for stunningly unclear marketing reasons, shorily
before releass, Sun renamed it Java 5, while still keeping “1.5” as the version number for the
developer's kit. So, if you see Java 1.5 or Java 5 or Java 5.0, or "Tiger” (version 5's original
code-name), they all mean the same thing. There was never a Java 3.0 or 4.0—it jumped from
version 1.4 to 5.0, but you will still find places where it's called 1.5 instead of 5. Don't ask.

(Oh, and just to make it more entertaining, Java 5 and the Mac OS X 10.4 were both given the
same code-name of “Tiger”, and since OS X 10.4 is the version of the Mac OS you need to run
Java 5, you'll hear people talk about “Tiger on Tiger”. |t just means Java 5 on OS X 10.4).

The SDK does nof include the API documentation, and you need that! Go back to java.sun.
com and get the J2SE API documentation. You can also access the API docs online, without
downloading them, but that's a pain. Trust us, it's worth the download.

You need a text editor. Virtually any text editor will do (vi, emacs, pico), including the GUI ones
that come with most operating systems. Notepad, Wordpad, TextEdit, etc. all work, as long as
you make sure they don'l append a “.txt” on to the end of your source code.

Ones you've downloaded and unpacked/zipped/iwhatever (depends on which version and for
which O8), you need to add an entry to your PATH environment variable that points to the /bin
directory inside tha main Java directory. For example, if the J2SDK puts a directory on your
drive called “j2sdk1.5.0", look inside that directory and you'll find the °bin" directory where the
Java binaries (the tools) live. Tha bin directory is the one you need a PATH to, so that when you
type:

% javac

at the command-line, your terminal will know how to find the javac compiler.

Note:; if you have trouble with you instailation, we recommend you go to javaranch.com, and join
the Java-Beginning forum! Actually, you should do that whether you have trouble or not.

Note: much of the code from this book is avallable at wickedlysmart.com

xxvill intro

http://www.freepdf-bboks.com/

http://www.allitebooks.org

Last-wminvute things you need to know:

This is a learning experience, not a reference book. We deliberately
stripped out everything that might get in the way of leamming whatever it

is we're working on at that point in the book. And the first dme through,
you need to begin at the beginning, because the book makes assumptions
about what you've already seen and learned.

We use simple UML-llke dilagrams.

If we’d used pure UML, you'd be seeing something that looks like Java, but
with syntax that’s just plain wnng. So we use a simplified version of UML
that doesn’t conflict with Java syntax. If you don't already know UML, you
won't have to worry about learning Java and UML at the same tmne.

We don't worry about organizing and packaging your own
code until the end of the book.

In this book, you can get on with the business of Jearning Java, without
stressing over some of the organizational or administrative details of
developing Java programs. You will, in the real world, need to know—and
use—these details, so we cover them in depth. But we save them for the end
of the book (chapter 17). Relax while you ease into Java, gently.

The end-of-chapter exercises are mandatory; puzzies are
optional. Answers for both are at the end of each chapter.

One thing you need to know about the puzzles—they re purzles. As in logic
puzzles, brain teasers, crossword puzzles, etc. The exercises are here to help
you practice what you've Jeamed, and you should do them all. The puzzles
are a different story, and some of them are quite challenging in a puzzle
way. These puzzles are meant for puzzlers, and you probably already know if
you are one. If you’re not sure, we suggest you give soroe of them a try, but
whatever happens, don’t be discouraged if you ¢ant solve a puzzle or if you
simply can't be bothered to take the time to work them out.

The ‘Sharpen Your Pencil’ exercises don't have answars.

Not printed in the book, anyway. For some of them, there is no right
answer, and for the others, part of the learning experience for the Sharpen
activities is for you to decide if and when your answers are right. (Some of
our suggested answers are available on wickedlysmart.com)

The code examples are as lean as possible

It’s frustrating to wade through 200 lines of code looking for the two lines
you need to understand. Most examples in this book are shown within the
smallest possible context, 3o that the part you're trying to learn is clear and
simple. So don't expect the code to be robust, or even complete. That's
your assignment for after you finish the book. The book examples are
written specifically for learning, and aren’t always fully-functional.

the intro

B 5“.\?\0')
e i

\{ou S\\OUH do Au’

of the “Shavpen your
pe nL\l 3(,{3\"‘{‘!

&rpen your penci

éwv'b“ mavked

Xereise (,.W|
ZJ:—:MN? dato ;';?)S t ski
t p
Iean,f.,s Jﬂva.e SEYious aboyf

with ﬂ..
"OC) ,oso

you are here» xxix

tech editing: Jessica and Valentin

Technical Editors

“Credit goes 10 all, but mistakes are the sole reponsibility of the
author...”. Does anyone really believe that? See the two people on

this page? If you find technica) problems, it’s probably their fault :)

Jess works at Hewlett-Packard on the Self-
Healing Services Team. She has a Bachelor’s
in Computer Engineering from Villanova
University, has her SCPJ 1.4 and SCWCD
certifications, and is literally months away
from receiving her Masters in Software
Eogineering at Drexel University (whewl!)

When she’s not working, studying or
motoring in her MINI Cooper §, Jess can

be found fighting her cat for yarn as she
completes her latest knitting or crochet
project (anybody want a hat?) She is
originally from Salt Lake City, Utah (no,
she’s not Mormon... yes, you were too

going to ask) and is currently living near
Philadelphia with her husband, Mendra, and
two cats: Chai and Sake.

You can catch her moderatng technical
forums at javaranch.com.

XXX intro

Valen% Crd:":az

Valentin's Lie

Valentin Valentin Crettaz has a Masters degree
in Information and Computer Science from

the Swiss Federal Institute of Technology in
Lausanne (EPFL). He has worked as a software
engineer with SRI International (Menlo Park,
CA) and as a principal engineer in the Software
Engineering Laboratory of EPFL.

Valentin is the co-founder and CTO of Condris
Technologies, 2 company specializing in the
development of software architecture soludons.

His research and development interests
include aspect-oniented technologies, design
and architectural patterns, web services, and
software architecture. Besides taking care of
his wife, gardening, reading, and doing some
sport, Valentin moderates the SCBCD and
SCDJWS forums at Javaranch.com. He holds
the SCJP, SC]D, SCBCD, SCWCD, and SCDJWS
certificadons. He bas also had the opportunity
to serve as a co-author for Whizlabs SCBCD
Exam Simulator.

{We’re siill in shock from seeing him in a fie.)

the intro

credit
Other people to biyge: Come of our Java

expect veviewers...
At O’Reilly: Jef Cumps

Our biggest thanks to Mike Loukides at O’Reilly, for taking a Cerey MeQlone
chance on this, and helping to shape the Head First concept into
a book (and series). As this second edition goes to print there

are now five Head First books, and he’s been with us all the way.
To Tim O’Reilly, for his willingness to launch into something
completely new and different. Thanks 1o the clever Kyle Hart for
figuring out how Head First fits into the world, and for launching
the series. Finally, to Edie Freedman for designing the Head First
emphasize the head” cover.

Our intrepid beta testers and reviewer team:

Our top honors and thanks go to the director of our javaranch
tech review team, Jobannes de Jong. This is your fifth Gme around
with us on a Head First book, and we’re thrilled you're still speaking
to us. Jeff Cumps is on his third book with us now and relentless
about finding areas where we needed to be more clear or correct.

Corey McGlone, you rock. And we think you give the clearest
explanadons on javaranch. You’ll probably notice we stole one or
two of themn. Jason Menard saved our technical buts on more
than a few details, and Thomas Paul, as always, gave us expert
feedback and found the subtle Java issues the rest of us missed.
Jane Griscti has her Java chops (and knows a thing or two about
writing) and it was great to have her helping on the new edidon
along with long-time javarancher Barry Gaunt.

Marilyn de Queiroz gave us excellent help on both editions of the
book. Chris Jones, John Nyquist, James Cubeta, Terri Cubeta,
and Ira Becker gave us a ton of help on the first edition.

Special thanks 10 a few of the Head Firsters who’ve been helping 'gf:ll: de

us from the beginning: Angelo Celeste, Mikalai Zaikin, and
Thomas Duff (twduff.com). And thanks to our terrific agent, David
Rogelberg of StudioB (but seriously, what about the movie rights?)

Terr; _
James Cobeta erri Cubets John N‘Iq\“"£ Chvis Jopes

/l'a BCCk er

Rodney).
Woodrubf

you are here b XXXi

still more acknowledgements

Just when you thought there wouldn’t be any
more acknowledgements®.

More Java technical experts who helped out on the first edition (in pseudo-random order):

Emiko Hori, Michael Taupitz, Mike Gallihugh, Manish Hatwalne, James Chegwidden,
Shweta Mathur, Mohamed Mazahim, John Paverd, Joseph Bih, Skulrat Patanavanich,
Sunil Palicha, Suddhasatwa Ghosh, Ramki Srinivasan, Alfred Raouf, Angelo Celeste,
Mikalai Zaikin, John Zoetebier, Jim Pleger, Barry Gaunt, and Mark Dielen.

The first edition puxzle team:

Dirk Schreckmann, Mary “JavaCross Champion” Leners, Rodney J. Woodruff, Gavin Bong,
and Jason Menard. Javaranch is lucky to have you all helping out.

Other co-conspirators to thank:

Paul Wheaton, the javaranch Trail Boss for supporting thousands of Java learners.

Solveig Haugland, mistress of J2EE and author of “Dating Design Patterns”.

Authors Dori Smith and Tom Negrino (backupbrain.com), for helping us navigate the
tech book world.

Our Head First partners in crime, Eric Freeman and Beth Freeman (authors of Head First
Design Patterns), for giving us the Bawls™ to finish this on time.

Sherry Dorris, for the things that really matter.

Brave Early Adopters of the Head First series:

Joe Litton, Ross P. Goldberg, Dominic Da Silva, honestpuck, Danny Bromberg, Stephen
Lepp, Elton Hughes, Eric Christensen, Vulinh Nguyen, Mark Rau, Abdulhaf, Nathan
Oliphant, Michael Bradly, Alex Darrow, Michael Fischer, Sarah Nottingham, Tim Allen,
Bob Thomas, and Mike Bibby (the first).

*The large number of acknowledgements is because we're testing the theory that everyone mentioned in
a book acknowledgement will buy at least one copy, probably more, what with relatives and everything. If
you'd like to be in the acknowledgement of our next book, and you have a large family, write to us.

xxxii intro

1 dive in A Quick Dip

Breaking the syrface

Come on, the water’s
great! We'll dive right in and
write some code, then compite and
run it. We're talking syntax, looping
and branching, and a look at what
makes Java so cool. You'll be
coding in no time.

Java takes you to new places. From its humble release to the public as the
(wimpy) version 1.02, Java seduced programmaers with its friendly syntax, object-orlented features,

memory management, and best of all—the promise of portabllity. The lure of write-once/run-

anywhere Is just too strong. A devoted following exploded, as programmers fought against bugs,

limitations, and, oh yeah, the fact that it was dog slow. But that was ages ago. If you're just starting in

Java, you’re tucky. Some of us had to walk five miles in the snow, uphill both ways (barefoot), to

get even the most trivial applet to work. But you, why, you get to ride the sleeker, faster, much

more powerfuf java of today. / ¥

this is 2 new chapter

1

the way Java works

The Way Java Works

The goal Is to write one application (in this
example, an interactive party invitation) and have
It work on whatever device your friends have.

source code for Method Party()
0 aload_0
the Interactive T
1 invokespe-
party invitation, clal #1 <Mathod

Source

{code)
o Compller Virtval

Create a source e e Machines

document. Use an

established protocol R The compiler creates a e

(in this case, the Java un your document new document, coded

language). through a source code into Java bytecode. y) ’
compiler.The compiller Any device capable of our friends don't have
checks for errors and running Java will be able a physical Java Machine,
won't Jet you compile to Interpret/translate but they all have a
until it’s satisfied that this file into something virtual Java machine
everything will run it can run.The compiled (implementedin
correctly. bytecode is platform- soft_ware) running inside

independent. their electronic gadgets.

The virtual machine reads
and runs the-bytecode.

2 chapter 1

dive In A Quick Dip

What you'll do in Java

You'll type a source code file, compile it using the
Javac compller, then run the compiled bytecode
on a Java virtual machine.

Flie Eoit Window Heip Plead

2 | File Bgit Wingow Reip Swear
o java.aet.” . %javac Party.java Method Party() %java Party
Import java.awt.evenl'; 0 aload_0 066
diass Pariy { T
. 1 Invok al #1 <Mathod)
public void ulinvie) fova g OBjaci(s Party at Tim's!
Frame f = new Frame(); 4 rety D (ven)
Label | = new Label(-Party at Tim's"); retum - : =
Buition b = new Button("You bel’); Method vold bulldinvite()
Button ¢ = new Button("Shoot me”);
Panel < new Panell; COMPHOF 0 new #2 <Class java.awLFrame> Virtual
p-add(f). 3dup
} # more code here... e Machines
Y 4 Invokespecial #3 <Method
y Compile the Party.java lava 8wt Frame()> e
Souree file by runr_\lng java'c
(the complller application). - Run the program by
o If you don't have errors, Outpot starting the Java Virtual
you'll get a second docu- p Machine (JVM) with the
ment named Party.class (code) Party.class file. The JVM
Type your source code. The compiler-generated .translates th_e bytecode
Save as: Party.java Party.class file Is made up 6 into something the
of bytecodes. underlying platform
Compiled code: Party.dass understands, and runs

your program.

(Note: this is not meant to be 3 tutorial... you'll be
w’n{jnﬁ veal tode in 3 moment, but For now, we ju£
want you to get 5 feel For how it all fits together)

you are here » 3

history of Java

Classes in the Java standard library

3500

3000

2500

2000

1500

1000

500

Java 1.02

250 classes

Slow.

Cute name and logo.
Fun to use. Lots of
bugs. Applets are
the Big Thing.

A very brief history of Java

Java 1.1
500 classes

A fittie faster.

More capable, friendlier.
Becoming very popular.
Better GUI code.

Java 2
(versions 1.2 - 14)

2300 classes

Much faster.

Can (sometimes) run at
native speeds. Serious,
powerful.Comes in three
flavors: Micro Edition (J2ME),
Standard Edition (J25E) and
Enterprise Edition (J2EE).
Becomes the fanguage of
cholcee for new enterprise
(especially web-based) and
mobile applications,

Jdava 5.0
(versions 1.9 and up)

3500 classes

More power, easler to
develop with.

Besides adding more than a
thousand additional classes,
Java 5.0 (known as "Tiger”)
added major changes to
the language itself, making
it easier (at least in theory)
for programmers and giving
it new features that were
popular in other languages.

chapter 1

Look how easy it
is to write Java.

%rpen your pencil

Try to guess what each line of code Is doing...
(answers are on the next page).

dive In A Quick Dip

int size = 27;

detlave an inteacr variable named 'size’ and give it the value 27

String name = “Fido”;

Dog myDog = new Dog(name, size);

x = gize - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

myDog-play();

int[] numList = {2,4,6,8};

System,out.print(“Hello”);

System.out.print(”Dog: “ + name);

String num = “8";

int z = Integer.parselInt(num);

try {

readTheFile(“myFile.txt”);

}

catch(FileNotFoundException ex) {

System.out.print(“File not found.”);

Q,: | see Java 2 and Java 5.0, but was there a Java 3
and 4? And why is it Java 5.0 but not Java 2,07

AI The joys of marketing... when the version of java
shifted from 1.1 to 1.2, the changes to Java were so
gramatic that the marketers decided we needed a whole
new ‘name’ so they started calling it Java 2, even though
the actual version of Java was 1.2. But versions 1.3 and 1.4
wete still considered Java 2. There never was a Java 3 or
£_8eginning with Java version 1.5, the marketers decided

once again that the changes were so dramatic that a

new name was needed (and most developers agreed), so
they looked at the options.The next number in the name
sequence would be “37 but calling Java 1.5 Java 3 seemed
more confusing, so they decided to name it Java 5.0 to
match the “5”in version “1.5%

So, the original Java was versions 1.02 (the first official
release) through 1.1 were just “Java” Versions 1.2,1.3,and
1.4 were "Java 2 And beginning with version 1.5, Java is
called“Java 5.0"But you'll also see it called “Java 5” {(without
the “.0*) and “Tiger” (its original code-name). We have no
idea what will happen with the next release...

you are here »

why Java is cool

\%ﬁﬂ Your pencil aNSWers

Don’t worry about whether you understand any of this yet!
LOOk how easy n Everything here Is explained in great detall in the book, most
|3 1o WfH‘e Java, within the first 40 pages).|f Java resembles a language you've

used in the past, some of this will be simple. If not, dont worry
about it. We'll get there...

int gize = 27; declare an inteser vaviable named ‘size’ and give it the value 27
String name = “Fido”; declove a string of thavazters vaviable ramed ‘wame’ and give it the value “Fido®
Dog myDog = new Dog(name, size); detlave a new Doy varisble ‘wyDoy’ and make the new Dog wsing ‘name’ and ‘G2’
x = gize - S; sbtract 5 from 17 value of ‘size’) and assign it to a variable ramed 'Y’
if (% < 15) myDog.bark(8); 1 % (value of 220 is less £han 15, £ell the doy £o bark 8 bimes
while (x > 3) { keep looping as long 3¢ % is qreater than 3.-
myDog.play () ; . dell the dog to play (whatever THAT meant £0 2 dog-)
} s looks fike the end of the loop — everything in {] i done in the |
int[) numList = {2,4,6,8); detlave 3 list of inteaers varidble wumbist, and pit 2,4,6,8 into the list
System.out.print(“Hello”); print out “Hello”-. probably ot the Lommand-Ime
System.out.print(“Dog: “ + name); print ot “Bello Fido” (the value of ‘name’ is “Fido”) ot the command-ling
String num = “87; declave 3 thavaeter string variable ‘wam’ and give it the vahe of ¢
fht z = Integer.parselnt(num); tanvert the string of thavatters 8" info an actual mumeric value 8
try { bry to do something.maybe the thing we've bryimg isn't guavanteed to work..
readTheFile(*myFile.txt"); vead a text file named “myFiletxt” (or at least TRY to vead the Fle.d
} must be the end of the “things to bry”, so | quess you tendd bry many things..
catch(FileNotFoundException ex) { £his mist be where You find out if the thimg you tried didn't work.-
System.out.print(“File not found.”); | if the thing we tried Lailed, print “File not found” out at the Lommand-line
} looks like everything in the {] is what to do if the 'ty didn't work..

6 chapter 1

http://www.freepdf-bboks.com/

http://www.allitebooks.org

Code structure in Java

=i W
method 1 !

method 2
statement
statement

Put a class in a source file.
Put methods in a class.

Put statements in a method.

What goes in a
source file?

A source code file (with the java
extension) holds one elass defini-
tion. The class represents a piece
of your program, although a very
nny application might need just
a single class. The class must go
within a pair of curly braces.

What goes in a
class?

A class has one or more methods.
In the Dog class, the bark method
will held instructions for how the
Dog should bark. Your methods
must be declared inside a class

(in other words, within the curly
braces of the class).

What goes in a
method?

Within the curly braces of a
method, write your instructions
for how that method should be
performed. Method code is basi-
cally a set of statements, and for
now you can think of a methog
kind of like a function or proce-
dure.

dive In A Quick Dip

public class Dog {

public class Dog {
void bark() {

method

public class Dog {
void bark{) {
statementl;
statement?;

}

'statements

you are here » 7

a Java class

Anatowmy of a class

When the JVM starts running, it looks for the class you give it at the com-
mand line. Then it starts looking for a specially-written method that looks
exactly like:

public static void main (8tring() args) [
// your code goes here
)

Next, the JVM runs everything between the curly braces { } of your main
method. Every Java application has to have at least one class, and at least
one main method (not one main per class; just one main per application).

fhis is 3 the name of opening curly by
public. so everyone class (duh) this lag the claes 8
tan acLess |

3\;3%&'61 to the methed.
ﬂ‘_- . i : S This mc{hoczd must be given

’ _ ¢ veturn type. an arvy Strings,

(we'll tover this y5id means there's ﬂn,‘ rme of dvray ""?” be ‘3”¢3 (:hd' e
one later.) no veturn value. this method i

by | 1) L £
A i =

this says peint to standard output
(defaults to tommand-line)

tlosing brate of the main methed

the String you
want to print

I\dos'mg brate of the MyFivstfpp ¢lass

Don't worry about memorizing an\fthina right now...
this chapter is Jus'E to gd: you started.

8 chapter 1

dive In A Quick Dip

Writing a class with a main

In Java, everything goes in a class. You'll type your source code file (with a
.java extension), then compile it into a new class file (with a .class extension).
When you run your program, you're really running a class.

Running a program means telling the Java Virtual Machine (JVM) to “Load the
Hello class, then start executing itsmain () method. Keep running ‘) all the
code in main is finished.”

In chapter 2, we go deeper into the whole class thing, but for now, all you need to
think is, how do I write Java code so that it will rum? And it all begins with main().

The main() method is where your program starts running.

No matter how big your program is (in other words, no matter how many classes
your program uses), there's got to be a main() method to get the ball rolling.

public class MyFiratApp { o Save
public static void main (String[] args) (MyFirastApp.java

Systam. out.println ("I Rula!”);
System.out.println(“The World”);

b © Compile

javac MyFirstApp.java

eRun

File Egn Window Help Scream

%java MyFirstApp
I Rule!

The World

MyFirstApp.class

you are here » <)

“

statements, looping, branching

What ¢an you say in the main method?

Once you're inside main (or any method), the fun
begins. You can say all the normal things that you say
in most programming languages to make the computer
do something.

Your code can tell the JVM to:

(1) do something

Statements: declarations, asslgnments,
method calls, ete.

int x = 3;

String name = “Dirk”;

x = x * 17;
System.out.print(“x is ” + x);
double d = Math.random() ;

// this is a comment

(2) do something again and again

Loops: for and while

while (x > 12) {
x = x -1;

)

for (inmt x = 0; x < 10; x =

System.out.print (“x is now ” + x);

}

(3 do something under this condition

Branching: /f/eise tests
if (x == 10) {
System.out.print {“x must be 107);
} else {
System.out.print(“x isn’t 10”);
}
if ({x < 3) & (name.equals(“Dirk”)))
System.out.println(“Gently”);
)

System.out.print(“this line runs no matter what”);

10 chapter 1

X + 1)

(

{

¥ Each statement must end in a
semicolon.

Xx=x + 17

® Asingle-line comment begins
with two forward slashes.

x = 22;

// this line disturbs me

» Most white space doesn't matter.

X = 3

Variables are declared with a
name and a type (you'll learn about
all the Java types in chapter 3).

int weight;
//type: int, name: weight

% Classes and methods must be
defined within a pair of curly braces.

public void go() {
// amazing code here

}

s
al

dive In A Quick Dip

while (moreBalls == true) {

; keepJuggling();

e
Looping and looping and...

Java has three standard looping constructs: while,
do-while, and for. You'll get the full loop scoop later
in the book, but not for awhile, so let’s do whilefor
now.

The syntax (not to mendon logic) is so simple
you're probably asleep already. As Jong as some
condition is true, you do everything inside the
loop block. The loop block is bounded by a pair of
curly braces, so whatever you want to repeat needs
1o be inside that block.

The key to a loop is the conditional test. In Java, a
conditional test is an expression that results in a
boolean value—in other words, something that is
either #rue or false.

If you say something like, “While iceCreamInTheTub
is trug, keep scoopingf‘, you have a clear boolean
test. There either isice cream in the tub or there
isn’t. Butif you were to say, “While Bob keep
scooping”, you don't have a real test. To make

that work, you'd have to change it to something
like, “While Bob is snoring...” or “While Bob is ot
wearing plaid...”

Simple boolean tests

You can do a simple boolean test by checking
the value of a variable, using a comparison operator
including:

< (less than)
> (greater than)
= (equality) (yes, that’s fwo equals signs)

Notice the difference between the assignment
operator (a single equals sign) and the equals
operator (two equals signs). Lots of programmers
accidentally type = when they want ==. (But not
you.)

int x = 4; // assign & to x

while (x > 3) {
// loop code will run because
// x is greater than 3
X =x - 1; // or we’d loop forever
}
int z = 27; //
while (z == 17) {
// loop code will not run because
// z is not equal to 17

you are here »

11

Java basics

‘d!lel'e‘ i o
Dulb Questions Example of a while loop

public class Loopy {

: d
Q Why does everything have public static void main (String[] args) {

to be in a class?
int x = 1;

- System.out.println (“Before the Loop”):;
= Javais an object-oriented while (x < 4) {
(O0) language. It’s not like the System.out.println{*In the loop”);

old days when you had steam-
driven compilers and wrote one
monolithic source file with a pile

System.out.println(“Value of x is ” + x);
X =X+ 1;

of procedures. In chapter 2 you'll }
learn that a class Is a blueprint for System.out.println(“This is after the loop”);
an object, and that nearly every- }
thing in Java is an object.
} -
. . this ;¢
Q- Do | have to put a main in % java Loopy the °"fru{
every class write? Bafora the Loop
In the loop
A- Value of x is 1
« Nope. A Java program
might use dozens of classes (even In the loop
hundreds), but you might only Value of x is 2
have one with a main method— In the locp
the one that starts the program value of x is 3

running.You might write test
classes, though, that have main
methods for testing your other ~

This is after the loop

classes. -~ \
———— BULLET POINTS N

Q} In my other language | can
do a boolean test on an Intager.

In Java, can | say something like: = Code blocks are defined by a pair of curly braces { }
int x = 1;

while (x){ }

s Statemsnts end in a semicolon ;

= Daclare an int variable with a name and a type: IntX;

® The assignment operator Is one equals sign =

AI No. A boolean and an = The equals operator uses two equals signs ==

integer are nat compatible types in = A while loop runs everything within its block (defined by curly

Java. Since the result of a condi- iy
tional test must be a boolean, the bracas) as long as the conditionaf test s true.

only variable you can dlrectly test s {f the conditional test is false, the while loop code block won't
(W':h")“i' ”sgng feaomparson ob run, and execution will move down to the code immediately
erator) Is a booiean. For example, aﬂer the |00p b'ock,

you Can say;

boolean isHot = true; ® Put a boolean test inside parentheses:

while (x = 4) (}

while (isHot) ()

12 chapter1

dive In A Quick Dip

| Conditional branching

In Java, an iftest is basically the same as the boolean testin a

whileloop — except instead of saying, “while there’s still beer...”,
- wou’ll say, “ifthere’s sdll beer...”
:l class IfTest {

public static void main (String() args) {
int x = 3;

| if (x == 3) (
| System.out.println(“x must be 3”);
}

I System.out.println (“This runs no matter what”);

% java IfTaat

Code out ot ‘
B et be 3 « f pen your pencll
|| This runs no matter what

" . . Glven the output:
‘The code above executes the line that prints “x must be 8" only

‘ if the condition (xis equal to 3) is true. Regardless of whether % Jjava DocBee

it’s true, though, the line that prints, “This runs no matter what” DooBeaDooBeaDo
' will run. So depending on the value of x, either one statement
‘ or two will print out. Filf In the missing code:

But we can add an else to the condition, so that we can
say something like, “If there’s still beer, keep coding, else
(otherwise) get more beer, and then continue on...”

public class DooBee {
public static void main (String(] args) {

intx=1;
- class 1fTest2 { while (x <){
public static void main (String() args) | System.out. (“Doo™):
int x = 2; System.out. (“Bee™;
if (x == 3) ¢ -
System.out.println(“x must be 3”); x=x+1;
} else { }
System.out.println(“x is NOT 3”); If (x ==) {
) System.out.print(*00");
System.out.println(“This runs no matter what”); }

}

new O\‘t?“i ;

§ java IfTest2
x is NOT 3 /

This runs no matter what

you are here » 13

serious Java app

Coding a Serious Business
Application

Let’s put all your new Java skills to good use with
something practical. We need a class with a main(), an int
and a String variable, a whileloop, and an iftest. A little
more polish, and you'll be building that business back-
end in no time. But Jefore you look at the code on this
page, think for a moment about how you would code that
classic children’s favorite, “99 bottles of beer.”

public class BeerSong {
public static void main (String{) args) {

int beerNum = 99;
String word = “bottles”;

while (beerNum > 0) {

if (beerNum == 1) {
word = “bottle”; // singular, as in ONE bottle.

System.out.println(beerNum + “ ” + word + “ of Dbeer on the wall”);
System.out.println(beerNum + * “ + word + “ of beer.”);
System.out.println(“Take one down.”);

System.out.println(“Pass it around.”);

beerNum = beerNum - 1;

if (beerNum > 0) {
System.out.println(beerNum + “ ” + word + “ of beexr on the wall”);

} else {
System.out.println (“No more bottles of beer on the wall”);

} // end else

} // end while loop
} // end main method
} // end class

There's stlll one little flaw in our
code. It complles and runs, but the
autput Isn’t 1009% perfect See if
you can spot the flaw , and fix it.

14 chapter 1

is

dive in A Quick Dip

Monday wmorning at Bob’s

Bob’s alarm clock rings at 8:30 Monday morning, just like every other weekday. Java inside
But Bob had 2 wild weekend, and reaches for the SNOOZE bucton. -

And that’s when the action starts, and the Java-enabled appliances oy /
come to life. ‘

First, the alarm clock sends a message to the coffee maker* “Hey, the geek’s
sleeping in again, delay the coffee 12 minutes.”

Java here too

The coffee maker sends a message to the Motorola™
waster, “Hold the toast, Bob’s snoozing.”

The alarm clock then sends a message to Bob’s
Nokia Navigator™ cell phone, “Call Bob’s 9
o’clock and tell him we’re running a litde late.”

Finally, the alarm clock sends a message to), eolar
Sam’s (Sam 15 the dog) wireless collar, with the too-familiar signal that Gawe ava
means, “Get the paper, but don’t expect a walk.” has

A few minutes later, the alarm goes off again. And again Bob

hits SNOOZE and the appliances start chattering. Finally, &
the alarm rings a third dme. But just as Bob reaches for the
snooze button, the clock sends the “jump and bark” signal to Sam’s

skills and a litde trip to Radio Shack™ have enhanced the daily
routines of his life.
butter heve

4

His toast is toasted.

His coffee steams.

His paper awaits.
Just another wonderful morning in The Java-Enabled House.

You can have a Java-enabled home. Stck with a sensible solution using Java,
Ethernet, and Jini technology. Beware of imitations using other so-called “plug
and play” {which actually means “plug and play with it for the next three days
trying ta get it to work”) or “portable” platforms. Bob’s sister Betry tried one of
those others, and the results were, well, not very appealing, or safe.

Bit of a shame about her dog, too...

Could this story be true? Yes and no.While there are versions of Java running in de-
vices including PDAs, cell phones (especially cetl phones), pagers, rings, smart cards,
and more -you might not find a Java toaster or dog collar. But even if you can't
find 2 Java-enabled version of your favorite gadget, you can still run it as if it were a
Java gdevice by controlling it through some other Interface (say, your laptop) that is
running Java. This Is known as the Jini surrogate architecture. Yes you con have that
geek dream home.

*IP multicast If you're gonna be all picky about protocol

you are here » 15

let’s write a program

Try my new
phrase-o-matic and
you'll be a slick talker
Jjust like the boss or

those guys in marketing.

public class Phrase(Matic (
public static void main (String(] args) {

// make three seis of words to chooss from. Add yoor own!

o String[] wordListOne = {“24/7”,“multi-
Tiar”,”30,000 foot”,”B-to-B”,“win-win”,”£ront-
end”, “web-based”,”pervasive”, “smart”, “six-
gigma”,”eritical-path”, “dynamie”};

String[] wordListTwo = {“empowered”, “sticky”,
“valua-added”, “oriented”, “cantric”, “distributed”,
“clustered”, “branded”,”outsida-the-box”, “positioned”,
“networked”, “focused”, “leveraged”, “aligned”,
“targeted”, “shared”, “cooparative”, “accelerated”};

String(} wordListThree = {“process”, “tipping-
point”, "“solution”, “architecture”, “core competency”,
“strateqy”, “mindshare”, “portal”, “apace”, “vision”,

OK, so the beer song wasn't really a serious
business application. Still need something
practical to show the boss? Check out the
Phrase-O-Matic code. “paradigm”, “mission”}:

e // find out kow many words are in each fist
int onelength = wordListOme,length;
int twolength = wordListTwo.langth;
int threalangth = wordListThree.length;

ho{“' W'\cn
th You type this ;
e code do i, | '}& an editor, Jg // generate three random numbers
, g;: hit the rebuem | wh’“"‘“‘f??'hg/ 6 int randl = (int) (Math.random() * onelength);
" (3 thing oy 7 When you'ye typin int rand2 = (int) (Math.random() * twolength):
“on't Compile Neon “uoter”) o 1y 0 int rand3 = (int) (Math.random() * threeLength);

b o) and
y:;vdon! thit ¢, Ireﬁu.-zof o t,ﬂ" them, o // now build a phrase
€ losed 4 S{:n‘ha_ Y wntil AFTER 8tring phrase = wordListOne [randl] + “ “ +
wordListTwo [rand2] + “ “ + wordListThree[rand3]:

e // print out the phrase

System.out.println("What wa naed is a “ + phrasa);
}

16 chapter 1

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Phrase-0-Matie

Bow it works.

k2 a nutshell, the program makes three lists of words, then randomly picks one word
From each of the three lists; and prints out the result Don’t worry if you don’t under-
stand exactly what's happening in each line. For gosh sakes, you've got the whole book
abead of you, so relax. This is just a quick look from a 30,000 foot outside-the-box
zargeted leveraged paradigm.

The first step is to create three String arrays — the containers that will hold all the
. Declaring and creating an array is easy; here's a small one:

: gl] pats = {“Fido”, “Zaeus”, “Bin”};
Each word is in quotes (as all good Strings must be) and separated by commas.

For each of the three lists (arrays), the goal is to pick a random word, so we have

know how many words are in each list. If there are 14 words in a list, then we need

a random number between 0 and 13 (Java arrays are zero-based, so the first word is at
esition 0, the second word position 1, and the last word is position 13 in a 14-element

array). Quite handily, a Java array is more than happy to tell you it length. You just

to ask. In the pets array, we’d say:

t x = pats.length;
d x would now hold the value 8.

_ We need three random numbers. Java ships out-of-the-box, off-the-shelf, shrink-
wrapped, and core competent with a set of math methods (for now, think of them as
fnctions). The random () method returns a random number between. 0 and not-
guite-1, so we have to multiply it by the number of elements (the array length) in the

st we're using. We have to force the result to be an integer (no decimals allowed!) so
put in a cast (you'll get the details in chapter 4). It’s the same as if we had any float-
g point number that we wanted to convert to an integer:

x = (int) 24.6;

“J- Now we get to build the phrase, by picking a word from each of the three lists,

and smooshing them together (also inserting spaces between words). We use the “+”
‘operator, which concatenates (we prefer the more technical ‘smooshes’) the String objects
sogether. To get an element from an array, you give the array the index number (posi-
‘mon) of the thing you want using:

String s = pets{0]; // a is now the String “Fido”

=48+ " " + “is a dog”; // 8 is now “Fido is a dog”

'5. Finally, we print the phrase to the command-line and... voilal We're in marketing.

dive In A Quick Dip

what we need
here is a...

pervasive targeted
process

dynamic outside-
the-box tipping-
point

smart distributed
core competency

24/7 empowered
mindshare

30,000 foot win-win
vision

six-gigma net-
worked portal

you are here» 17

the compiler and the JVM

Fn:emde Ch& Tonight's Talk: The compiler and
, > the JVM battle over the question,
“Who's more important?”
The Java Virtual Machine The Compiler

What, are you kidding? HELLO.] am Java.

I'm the guy who actually makes a program

run. The compiler just gives you a file. That's

it. Just a file. You can print it out and use it

for wall paper, kindling, lining the bird cage

whatever, but the file doesn’t do anything un-

less 'm there to run it.
I don't appreciate that tone.

And that's another thing, the compiler has

no sense of humor. Then again, if you had to

spend all day checking nit-picky little syntax

violatons... Excuse me, but without me, what exactly
would you run? There's a4 reason Java was
designed to use a bytecode compiler, for your
information. If Java were a purely interpreted
language, where—at runtime—the virtual
machine had to translate straight-from-a-text-
editor source code, a Java program would
run at a Judicrously glacial pace. Java’s had a
challenging enough time convincing people
that it’s finally fast and powerful enough for

I'm not saying you’re, like, completely useless. most jobs.

But really, what is it that you do? Seriously. 1
have no idea. A programmer could just write
bytecode by hand, and I'd take it. You might
be out of a job soon, buddy.

Excuse me, but that’s quite an ignorant (not
10 mention arrogant) perspective. While it

ts true that—theoretically—you can run any
properly formatted bytecode even if it didn’t
come out of a Java compiler, in practice that's
absurd. A programmer writing bytecode by
hand is like doing your word processing by
writing raw postscript. And [would appreciate

(I rest my case on the humor thing.) But you it if you would not refer to me as “buddy.

stll didn't answer my question, what do you
actually do?

18 chapter 1

The Java Virtual Machine

But some still get through! I can throw Class-
CastExceptions and sometimes I get people
trying to put the wrong type of thing in an
array that was declared to hold something
else, and—

OK. Sure. But what about security? Look at all
the security stuff I do, and you’re like, what,
checking for semicolons? Oooohhh big security
risk! Thank goodness for you!

Whatever. I have to do that same stuff too,
though, just to make sure nobody snuck in
after you and changed the bytecode before
running it.

Oh, you can count on it. Buddy.

dive In A Quick Dip

The Compiler

Remember that Java is a strongly-typed lan-
guage, and that means I can’t allow variables
to hold data of the wrong type. This is a
crucial safety feature, and I'm able to stop the
vast majority of violations before they ever get
to you. And I also—

Excuse me, but I wasn’t done. And yes, there
are some datatype exceptions that can emerge
at runtime, but some of those have to be
allowed to support one of Java’s other impor-
tant features—dynamic binding. At runtime,
a Java program can include new objects that
weren’t even known to the original program-
mer, so I have to allow a certain amount of
flexibility. But my job is to stop anything that
would never—could never—succeed at run-
time. Usually I can tell when something won’t
work, for example, if a programmer acciden-
tally tried to use a Button object as a Socket
connection, I would detect that and thus
protect him from causing harm at runtime.

Excuse me, but I am the first line of defense,
as they say. The datatype violations I previous-
ly described could wreak havoc in a program
if they were allowed to manifest. I am also

the one who prevents access violations, such
as code trying to invoke a private method, or
change a method that — for security reasons

— must never be changed. I stop people from
touching code they’re not meant to see,
including code trying to access another class’
critical data. It would take hours, perhaps days
even, to describe the significance of my work.

Of course, but as I indicated previously, if I
didn’t prevent what amounts to perhaps 99%
of the potential problems, you would grind to
a halt. And it looks like we’re out of time, so
we’ll have to revisit this in a later chat.

you are here » 19

exercise: Code Magnets

Code Magnets

A working Java program is all scrambled up
on the fridge. Can you rearrange the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feet
free to add as many of those as you need!

if {x == 2) {

System.out.print(“b c”);

€lass shuffle) ¢

ubli i 1
Public statjc void main(String {1 args) {

g (x> 2
.print(“a”)i

systemlout

* java Shufflel
a-b c-d

BE the compiler

_ Each of the Java files on this page

§. represents a complete source file.
Your job is to play compiler and
determine whether each of these
files will compile. If they
won't compi]e, how
woald you fix them?

L\

3

A

class Exerciselb {

public static void main(String [) args) {
int x = 1;
while (x < 10) {
if { x> 3) (

Systam.out.println(“big x");

dive In A Quick Dip

public static void main(String [] args) {
int x = 5;
while { x > 1) {
X=x-1;
if (x<3) {

System.out.println(“small x*);

(&

class Exerciselb {
int x = 5;
while { x > 1) {
x=x=-1;
if (x<3) {

System,out.println(*small x*);

you are here » 21

puzzle: crossword

22

JovaCress 7.0

Let’s give your right brain something to do.

It's your standard crossword, but almost all
of the solution words are from chapter 1. Just
to keep you awake, we also threw in a few
(non-Java) words from the high-tech world.

Across

4. Command-line invoker

6. Back again?

8. Can't go both ways

9. Acronym for your laptop’s power
12. number variable type

13. Acranym for a chip

14. Say something

18. Quite a crew of characters

19. Announce a new class or method

21. What’s a prompt good for?

chapter 1

1 2 3
4 5 [
7
8 }5;10 1"
ne
13
na H e |
17
e i
[
"L
N
Down
1. Not an integer (or your boat) .
2. Come back empty-handed

3. Open house

5. Things’ holders

7. Until attitudes improve
10. Source code consumer
11. Gan't pin it down

13. Dept.of LAN jockeys
15. Shocking modifier

16. Just gotta have one

17. How to get things done

20. Bytecode consumer

Mixed
Messages

makth each

und‘w wrl’.)\

of the

A short Java program is listed below. One block of the program

is missing. Your challenge is to match the candidate block of
code (on the left), with the output that you'd see if the block
were inserted. Not all the lines of output will be used, and some
of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching
command-line output. (The answers are at the end of the chapter).

class Test {
public static void main(String [] args) {
int x = 0;
int y = 0;
while (x < 5) {

System.out.print(x + ““ + y +% %),
x = x + 1;

gossible owbp«

Candidates: Possible output:

{/

dive In A Quick Dip

ﬁéhdida{x
5“‘ hf.‘c COd‘

you are here »

23

puzzie: Pool Puzzle

o] Puzzle

Your job is to take code snippets from the
pool and place them into the blank

D lines in the code. You may not use the
same snippet more than once, and
you won't need to use all the snip-
pets. Your goaf is to make a class that
will compile and run and produce the
output listed. Don't be fooled—this one’s
harder than it looks.

Output

Flla £din Wingow Halp
%java PoolPuzzleOne
a noise

annoys

an oyster

Note: Each snippat
from the pool can be
used only oncel

System.out.print(*n);
System,out,print("an“);--

24 chapter1

> X<4 X=X%+2; System.out.print{"noys“);
System.out.print(* ”); X=x-2 System.out.print{*oise “);
System.out.print(“a”); x=x-1;

class PoolPuzzleOne {

public statiec void main(String [] args) (
int x = 0;

while () |

if (x< 1) {

}

if ()

}
if (x ==1) {

it (A

)

System.out.println(““);

System.out.print(* oyster”);
System.out.print{“annoys”);
System.out.print(“noise”);

dive In A Quick Dip

A class Exerciselb {
public static void main(String [] args) {

E - Soluﬁons it x = 1;

while (x < 10) {

X=x+1;
A iAf (x> 3) { ‘
System.out.println(“big x");
Code Magnefs: y
slz2ss Shufflel { ' Lo .
public static void main(String () args) { } This will compile and run (no output), but
} without a line added to the progrem, it
int x = 3; would run forever in an infinite ‘while’ loop!
while (x > 0) {
if (x> 2) {
System.out.print(“a”); class FOO{
} public static void main(String [] args) {
X =x - 1; int x = 5;
System.out.print(“-"); while { x> 1) {
Xx=x-1;
if(x==2)(B if(x<3){
) System.out.print(*b c”); Syatem.out.println(“small x”);
}
if (x == 1) { } This file won't compile without o
System.out.print(“d”); } class declaration, and don't fo"mf
X =x-1; , } the matching curly brace !

} \
} \
3
class Exerciselb {
public static void main(String []args) {
int x = §;
while (x> 1) {

- java Shufflel

a-b c-d
X %X - 1;

C if ((x < 3) (¢
System.out.println{*smal} x~);

) The ‘while’ loop code must be in-
} side a method. It can't just be
) hanging out inside the class.

you are here » 25

puzzle answers

class PoolPuzzleOne {

26

public static void main(String (] args) {

int x = 0;
while (X <« 4) ¢

System.out.print("a™);

if (x< 1) {
System.out.print(")

}

System.out . print('n"™);

if (X>1) {

System.out. print(" oyster”):

X=X+2;

)
if ((x == 1) {

System.out.print("noys”);
}
Af (X<l Yy {
System.out.print(oise™);

}
System.out.println(**);

= «1:
X X %“java PoolPuzzleOne
} 4 noise
anncys
an ayster
chapter 1

'Flfv P
AV A Liolo|p v
R wi |ol |1 7 |8
RIA[N[C |H Al (ol |V L
A IINIT 0 A I
y L ml (Rl [Te
Slyls|TIEMOIUITIPIRIIINITI
T A I A
A I L 8 ;
"sITR|I|N|6| ['D|E|c|L|A|R]E
I R E T
c J H
Vv o)
"clo/M M| AN|ID
class Test |
public static veoid main(String [] args) (
int % = 0;
int y = 0;
while (x <« 5) {
System.out.print(x + “™ + y +7 M),
X =% + 1;
}
)
}

Candidates:

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

2 classes and objects

A Trip to Objectville

We're going to
Objectvillel We're
leaving this dusty ol’
procedural town for good.
T'll send you a postcard.

| was told there would be objects. in chapter 1, we put all of our code in the
main() method. That’s not exactly object-oriented. In fact, that's not object-oriented at all. Well,
we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn't actually
develop any of our own object types. So now we've got to leave that procedural world behind,
get the heck out of main(), and start making some objects of our own. We'll look at what makes
object-oriented (OO) development in Java so much fun. We'll look at the difference between

a class and an object. We'll look at how objects can give you a better life (at least the program-
ming part of your life. Not much we can do about your fashion sense). Warning: once you get

to Objectville, you might never go back. Send us a postcard.

this is a new chapter 27

once upon a time in Objectville

Chair Wars

(or How Objects Can Change Your Life)
the spec

nce upon a time in a software shop, two
programmers were given the same spec and told to z
“build it”. The Really Annoying Project Manager
forced the two coders to compete,
by promising that whoever delivers
first gets one of those cool Aeron™
chairs all the Silicon Valley guys have.
Larry, the procedural programmer, and
Brad, the OO guy, both knew this would
be a piece of cake.

Larry, sitting in his cube, thought to
himself, “What are the things this program
has to do? What procedures do we need?”.
And he answered himself , “rotate and
playSound.” So off he went to build the
procedures. After all, what is a program if not
a pile of procedures?

Brad, meanwhile, kicked back at the cafe
and thought to himself, “What are the things
in this program... who are the key players?” He

first thought of The Shapes. Of course, there

were other objects he thought of like the User, the Sound,
and the Clicking event. But he already had a library of code
for those pieces, so he focused on building Shapes. Read

on to see how Brad and Lar.ry built t}.lelr programs, and the chair
for the answer to your burning question, “So, who got the % N
Aeron?”
04 4
Inlarry’s cube At Brad’s laptop at the cafe
As he had done a gazillion times before, Larry Brad wrote a class for each of the three shapes
set about writing his Important Procedures. —
He wrote rotate and playSound in no time.
rotate (shapeNum) { rotate() { l Circle
I code to rotate a sf
// make the shape rotate 360° } rotate() { Triangle
} 1/ code to rotate a g
playSound() { } rotate() {
playSound (shapeNum) { I/ code to play the A Il code to rotate a triangle
. |l for a square playSound() { 1
// use shapeNum to lookup which } 1l code to play the f
// AIF sound to play, and play it Il for a circle playSound() {
} Il code to play the AIF file
} /I for a triangle

28

classes objects
Larry thought he’d nailed it. He could almost feel the rolled
steel of the Aeron beneath his...
But wait! There’s been a spec change.
“OK, technically you were first, Larry,” said the Manager, “but we have to add just one
tiny thing to the program. It’ll be no problem for crack programmers like you two.”
“If I had a dime for every time I've heard that one”, thought Larry, knowing that spec-
change-no-problem was a fantasy. “And yet Brad looks strangely serene. What's up with
that?” Still, Larry held tight to his core belief that the OO way, while cute, was just
slow. And that if you wanted to change his mind, you’d have to pry it from his cold,
dead, carpal-tunnelled hands.
— what got added to the spec
Back in Larry’s cube At Brad’s laptop at the beach
The rotate procedure would still work; the code used Brad smiled, sipped his margarita, and wrote one
a lookup table to match a shapeNum to an actual new class. Sometimes the thing he loved most
shape graphic. But playSound would have to change. about OO was that he didn’t have to touch code
And what the heck is a .hif file? he’d already tested and delivered. “Flexibility,
playSound (shapeNum) { extensibility,...” he mused, reflecting on the
// if the shape is not an amoeba, benefits of OO.
// use shapeNum to lookup which Amoeba
// AIF sound to play, and play it rotate() {
// else Il code to rotate an amoeba
// play amoeba .hif sound }
! playSound() {

It turned out not to be such a big deal, but it still Il code to play the new
made him queasy to touch previously-tested code. Of I/ hif file for an amoeba
all people, he should know that no matter what the }
project manager says, the spec always changes.

29

once upon a time in Objectville

Larry snuck in just moments ahead of Brad.

(Hah! So much for that foofy OO nonsense). But the smirk on Larry’s face melted when the

Really Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not

how the amoeba is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:
1) determine the rectangle that surrounds the shape /O\
2) calculate the center of that rectangle, and rotate the shape around that point. L)

But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I'm toast.” thought Larry, visualizing charred Wonderbread™. “Although, hmmmm. I could

just add another if/else to the rotate procedure, and then just hard-code the rotation point

code for the amoeba. That probably won’t break anything.” But the little voice at the back of
his head said, “Big Mistake. Do you honestly think the spec won’t change again?”

What the spec conveniently
forgot to mention

Back in Larry’s cube At Brad’s laptop on his lawn
He figured he better add rotation point arguments chair at The Telluride Bergfass FQSTival

to the rotate procedure. A lot of code was affected.
Testing, recompiling, the whole nine yards all over
again. Things that used to work, didn’t.

Without missing a beat, Brad modified the rotate
method, but only in the Amoeba class. He never

touched the tested, working,
rotate (shapeNum, xPt, yPt) { compiled code for the other Amoeba

// if the shape is not an amoeba, parts of the program. To int xPoint
give the Amoeba a rota- | intyPoint

tion point, he added an rotate() {
attribute that all Amoebas| // code to rotate an amoeba

// calculate the center point

// based on a rectangle,

// then rotate would have. He modi- Il using amoeba’s x and y
// else fied, tested, and delivered }

// use the xPt and yPt as (wirelessly) the revised playSound() {

// the rotation point offset program during a single I cgdg {0 play the new

// and then rotate Bela Fleck set. ;/ hif file for an amoeba

30

classes and objects

So, Brad the 00 guy got the chair, right?

Not so fast. Larry found a flaw in Brad’s approach. And,
since he was sure that if he got the chair he’d also get Lucy
in accounting, he had to turn this thing around.

LARRY: You've got duplicated code! The rotate
procedure is in all four Shape things.

BRAD: It’s a method, not a procedure. And they’re classes,
not things.

LARRY: Whatever. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Larry.

o

What Larry wanted .’
(figured the chair would impress her)

L

Square Circle Triangle Amoeba I looked at what all four
rotate() rotate() rotate() rotate() clas ses havg in comwon.
playSound() playSound() playSound() playSound() Z
They’re Shapes, and they all rotate and Shape
playSound. Solabstracted out the otate() 6
comwmon features and put thewm into a playSound()
new class called Shape. — shape | Thenllinked the other
four shape classes to
superclass sngy | the new%hape class,
in a relationship called

3 inheritance.
You can read this as, “Square inherits from Shape”, : ﬂ :Z

“Circle inherits from Shape”, and so on. | removed subelasses
rotate() and playSound() from the other shapes, so now / \
there’s only one copy to maintain.

Square Circle Triangle Amoeba

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

you are here » 31

once upon a time in Objectville

What about the Amoeba rotate()?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

BRAD: Method.

LARRY: Whatever. How can amoeba do something different if

it “inherits” its functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the

methods of the Shape class. Then at runtime, the JVM knows exactly

which rotate() method to run when someone tells the Amoeba to rotate.

superclass Shape
(wmore abstract)

rotate()
x playSoundy()

subclasses
(more specific)

\ Square Circle Triangle

Amoeba

rotate() {
/I amoeba-specific
I/ rotate code }

LARRY: How do you “tell” an Amoeba to
do something? Don’t you have to call the
procedure, sorry—method, and then tell it
which thing to rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate,
the program code invokes (calls) the rotate()
method on the triangle object. The rest of the
program really doesn’t know or care how the
triangle does it. And when you need to add
something new to the program, you just write
a new class for the new object type, so the new
objects will have their own behavior.

32

playSound() {
/I amoeba-specific
/I sound code }

T know how a Shape is
supposed to behave. Your
job is to tell me what to
do, and my job is to make it happen.
Don't you worry your little program-
mer head about how I do it.

| made the Awmoeba class override
the rotate() and playSound()
wethods of the superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

Overriding methods
& ‘

T can take
care of myself.
T know how an Amoeba
is supposed fo rotate

and play a sound.

The suspense is killing we.
Who got the ¢hair?

Amy from the second floor.

Manager had given the spec to
three programmers.)

What do you like about 007

"It helps me design in a more natural way. Things
have a way of evolving.”
-Joy, 27, software architect

“Not messing around with code I've already
tested, just to add a new feature."
-Brad, 32, programmer

“T like that the data and the methods that oper-
ate on that data are together in one class.”
-Josh, 22, beer drinker

“Reusing code in other applications. When I write
a new class, I can make it flexible enough to be
used in something new, later.”

-Chris, 39, project manager

T can't believe Chris just said that. He hasn't
written a line of code in 5 years."

-Daryl, 44, works for Chris

“Besides the chair?"
-Amy, 34, programmer

{unbeknownst to all, the Project

classes objects

.@y RALN
ToawEeEwR
Time to pump some neurons.

You just read a story bout a procedural
programmer going head-to-head with an OO
programmer.You got a quick overview of some
key OO concepts including classes, methods, and
attributes. We'll spend the rest of the chapter
looking at classes and objects (we'll return to
inheritance and overriding in later chapters).

Based on what you've seen so far (and what you
may know from a previous OO language you've
worked with), take a moment to think about
these questions:

What are the fundamental things you need to
think about when you design a Java class? What
are the questions you need to ask yourself?

If you could design a checklist to use when
you're designing a class, what would be on the
checklist?

metacognitive tip

If you're stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates

a different part of your brain. Although it

works best if you have another person to

discuss it with, pets work too. That's how
our dog learned polymorphism.

33

thinking about objects

When you design a class, think about the objects that
will be created from that class type. Think about:

B things the object knows
B things the object does

ShoppingCart Button
cartContents knows I(?:lilr knows
setColor()
addToCart() does setLabel() does
removeFromCart() dePress()
checkOut() unDepress()
Things an object knows about itself are called
W instance variables instance
variables
(state)
Things an object can do are called methods
(behavior)

B methods

Things an object knows about itself are called instance
variables. They represent an object’s state (the data), and
can have unique values for each object of that type.

Think of instance as another way of saying object.

Things an object can do are called methods. When you
design a class, you think about the data an object will need
to know about itself, and you also design the methods

that operate on that data. It’s common for an object to
have methods that read or write the values of the instance
variables. For example, Alarm objects have an instance
variable to hold the alarmTime, and two methods for
getting and setting the alarmTime.

So objects have instance variables and methods, but those
instance variables and methods are designed as part of the
class.

34

@ harpen our pencil
S y

Fill in what a television object
might need to know and do.

Alarm
alarmTime
alarmMode k"ows
setAlarmTime()
getAlarmTime() | d0@$
isAlarmSet()
snooze()
Song
title
e knows
setTitle()
setArtist() does
play()

Television

instance
variables

methods

classes objects

What’s the difference between
a class and an object?

one class

wany objects

A class is not an object.
(but it’s used to construet them)

A class is a blueprint for an object. It tells the
virtual machine how to make an object of that
particular type. Each object made from that
class can have its own values for the
instance variables of that class. For
example, you might use the Button
class to make dozens of different
buttons, and each button might have
its own color, size, shape, label, and so on.

elass

Look at it this wav...

| Nome Polly Morfism

Phone _555-0243
eMail prw@wickedlysmart

An object is like one entry in your address book.

One analogy for objects is a packet of unused Rolodex™ cards.
Each card has the same blank fields (the instance variables). When
you fill out a card you are creating an instance (object), and the
entries you make on that card represent its state.

The methods of the class are the things you do to a particular card;
getName(), changeName(), setName() could all be methods for
class Rolodex.

So, each card can do the same things (getName(), changeName(),
etc.), but each card knows things unique to that particular card.

35

making objects

Making your first object

So what does it take to create and use an object? You need two classes. One

class for the type of object you want to use (Dog, AlarmClock, Television, The Dot Operator (.)
etc.) and another class to fest your new class. The fester class is where you put

the main method, and in that main() method you create and access objects The dot operator (.) gives

of your new class type. The tester class has only one job: to try out the meth- you access to an object’s
ods and variables of your new object class type. state and behavior (instance

variables and methods).

From this point forward in the book, you’ll see two classes in many of
our examples. One will be the real class — the class whose objects we
really want to use, and the other class will be the fester class, which we
call <whateverYourClassNamels> TestDrive. For example, if we make a Dog d = new Dog();
Bungee class, we’ll need a BungeeTestDrive class as well. Only the
<someClassName>TestDrive class will have a main () method, and its sole
purpose is to create objects of your new type (the not-the-tester class), and
then use the dot operator (.) to access the methods and variables of the new
objects. This will all be made stunningly clear by the following examples.

d.bark();
o Write your class
class Dog { .
ms{za"CC Variab)es . DOG d.size = 40;
int size; size
String breed; breed
String name; a mek hame
method bark()
void bark() { &
System.out.println (“Ruff! Ruff!”);
}
} e Write a tester (TestDrive) class
Jc\\od class DogTestDrive {
an public static void main (String[] args) {
wt 3™ y, tode
i ‘50““3 v J(‘S‘V-Y) // Dog test code goes here
e ~
(we & TN }
}
In your tester, make an object and access
the object’s variables and methods
class DogTestDrive {
public static void main (String[] args) {
Dog d = new Dog(); €&— make 3 D°3 °ch£{;
d.size = 40;
- use the dot operator ()
do d.bark() ; to set the size of
(xa\;ov — ze the D°5 If you already have some OO savvy,
o} } and 4o ¢3)| its bark() you'll know we're not using encapsulation.
} "\Cﬂ)od We'll get there in chapter 4.
36

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Making and testing Movie objects

class Movie {

String title;
String genre;
int rating;

void playIt() {

classes and objects

System.out.println(“Playing the movie”) ;

public class MovieTestDrive {

public static void main(String[] args) {

Movie one = new Movie() ;
“Gone with the Stock”;
one.genre = “Tragic”;

one.title

one.rating =

Movie two = new Movie() ;

-2;

two.title = “Lost in Cubicle Space”;

two.genre = “Comedy”;

two.rating =
two.playIt();

Movie three =
three.title =

5;

new Movie() ;
“Byte Club”;

three.genre = “Tragic but ultimately uplifting”;

three.rating = 127;

}
} 0
@%grpen our_pencil
/] v
title
MOVIE
title object 1 genre
genre rating
rating \
playlt) (" tite
The MovieTestDrive class creates objects (instances) of object 2 genre
the Movie class and uses the dot operator (.) to set the rating
instance variables to a specific value.The MovieTestDrive \
class also invokes (calls) a method on one of the objects.
Fill in the chart to the right with the values the three //tme
objects have at the end of main().
object 3 genre
rating

o

/

you are here »

37

get the heck out of main

Quick! Get out of main!

As long as you’re in main(), you're not really in Objectville. It’s fine for a test
program to run within the main method, but in a true OO application, you
need objects talking to other objects, as opposed to a static main() method
creating and testing objects.

The two uses of main:
B to test your real class
B to launch/start your Java application

A real Java application is nothing but objects talking to other objects. In this
case, talking means objects calling methods on one another. On the previous
page, and in chapter 4 , we look at using a main() method from a separate
TestDrive class to create and test the methods and variables of another class. In
chapter 6 we look at using a class with a main () method to start the ball rolling
on a real Java application (by making objects and then turning those objects
loose to interact with other objects, etc.)

As a ‘sneak preview’, though, of how a real Java application might behave,
here’s a little example. Because we’re still at the earliest stages of learning Java,
we’re working with a small toolkit, so you’ll find this program a little clunky
and inefficient. You might want to think about what you could do to improve
it, and in later chapters that’s exactly what we’ll do. Don’t worry if some of the
code is confusing; the key point of this example is that objects talk to objects.

The Guessing Game

Summary:

The guessing game involves a‘game’ object and three ‘player’ objects. The game gen-
erates a random number between 0 and 9, and the three player objects try to guess
it. (We didn't say it was a really exciting game.)

Classes:

GuessGame.class Player.class GameLauncher.class

The Logic:
1) The GameLauncher class is where the application starts; it has the main () method.

2) In the main () method, a GuessGame object is created, and its startGame() method
is called.

3) The GuessGame object’s startGame() method is where the entire game plays out.
It creates three players, then “thinks” of a random number (the target for the players
to guess). It then asks each player to guess, checks the result, and either prints out
information about the winning player(s) or asks them to guess again.

38

GameLauncher
Makes
6“6&‘3 :'h
ob; e
main(String[] args)l< - ée#e‘?f and
:fa y ,‘é fo
hégdme
GuessGame)
hstape
i 12: ah.ab/ts
p2 orth
startGame()
the
Player Ehi ;/:”'ber
3(‘CSsed y er
number é —
guess() met),
& — maklh;j 'Fok
3“@&;

classes and objects

public class GuessGame { 6“65568mc has

three instance

Player pl; variables £
Player p2; — objects or the three Player
Player p3;
pUbiiC void itartf?me 0 { treate three Player objeets
= P H .
b2 - now Player () {\ .a“g‘ them to the Jchr‘e)e Pla;::j
p3 = new Player(); Ihstante variables

int guesspl =
int guessp2
int guessp3

detlare three variables {o hold ¢
h
three guesses the Playcrs m:kc :

0;
0; 6"'
0;

boolean plisRight = false; .

boolean p2icRight — falsor e— dciilarbc three vaviables {:? hold a true or

boolean p3isRight = false; alse based on the Pla\/ﬂ's answev

int targetNumber = (int) (Math.random() * 10); makc a "{‘,&rgc{:’ hthcr 'H\&‘E
System.out.println(“I’m thinking of a number between 0 and 9...”); P'a)’CV‘S have ‘{:o guess

while (true) {
System.out.println (“Number to guess is “ + targetNumber) ;

pl.guess();)

2. quess () 5 é——\ eall each Fla\/crs sucsso method
p3.guess () ;

guesspl = pl.number;

System.out.println (“Player one guessed “ + guesspl);

guessp?2 p2.number;
System.out.println (“Player two guessed “ + guessp2);

9et each player’s quess (he result of Lheir
guess() method vunning) b aceessing the
number variable of eath p ayer

guessp3 p3.number;
System.out.println (“Player three guessed “ + guessp3);

if (guesspl == targetNumber) ({
plisRight = true;)
} g““k each player’s {Tacss to see if it matehes
if (guessp2 == targetNumber) { e tar et number. F a Pb er is ﬁsh{,
p2isRight = true; then sef that player’s variallc to be true
} (remember, we set it £alse by default)
if (guessp3 == targetNumber) {
p3isRight = true;
}
if .
if (plisRight || p2isRight || p3isRight) ((1 P'ar" one OR player two OR Player three is right..
he |l operator means OR)
System.out.println (“We have a winner!”);
System.out.println(“Player one got it right? “ + plisRight);
System.out.println(“Player two got it right? “ + p2isRight);
System.out.println(“Player three got it right? “ + p3isRight);
System.out.println (“Game is over.”);
break;
1 otherw; .
} else { P’a - '.SFC' s{:ay in the loo
.) . yers for anoth P and ask th
System.out.println(“Players will have to try again.”); €r quess. c

you are here »

the

39

Guessing Game

Running the Guessing Game

public class Player {

int number = 0; // where the guess goes
public void guess() {
number = (int) (Math.random() * 10);

w

System.out.println(“I’m guessing
+ number) ;

public class GameLauncher {
public static void main
GuessGame game =
game.startGame () ;

(String[] args) {
new GuessGame () ;

‘il
¢ _gi Each time an object is created
in Java, it goes into an area of
memory known as The Heap.
All objects—no matter when, where,
or how they're created - live on the
heap.But it's not just any old memory
heap; the Java heap is actually called the
Garbage-Collectible Heap. When you
create an object, Java allocates memory
space on the heap according to how
much that particular object needs. An
object with, say, 15 instance variables,
will probably need more space than an
object with only two instance variables.
But what happens when you need to
reclaim that space? How do you get an
object out of the heap when you're done
with it? Java manages that memory
for you! When the JVM can ‘see’ that an
object can never be used again, that
object becomes eligible for garbage
collection. And if you're running low on
memory, the Garbage Collector will run,
throw out the unreachable objects, and
free up the space, so that the space can
be reused. In later chapters you'll learn
more about how this works.

40 chapter 2

Output (it will be different each time you run it)

File Edit Window Help Explode

% java GameLauncher

I'm thinking of a number between 0 and 9...
Number to guess is 7

I'm guessing 1

I'm guessing 9

I'm guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9

Players will have to try again.
Number to guess is 7

I'm guessing 3

I'm guessing 0

I'm guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9

Players will have to try again.
Number to guess is 7

I'm guessing 7

I'm guessing 5

I'm guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player one got it right? true

Player two got it right? false

Player three got it right? false

Game is over.

therejare no
Dumb Questions

Q: What if | need global
variables and methods? How
do I do that if everything has to
goin aclass?

A: There isn't a concept of
‘global’ variables and methods in
a Java OO program. In practical
use, however, there are times
when you want a method (or

a constant) to be available

to any code running in any
part of your program.Think

of the random () method in
the Phrase-O-Matic app;it's a
method that should be callable
from anywhere. Or what about
a constant like pi? You'll learn
in chapter 10 that marking
amethod aspublic and
static makes it behave much
like a‘global’ Any code, in any
class of your application, can
access a public static method.
And if you mark a variable as
public,static,andfinal

- you have essentially made a
globally-available constant.

Q: Then how is this object-
oriented if you can still make
global functions and global
data?

A: First of all, everything

in Java goes in a class. So the
constant for pi and the method
for random (), although both
public and static, are defined
within the Math class. And you
must keep in mind that these
static (global-like) things are the
exception rather than the rule

in Java.They represent a very
special case, where you don’t
have multiple instances/objects.

Q: What is a Java program?
What do you actually deliver?

A: A Java program is a pile
of classes (or at least one class).
In a Java application, one of

the classes must have a main
method, used to start-up the
program.So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end-user doesn’t
have a JVM, then you'll also
need to include that with

your application’s classes,

so that they can run your
program.There are a number

of installer programs that

let you bundle your classes

with a variety of JVM'’s (say, for
different platforms), and put it all
on a CD-ROM.Then the end-user
can install the correct version of
the JVM (assuming they don’t
already have it on their machine.)

Q,i What if | have a hundred
classes? Or a thousand? Isn’t
that a big pain to deliver

all those individual files?

Can | bundle them into one
Application Thing?

A: Yes, it would be a big

pain to deliver a huge bunch of
individual files to your end-users,
but you won't have to.You can
put all of your application files
into a Java Archive - a .jar file -
that’s based on the pkzip format.
In the jar file, you can include

a simple text file formatted as
something called a manifest, that
defines which class in that jar
holds the main() method that
should run.

classes

Java is
dss

by Value

W.
Caa{:h

wai{:() b/
no'l:if)’o
A class jg like 5 recipe

Objects are [;
I
Cookies, i

> &
a6 B
e o\

otoiate Chip Cookies
1, et 2048 dhiogotate GipS
el = $

objects

—— BULLET POIN& —

= Object-oriented programming lets you extend
a program without having to touch previously-
tested, working code.

= All Java code is defined in a class.

= Aclass describes how to make an object of
that class type. A class is like a blueprint.

= An object can take care of itself; you don’t
have to know or care how the object does it.

= An object knows things and does things.

= Things an object knows about itself are called
instance variables. They represent the state
of an object.

= Things an object does are called methods.
They represent the behavior of an object.

= When you create a class, you may also want
to create a separate test class which you'll
use to create objects of your new class type.

= Aclass can inherit instance variables and
methods from a more abstract superclass.

= Atruntime, a Java program is nothing more
than objects ‘talking’ to other objects.

41

exercise: Be the Compiler

BE the compiler

77 '_ Each of the Java files on this page
\ represents a complete source file.

Your job is to play compiler and
determine whether each of
these files will compile.
If they won’t compile,
how would you fix them,

and if they do compile,
what would be their output?

A

class TapeDeck {

boolean canRecord = false; B
class DVDPlayer {
void playTape () {

System.out.println(“tape playing”); boolean canRecord = false;

void recordDVD () {

void recordTape() { System.out.println(“DVD recording”);
System.out.println(“tape recording”); }

class DVDPlayerTestDrive {

class TapeDeckTestDrive ({ public static void main(String [] args) {
public static void main(String [] args) {

DVDPlayer d = new DVDPlayer();

t.canRecord = true; d.canRecord = true;

t.playTape(); d.playDVD();

if (t.canRecord == true) { if (d.canRecord == true) {
t.recordTape(); d.recordDVD() ;

42 chapter2

Code Magnets

A Java program is all scrambled up on
the fridge. Can you reconstruct the
code snippets to make a working Java
program that produces the output listed
below? Some of the curly braces fell on
the floor and they were too small to pick
up, so feel free to add as many of those
as you need.

File Edit Window Help Dance
% java DrumKitTestDrive
bang bang ba-bang

ding ding da-ding

void playTopHat

classes and objects

d.playSnare () ;

DrumKit d = new DrumKit ();

at = true;

poolean topH

boolean snare = true;

void playSnare() {

System.out.println(“bang bang ba-bang”) ;

public static void main(String [] args) {

d.snare = false;

class DrumKitTestDrive {

class DrumKit {

() 1
System.out.println(

ding ding da‘ding”) .
4

43

you are here »

puzzle: Pool Puzzle

public class EchoTestDrive {
public static void main(String [] args) {
Echo el = new Echo();

P©©I PUZZIe int x = 0;

Your job is to take code snippets from while (-
the pool and place them into the

blank lines in the code. You may el.hello();
use the same snippet more than
once, and you won't need to use o)
all the snippets.Your goal is to * -
make classes that will compile and e2.count = e2.count + 1;
run and produce the output listed. }
if) A
Output e2.count = e2.count + el.count;
File Edit Window Help Implode }
%$java EchoTestDrive x =x + 1;

helloooo... }
System.out.println(e2.count);

class {
int = 0;
void {
Bonus Question !)
System.out.println(“helloocoo... “);
If the last line of output was }
24 instead of 10 how would }

you complete the puzzle ?

Note: Each snippet
from the pool can be
used more than once!

Echo
Tester

count x> 1 echo() e2=el;
el=el+1; count() Echo e2;
hello() Echoe2=el;

el =count+ 1;
el.count =count+1;
el.count=el.count+ 1;

__../—_

Echo e2 = new Echo(); x==3

X==4

44 chapter 2

classes objects

A bunch of Java components, in full costume, are playing a party
game,“Who am 1?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one of them, choose all for whom that sentence can
apply. Fill in the blanks next to the sentence with the names of one or
more attendees.The first one’s on us.

Tonight’s attendees:

Class Method Object Instance variable

| am compiled from a .java file. elass

My instance variable values can
be different from my buddy’s
values.

| behave like a template.

| like to do stuff.

| can have many methods.

| represent ‘state’.

| have behaviors.

| am located in objects.

| live on the heap.

| am used to create object instances.

My state can change.

| declare methods.

| can change at runtime.

45

exercise solutions

eRcise

Exercise Solutions

Code Magnets:

class DrumKit

boolean topHat = true;
boolean snare = true;

void playTopHat () {

System.out.println (“ding ding da-ding”);

void playSnare () {
System.out.println (“bang bang ba-bang”);

class DrumKitTestDrive {

public static void main(String [] args) {

DrumKit d = new DrumKit ();
d.playSnare () ;

d.snare = false;
d.playTopHat () ;

if (d.snare == true) {
d.playSnare () ;

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang

ding ding da-ding

46 chapter 2

A

Be the Compiler:

class TapeDeck {
boolean canRecord = false;
void playTape () {
System.out.println(“tape playing”);
}
void recordTape() {
System.out.println(“tape recording”);

class TapeDeckTestDrive {
public static void main(String [] args) {

TapeDeck t = new TapeDeck():
t.canRecord = true;
t.playTape();

if (t.canRecord == true) {
t.recordTape();
}
} We've got the template, now we have
} to make an object !

class DVDPlayer {
boolean canRecord = false;
void recordDVD () {
System.out.println(“DVD recording”);
}
void playDVD () {
System.out.printin(*DVD playing”):

class DVDPlayerTestDrive ({
public static void main(String [] args) {
DVDPlayer d = new DVDPlayer();
d.canRecord = true;
d.playDVD() ;
if (d.canRecord == true) {
d.recordDVD () ;

} The line: d.playDVD(); wouldn't
) compile without a method !

http://www.freepdf-bpoks.com/

http://www.allitebooks.org

Puzz]e Solutions

Pool Puzzle
public class EchoTestDrive {
public static void main(String [] args) {
Echo el = new Echo();
Echo e2 = new Echo(); // the correct answer
- or‘ -

Echo e2 =el; // is the bonus answer!
int x = 0;
while (X<4) {

el.hello();

el.count = el.count + 1;

if ((X==3) {

e2.count = e2.count + 1;
}
if (x>0) ¢

e2.count = e2.count + el.count;

System.out.println(e2.count);

class Echo {
int count = 0;
void hello() ¢

System.out.println (“helloooco... “);

File Edit Window Help Assimilate

% java EchoTestDrive

helloooco. ..
helloooco. ..
helloooo. ..
helloooco. ..
10

classes and objects

Wheo am 1?

| am compiled from a .java file.

My instance variable values can be
different from my buddy’s values.

| behave like a template.

| like to do stuff.

| can have many methods.
| represent ‘state’.

| have behaviors.

| am located in objects.

| live on the heap.

| am used to create object
instances.

My state can change.
| declare methods.

| can change at runtime.

tlass

objeet

elass

objeet, method

tlass, object

instance variable

objeet, elass

method, instante variable

ohyéf

tlass
objc(:l:, instante vaviable
tlass

ob\')cd‘(:, instante vaviable

Note: both classes and objects are said to have state and behavior.
They're defined in the class, but the object is also said to have'
them. Right now, we don't care where they technically live.

you are here » 47

3 primitives and references

Know Your Variables

o i I f\

IV
-

ghUhfnTnopqr5?Um“¢pf?

saucdnf

Deq l'll';l'“li!l‘ and As i ments
A%y i n %

Variables come in two flavors: primitive and reference. sofaryou've
used variables in two places—as object state (instance variables), and as local variables
(variabfes declared within a method). Later, we'll use variables as arguments (values sentto a
method by the calling code), and as return types (values sent back to the caller of the method).
You've seen varlables declared as simple primitive integer values (type int), You've seen
variables declared as something more complex like a String or an array. But there's gotta be
more to life than integers, Strings, and arrays. What if you have a PetOwner object with a Dog
instance variable? Or a Car with an Engine? In this chapter we'll unwrap the mysterles of Java
types and look at what you can declare as a variable, what you can put in a variable, and what you

can do with a variable. And we'll finally see what life Is trufy like on the garbage-collectible heap.

this is a new chapter 49

declaring a variable

Peclaring a variable

Java cares about type. It won't let you do
something bizarre and dangerous like scuff a
Giraffe reference into a Rabbit variable—what
happens when someone tries to ask the so-called
Rabbitto hop ()? And itwon't let you puta
floating point number into an integer variable,
unless you acknowledge to the compiler that you
know you might lose precision (like, everything
after the decimal point).

The compiler can spot most problems:
Rabbit hopper = new Giraffe();
Don't expect that to compile. Thankfully.

For all this type-safety to work, you must declare
the type of your variable. Is it an integer? a Dog?
A single character? Variables come in two flavors:
primitive and object reference. Primitves hold
fundamental values (think: simple bit patterns)
including integers, booleans, and floating point
numbers. Object references hold, well, references
to objects (gee, didn’t that clear it up.)

We'll look at primitives first and then move

on to what an object reference really means.
But regardless of the type, you must follow two
declaration rules:

variables must have a type

Besides a ype, a variable needs a name, 50 that
you can use that name in code.

variables must have a name

int count;
7
type name

Note: When you see a statement Jike: “an object
of type X", think of &peand class as synonyms.
(We’ll refine that a litle more in later chapters.)

50 chapter 3

“I'd like a double mocha, no, make it an int.”

When you think of Java variables, think of cups. Coffee cups, tea cups, giant
‘c=ps that hold lots and lots of beer, those big cups the popcorn comes in at
e movies, cups with curvy, sexy handles, and cups with metallic trim that
fearned can never, ever go in the microwave.

A variable is just a cup. A container. It holds something.

I has a size, and a type. In this chapter, we're going to look first at the
sariables (cups) that hold primitives, then a Jittle later we’ll look at cups

o hold references to objects. Stay with us here on the whole cup analogy—as
s=mple as it is right now, it'l] give us a common way to Jook at things when
 discussion gets more complex. And that’ll happen soon.

Prmitives are like the cups they have at the coffeehouse. If you’ve been to a
garbucks, you know what we're talking about here. They come in different
@es. and each has a name like ‘short’, ‘tall’, and, “I’d like a
gande’ mocha half-caff with extra whipped cream”.

might see the cups displayed on the counter,

2 3ou can order appropriately: U ﬂ

small short tall

grande

— And in Java, primitives come in different sizes, and those sizes

have names. When you declare a variable in Java,
you must declare it with a specific type. The
four containers here are for the four
mteger primitives in Java.

int short byfe

cup holds a value, so for Java primitives, rather than saying, “I'd like a
gl french roast”, you say to the compiler, “I'd like an int variable with the
gmber 90 please.” Except for one tiny difference... in Java you also have to
pee your cup a name. So it's actually, “I'd like an int please, with the value
19486, and name the variable height.” Each primitve variable has a fixed
nber of bits (cup size). The sizes for the six numeric primitives in Java

00U 0l

byte short int long fleat
8 16 32 64 kY] 64

primitives and references

Primitive Types
Type BitDepth Value Range

boolean and char

boolean uvmspedfic) true or false
char 16 bits 0 to 65535

numeric (all are signed)

Integer
byte 8bits -128to 127
short 16 bits -32768 to
32767
int 32 bits -2147483648
| t0 2147483647

| long 64 bits -huge to huge

; floating point

! float 32 bits varies
{ double 64 bits varies

Primitive declarations
with assignments:
int x;
x =234,
byte b = 89;
boolean isFun = true;
double d = 3456,98;
char ¢ =f";
intz=x;
boolean isPunkRock;
isPunkRock = false;
boolean powerOn;
powerOn = isFun;
long big = 3456789;
float f = 32.5£
e
the ‘¥ 5"&” \‘Sv:v:)ﬁ“ks
vn{’}\ a float, w&)\) E\o&b“‘h ?om*. 8

an

a doub\c. wless you W€

you are here » 51

primitive assignment

You really don’t want to spill that...

Be sure the value can fit into the variable.

You can’t put a large value into a
small cap.

Well, OK, you can, but you’ll
lose some. You’ll get, as we say,
spillage. The compiler tries to
help prevent this if it can tell
from your code that something’s
not going to fitin the container
(variable/cup) you're using.

For example, you can’t pour an
int-full of stuff into a bytesized
container, as follows:

int x = 24;
byte b = x;

//won’t work!!

Why doesn’t this work, you ask? After all, the value of x is 24, and 24 is definitely
small enough to fit into a byte. You know that, and we know that, but all the
compiler cares about is that you’re trying to put a big thing into a small thing,
and there’s the possidility of spilling. Don’t expect the compiler to know what the
value of xis, even if you happen to be able to see it literally in your code.

You can assign a value to a variable in one of several ways including:
B type a literal value after the equals sign (x=12, isGood = true, etc.)
B assign the value of one variable to another (x =y)
B use an expression combining the wo (x =y + 43)
In the examples below, the literal values are in bold italics:
int size = 32; declars an int named size, assign it the value 32
char initial = ‘j’;

double d = 456.709;

declare a char named inflial, assign it the value §’

declare a double namad d, assign it the value 456.709
boolean isCrazy; declare a hoolean named /sCrazy (no assignment)
isCrazy = true; assign the value trus to the previously-declared isCrazy

int y = x + 456; declare an int named y, assign it the value that is the sum

of whatever x is now plus 456

52 chapter 3

F@pen your pencil -

The compiler won't let you put
a value from a large cup into

a small one. But what about
the other way—pouring a
small cup into a big one? No
probjem.

Based on what you know
about the size and type of the
primitive variables, see if you
can figure out which of these
are legal and which aren't.
We haven't covered all the
rules yet, so on some of these
you'll have to use your best
judgment. Tip: The compiler
always errs on the side of
safety.

From the following list, Circle
the statements that would be
legal if these lines were in a
single method:

1. int x = 34.5;
2. boolean boo = x:

3. int g = 17;

4. int y g;

5. y=y + 10;

6. short s

7. 8=1y;

B. byte b = 3;
9. byte v = b;

10. shert n = 12;
11. v = n;

12. byte k = 128;

primitives and references

Back away from that keyword!

You know you need a name and a type for your varjables.
‘You already know the primitive types.

Bad what can you use as names? The rules are simple. You
an name a class, method, or variable according to the |

#ollowing rules (the real rules are slightly more flexible,
Bt these will keep you safe):

It must start with a letter, underscore (), or
dollar sign ($). You can’t atart a name with a
aumber.

B After the firat character, you can use humbers as
well. Just don't start it with a number.

B It can be anything you like, subject to those two | £ urry Dogs
rules, just so long as It isn't ona of Java's reserved | . ; you'r'owﬂ: it
| jfyoumake
words. __ ity : | L FD-
are keywords (and other things) that the compiler recognizes. | B- S s

And if you really want to play confuse-acompiler, then just &ry ™
wmsing a reserved word as a name,

[You've already seen some reserved words when we looked at
writing our first main class: do?

No matter what

on'¢ you hear, do not, I repeat,
« -Fc, y s any of 4, do not let me ingest
public statie void U own oy, .. € another large furry dog.
mes.
And the primitive types are reserved as well: / o)
0
boolean char byte short int long float double
But there are a lot more we haven’t discussed yet. Even if you don’t
peed 1o know what they mean, you sdll need to know you can’t use
‘em yourself. Do not—under any circumstances—try to memorize these
mow. To make room for these in your head, you'd probably have to
lose something else. Like where your car is parked. Don’t worry, by
the end of the book you’ll have most of them down cold.
This table reserved.
boolear byte char double float int long short public private
protected | absiradt final nafive stofi strictfp synchronized | fransiem | volatile if
$8 0 while I case efau or req tontinue assert
Bl d hil switch default f break i
dass extends implaments | import Instanceof | interface now packuge super this
catch finally try throw throws return void const goto enum

Java's keywords and other reserved words (In no useful order), If you use these for names, the compller will be very, very upset.

you are here » 53

object references

Controlling your Dog object

You know how to declare a primitive variable and assign it a
value. But now what about non-primitive variables? In other

words, wha! about gbjccts? Dog d = hew Dog();
d.bark();

B There is actually no such thing as an object variable,

M There’s only an object reference variable. think of this

B An object reference variable holds bits that represent a like £hi
way to access an object. iKe 18

H Itdoesn’t hold the object itself, but it holds something
like a pointer. Or an address. Except, in Java we don’t
really know what is instde a reference variable. We do
know that whatever it is, It represents one and only one
object. And the JVM knows how to use the reference to
get to the object.

You can’t stuff an object into a variable. We often think of
it that way... we say things like, “I passed the String to the
System.out.printdn () methoed.” Or, “The method returns a Dog”,
oy, “I put a new Foo object into the variable named myFoo.”

But that's not what happens. There aren’t giant
expandable cups that can grow to the size of any
object. Objects live in one place and one place
only—the garbage collectible heap! (You’ll
learn more about that later in this chapter.)

e, Think of 5 Doy
"l veferente variable as
| 3 Dog remote control
N You use it to get the

' object to do something
(invoke methods).

Although a primidve variable is full of

bits representing the actual value of the
variable, an object reference variable is full
of bits representing a way to get to the
object.

You use the dot operator (.)
on a reference variable to say,
“use the thing before the dot to
get me the thing after the dot.” For
example:

myDog .bark() ;

means, “use the object referenced by the variable myDog to
invoke the bark() method.” When you use the dot operator on
an object reference variable, think of it like pressing a button
on the remote control for that object.

54 chapter3

reference
{bit depth not relevant)

An object reference is just
another variable value.

Something that goes in a cup.
Only this time, the value is a remote control.

byte short int long
816 32 64

Primitive Variable o
#yte x =7; '\ &
The bits representing 7 go 3;;:: e
into the variable. (00000111).
byte
erence Variable

Dog myDog = new Dog() ;

e bits representing a way to get to
‘the Dog object go into the variable.

The Dog object itself does not go into
abe variable!

s don't care how meny 1's and 0's there are in a referance variable.ir's up 10 each
J¥M and Iha phaga of the moon.

primitives and references

The 3 steps of object
declaration, creation and

assignment
1 2
A 3

"~
Dog myDog = new Dog() ;

Declare a reference
variable

Dog myDog = new Dog():

Tells the JVM to allocate space for a
reference variable, and names that
variable myDog. The reference variable
Is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button Dog
or a Socket.

Dog myDog = new Dog()
Tells the JVM to allocate space for a
new Dog object on the heap (we'll
learn a lot more about that process,
especially in chapter 9.)

Dog object

Link the object
and the reference

Dog myDog = new Dog():

Assigns the new Dog to the reference
variable myDaog.In other words,
programs the remote control,

Dog

you are fiere » 55

object references

Dﬂﬁeﬁle lgm(iglesﬁ ons

Q,: How big s a reference
vartable?

A:You don't know. Unless
you're cozy with someone on the
JVM’s development team, you
don’t know how a reference is
represented. There are pointers
In there somewhere, but you
can't access them,You won't
need to. (OK, If you insist, you
might as well just imagine It

to be a 64-bit value.) But when
you're talking about memory
allocation issues, your Big
Concern should be about how
many objects (as opposed to
object references) you're creating,
and how big they (the objects)
really are,

Q: So, does that mean that

all object references are the
same size, regardless of the size
of the actual objects to which
they refer?

A: Yep. All references for a
given JVM will be the same

size regardless of the objects
they reference, but each JVM
might have a different way of
reprasenting references, so
references on one JVM may be
smaller or larger than references
on another JVM.

Q,:Can | do arithmeticon a
reference varlable, increament it,
you know - C stuff?

A: Nape. Say it with me again,
“Java is not C."

58 chapter 3

This week’s interview:
Object Reference

HeadFirst: So, tell us, whar’s life like for an object reference?

Reference: Pretty simple, really. I'm a remote control and I can be programmed to
conurol different objects.

HeadFirst: Do you mean different objects even while you’re running? Like, can you
refer 1o a Dog and then five minuces later refer to a2 Car?

Reference: Of course not. Once 'm declared, that’s it. If I'm a Dog remote control
then Il never be able to point (oops — my bad, we're not supposed to say pownd) I mean refer
to anything but a Dog.

HeadFirst: Does that mean you can refer to only one Dog?

Reference: No. I can be referring to one Dog, and then five minutes later I can refer o
some other Dog Aslong asit’s a Dog, [can be redirected (like reprogramming your remote
to a different TV} to it. Unless... no never mind.

HeadFirst: No, tell me. What were you gonna say?

Reference: I don’t think you want to get into this now, but I'll just give you the short
version —if Pm marked as final, then once I am assigned a Dog, I can never be repro-
grammed to anything else but tka one and only Dog In other words, no other object can
be assigned to me.

HeadFirst: You're right, we don’t want to talk about that now. OK, so unless you’re

final, then you can refer 1o one Dog and then refer 1o a different Dog later. Can you ever
refer to nothing at all? Is it possible to not be programmed to anything?

Reference: Yes, but it disturbs me to talk about it

HeadFirst: Why is that?

Reference: Because it means 'm null, and that’s upsetting to me.
HeadFirst: You mear, because then you have no value?

Reference: Oh, null isa value. I'm still a remote control, but it’s like you brought
home a new universal remote contro) and you dor’t have a TV. 'm not programmed to
control anything: They can press my buttons all day long, but nothing good happens. 1
just feel s0... useless. A waste of bits. Granted, not that many bits, but sull. And that’s not
the worst part. If T am the only reference to a particular object, and then I'm set to null
(deprogrammed), it means that now nobody can get to that object I had been referring to.

HeadFirst: And that’s bad because. ..

Reference: You have to ask? Here I've developed a relationship with this object, an
intmate connecdon, and then the ge is suddenly, cruelly, severed. And I wilt never see
that object again, because now it's eligible for (producer, cue.tragic music) garbage collection.
Sniff. But do you think programmers ever consider #iaf® Snif. Why, why can’t I be a primi-
uve? I hate being a reference. The responsibility, all the broken attachments...

primitives and references

oy
"

new Book () ;

Book ¢ = new Book () :

are two Book reference

es. Create two new Book
abgects. Assign the Book objects to
= reference variables.

two Book objects are now living

Book d = ¢;

' =clare a new Book reference variable,
her than creating a new, third Book
assign the value of variable c to

like saying,“Take the bits in ¢, make a
sopy of them, and stick that copy into d.”

Be c and d refer to the same
ebject.

{*ﬂn c and d variables hold
two different coples of the
. same value. Two remotes

- programmed to one TV.

Beferences: 3
Objects:2

¢ = b;

Assign the value of variable b to
wariable ¢. By now you know what
this means. The bits inside variable
b are copied, and that new copy Is
stuffed into variable ¢.

Both b and ¢ refer to the
same object.

References: 3
Objects: 2

you are here » 57

objects on the heap

Life and death on the heap

Book b new Book () ;

Bcok ¢ new Book () ;

Declare two Book reference variables.
Create two new Book objects. Assign
the Book objects to the reference
variables.

The two book objects are now living
on the heap.

Active References: 2
Reachable Objects: 2

Book
b=c¢;
. . £~Ths 8 toast N
Assign the value of variable ¢ to variable b,] _olleetor bai
The bits Inside variable ¢ are copied, and &\ \)356

that new copy is stuffed into variable b.
Both variables hold identical values.

Sook obh"é

Both b and c refer to the same
object. Object 1 is abandoned
and eligible for Garbage Collec-
tion (GC).

Active References: 2
Reachable Objects: 1
Abandoned Objects: 1

The first object that b referenced, Object 1,
has no more references. It's unreachable. Book

c = null;

Assign the value null to varlable c.
This makes ¢ a nulf reference, meaning
it doesn't refer to anything, But it's still
a reference variable, and another Book
object can still be assigned to it.

Object 2 stlll has an active
reference (b), and as long
as It does, the object is not
eligible for GC.

Active References: 1
null References: 1
Reachable Objects: 1
Abandoned Objects: 1

68 chapter3

An array is like a tray of cups

Declare an int array variable. An array variable is

a remote control to an array object.

int[] nums;

2/

Create a new int array with a length
of 7, and assign it to the previously-

declared int () variable nums

nums
e Give each element in Yhe array
an int value.
Remember, elements in an iny
array are just int variables.
Y
7_.3 nums [0] = 6;
5 nums[1l] = 19;
3 nums [2] = 44;
A nums [3] = 42;
nums[4] = 10;
nums [5] = 20;
nums[6] = 1;

Java standard library includes
of sophisticated data strucrures
ing maps, trees, and sets
Appendix B), but arrays are
when you just want a quick,
red, efficient list of things.

ys give you fast random

by letting you use an index
ition o get to any element in
array.

y element in an array is just

a2 wariable. In other words, one of
eight primitive variable types
Vs=ink: Large Furry Dog) ora

rays are objects foo

= new int[7];

int int

7 int vaviables

int

int array object (int[])

primitives and references

3

int int i int

Notice that the arvay iself is an object,

even though the 7 elements ave primitives.

reference variable. Anything you
would put in a variable of that type
can be assigned to an array element
of that type. So in an array of type
int (int[]), each element can hold
an int. In a Dog array (Dog[]) each
element can hold... 2 Dog? No,
remember that a reference variable
Jjust holds a reference (a remote
control), not the object itself. So

in a Dog array, each element can
hold a remote control to a Dog. Of
course, we stll have to make the
Dog objects... and you’ll see all that
on the next page.

Be sure 1o notice one key thing

in the picture above - the array is
an object, even though it's an array of
primitives.

Arrays are always objects, whether
they're declared to bold primitives
or object references. But you can
have an array object that's declared
to hold primitive values, In other
words, the array object can have
elements which are primitives, but
the array itself is never a primitive.
Regardless of what the array holds,
the array itself is always an objectl

you are here » 59

an array of objects
Make an array of Dogs

Declare a Dog array variable
bog[] pets;

Create a hew Dog array with

a Jength of 7, and assign it Yo
the previously-declared Dog[]
variable pets

pets = new Dogl[7];

What's missing?

Dogs! We have an array
of Dog references, but no
actual Dog objectsl

09[]

Create new Dog objects, and
assign them to the array
elements,

Remember, elements in a Dog
array are just Dog reference
variables, We still need Dogs!

pets[0] new Dog() ;
petsfl] = new Dog()

Sharpen your pencil —

What Is the current value of
ts[2)?

\\ .

‘ne of the ;

g objects?

68 C 3

primitives and references

Control your Pog

(wlth a reference variable)
Dog fido = new Dog/() ;
fide .name = “Fido”;

We created a Dog object and
used the dot operator on the
reference variable fido to access

the name variable.* '

We can use the fido reference
to get the dog to bark() or
eat() or chaseCat().

fido .bark () ;
fido.chaseCat () ;

What happens if the Dog is in
a Dog array?

We know we can access the Dog's
instance variables and methods using
the dot operator, but on what?

When the Dog is in an array, we don't
have an actual variable name (like
fido). Instead we use array notation and
push the remote control button (dot
operator) on an object at a particular
index (position) in the array:

Dog[] myDogs = new Dog[3]:
myDogs[0] = new Dog()
myDogs[0] .name = “Fido”:
myDogs [0] .bark () ;

*Yos we know we're not dermonstrating encapsulation here, but we're
trying to keap il simple. For now. We'll do ancapsulation in chapter 4.

you are here » 61

using references

class Dog |

String name;

public static void main (String() args) {

// make a Dog obiect and access it
Dog dogl =
dogl.bark();

dogl.name = “Bart”;

new Dog();

// now make a Dog array
Dog(] myDogs = new Dogl[3);
// and put some dogs in it

myDogs (0] = new Dog():

myDogs[1) new Dog () ;

myDogs [2) dogl;

// now accaess the Dogs using the array

// references
myDogs{0) .name = “Fred”;
myDogs{1l).name = “Marge”;

// Hmmmm. .. what 1s myDogs{[2) name?
System.out.print (“last dog’s name is “);

System.out.println (myDogs[2).name);

// now loop through the array

// and tell all dogs to bark

int x = 0;

while (x < myDogs.length)E7——~\\\\\

myDogs (x) .baxrk{); wave vaﬂa\,\g ‘\C"S?;
X =x + 1; 3Wazs ves e h“"‘b“
)
) fj;mca i ThC a3y

public void bark() ¢

System.out.println(name + “ says Ruff!”);

void eat() { }

purlic volid chaseCac () {)

62

chapter 3

A Dog example

Output

File £dit Window Relp Howi

%java Dog

null says Ruff!

last dog’s name is Bart
Fred says Ruff!

Marge says Ruff!

Bart says Ruff!

BULLET POINTS

Variables coms in two flavors: primitive and
reference.

Variables must always be declared with a name

and a type.

A primitive variable value is the bits representing
the valus (5, ‘@', true, 3.1416, etc.).

A reference variable value is the bits
representing a way to get to an object on the
heap.

A reference variable is like a remote control.
Using the dot operator (.) on a reference
variable is like pressing a button on the remote
control to access a method or instance variable.

Areference variable has a value of null when
it is not referencing any object

An array is always an objsct, even if the amray

is declared to hold primitives. There is no such
thing as a primitive amay, only an amray that
holds primitives.

primitives and references

BE the compiler

_ Each of the Java files on this page
5. Tepresents a complete source file.
. Your job i5 fo play compiler and
determine whether each of these files
' will compile. If they won't
compi]e, how wou]d you

fix them?
A B
class Books { class Hobbits {
String title;
String author; String name;

public static void main{String [] args) {

clasg BooksTestDrive {
public static void main(String [] args) { Hobbits {] h = new Hobbits[3);
int z = 03

Books [] myBooks = new Books[3);

int x = 03 while (2 < 4) {
myBooks{0].title = “The Grapes of Java”; z=2+1;
myBooks(1].title = “The Java Gatsby”; h(2z] = new Hobbits();
myBooks[2]).title = “The Java Cookbook”; h{z].name = “bilbo”;
myBooks(0).author = “bab”; if (z == 1} {(
myBooks(1}].author = “sue”; hiz].name = “frodo”;
myBooks|[2].author = *ian”; }
if (z == 2) {
while (x < 3) { h{2).name = “sam”;
System.out.print {myBooks(x).title); }
System.out.print(® by “); System.out.print(h[z).name + * is a *);
System.out.println{myBooks(x].author); System.out.println(“qgood Aobbit name”);
X=x+ 1; }
} }
})

you are here » 63

exercise: Code Magnets

Code Magnets

A working Java program s all scrambled up
on the fridge. Can you reconstruct the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

. ”AZOre ",
lsland8{3] < 8 .

Coz ume) u;

int ref;

while (y < 4) {

System.out.printin(islands{ref));

index{01 = 1

index{l] = 33

ipdex{21 <

index{3] <

String [] islands = new String[4];

System.out.print(“island = “};

He Ed Window Help Biunl

classg TestArrays {

t java TestArrays
island = Fiji

island = Cozumel
island = Bermuda
island = Azores

public static void main(String (1 args)

64 chapter3

primitives and references

' ouse 3 separate

class Triangle { Comekimes W€ dont .
(™) N
double area; L elass, betawse W:)‘ bryind
int height; vt space o the 799

@@I PUZ z]e int length;

public static void main(String [] args) {
Your job is to take code snippets from

the pool and place them into the
blank lines in the code.You may X
use the same snippet more than while () {
once, angd you won't need to use
alt the snippets.Your goal is to
make a class that will compile and
run and produce the output listed. — .length

height (x + 1) * 2;

x + 4;

System,out.print(”triangle “+x+", area”);

Output .
System.out.println(* = * + .area);
Flle Edit Window Hel
%java Triangle)
triangle 0, area
triangle 1, area
e L x = 27;

triangle 2, area .
Triangle t5 = ta[2];

ta(2).area = 343;

triangle 3, area
y‘ -

System.out.print(“y = “ + y);

System.out.println(”, t5 area = “+ t5.area);
Bonus Questionl }

For extra bonus points, use snippets
from the pool to fill in the missing }
output (above). = (height * length) / 2;

void sethrea() {

Note: Each snippet
from the pool can be
used more than oncel

“4, 15 area = 18.0
4, t5area=3430

‘ area ;
27,15 area = 18.0 int x;
ta.area _ Intv. a1
4 tax.area 27,15 area = 343.0 o i. . X=X+ 2, tax

=0; X=xX+2

. ’ ta(x)

y talx].area ta(x) = setArea(); Intx=1; x=x -1 tam)

Triangle [] ta = new Triangle(4); t@X=setAreal); inty=x; 5
| Triangle ta = new [] Triangte(4); ta[x).setArea(); sg0 t@=new Triangle();

30.0 talx]) = new Triangle();

riangle [) ta = new Triangte[4]; .
% ta.x = new Triangle(); €

you are here » 65

puzzle: Heap o' Trouble

A Heap o Trouble

A short Java program is listed to the
right. When'// do stuff'is reached, some
objects and some reference variables
will have been created. Your task is

to determine which of the reference
variables refer to which objects. Not all
the reference varlables will be used, ang
some objects might be referred to more
than once. Draw lines connecting the
reference variables with their matching
objects.

Tip: Unless you're way smarter than us,
you probably need to draw diagrams
like the ones on page S5 and 56 of this
chapter. Use a pencil so you can draw
and then erase reference links (the
arrows going from a reference remote
control to an object).

fevente
steh eath ve .
:\ar\ab\c with matthing

ob)ech(s)
Vou ,.\'\5\\16

use every ¥

Lot have 4o
ebecente.

65

are here»

64 chapter3

class HeapQuiz {
int id = 0;

public static void main(String [] args)

int x = 0;
HeapQuiz (] hg = new HeapQuiz(5]:;
while (x < 3) |
hg[x] = new HeapQuiz();
hg(x].id = x;
Xx =x + 1;
)
hgi3] = hgqll];
hg[4] = hqll};
hq[3] = null;
hg(4] = hg(0];
hq(0] = hq{3];
hgq(3] = hg[2];
hq[2] = hq[0);
// do stuff
}
}
Reference Varlables: HeapQuiz Objects:

hql

hq[2]

1]

hq(3]

hq[4]

primitives and references

The case of the pilfered references

[t was a dark and stormy night. Tawny strolled into the programmers’ bullpen like she
owned the place. She knew that all the programmers would still be hard at work, and she
wanted befp. She needed a new method added to the pivotal class that was to be loaded into the
client’s new top-secret Java-enabled cell phone. Heap space in the cell phone’s memory was
as tight as Tawny’s top, and everyone knew it. The normally raucous buzz in the bullpen fell to
silence as Tawny eased her way to the white board. She sketched a quick overview of the new
method’s functionality and slowly scanned the room. “Well boys, it’s crunch time™, she purred.

o “Whoever creates the most memory efficient version of this method is coming with me to the
FON B’Mlnute client’s launch party on Maui tomorrow... to help me install the new software.”

The next moming Tawny glided into the bullpen wearing her short Aloha dress.
“Gentlemen”, she smiled, “the plane leaves in a few hours, show me what you've

got!”. Bob went first; as he began to sketch his design on the white board Tawny

said, “Let’s get to the point Bob, show me how you handled updating the list of con-
tact objects.” Bob quickly drew a code fragment on the board:

Contact [) ca = new Contact(10);
while (x < 10) { // make 10 contact objects
calx) = new Contact();
x =3+ 1;
¥
// do complicated Contact list updating stuff with ca

“Tawny [know we're tight on memory, but your spec said that we had to be able to access
individual contact information for all ten allowable contacts, this was the best scheme I could
cook up”, said Bob. Kent was next, already imagining coconut cocktails with Tawny, “Bob,”
he said, “your solution’s a bit kludgy don’t you think?" Kent smirked, ‘“Take a look at this
baby’"

Contact refc;
while (x < 10) { // make 10 contact objects
refc = new Contact();
X =x + 1;
}
// do complicated Contact list updating stuff with refc

“] saved a bunch of reference variables worth of memory, Bob-o-rino, so put away your
sunscreen”, mocked Kent. “Not so fast Kent!”, said Tawny, “you’ve saved a little memory, but
Bob’s coming with me.”.

Why did Tawny choose Bob’s method over Kent’s, when Kents used less memory?

you are here » 67

exerclse solutions

bEXBrcise Solutions

Code Magnets:

clags TestArrays {

public static void main(String () args) {

int [] index = new int{d];
index(0} = 1;

index(1) = 3;
index[2]) = 0;
index[3) = 2;

String {] islands = new String[4];

iglandg{0] = “Bermuda”;

iglapds[l] = “Fiji”;

islands{2] = *“Azores”;

islands{3] = *“Cozumel”;

int y = 0;

int ref;

while (y < 4) {
ref = index[y];
System.out.print(“island = *);
System.out.println(islands(ref]);

y =y + 1;

} Flo €A1 Window thelp Blis

¥ java TestArrays
island = Fiji

island = Cozumel
island = Bermuda
island = Azores

68 chapter3

class Books {
String title;
String author;
}

class BooksTestDrive (

public static void main{String [] args) {
Books [] myBooks = new Books[3);

int x = 0;

A myBooks(O] = new Books();

myBooks[1] = new Books();
myBooks[2] = new Books():

Remember: We have to
actually make the Books
objects |

myBooks(0].title = “The Grapes of Java”;
myBooks(1].title = “The Java Gatsby”;
myBooks[2].title = “The Java Cookbook”;
myBooks[0] .author = “bob*;
myBooks(1].author = “sue”;
myBooks(2].author = “ian”;
while (x < 3) {
System.out.print (myBooks(x).title);
System.out.print(” by ”};
System.ont.println({myBooks(x].author);
X=X+ 1;

clags Hobbits {
String name;
public static void main{String (] args) {
Bobbits (] h = new Hobbits{3}:

ntz=-4; Remember: arrays stort with
while (z < 2) { element 0)
z2 =2+ 1;
h[z] = new Hobbits();
B h(z].name = “bilbo”;
if (2 == 1) {

h[z].name = “frodo*;
}
if (z == 2)
h[z].name
}
System.out.print(h(z).name + “ is a “);
System.out.println{“good Hobbit name”);

=

L]

rgam”;

Puzz]e Solutions
&3

class Triangle ({
double area;
int helight;
int lengthy

public static void main(String

}

[1 args) {

int x = O:
Triangle [] ta = new Triangle[4];
while (x < 4) {

}

ta[x] = new Trlangle();
talx].height = (x + 1) * 2;
ta{x].length = x + 4;
talx].setArea);
System.out.print(“triangle
System.out.println(® = # + ta[x].area);
X=x+1;

“+x+', area”);y

inty=x

x = 27;

Triangle t5 = ta(2};
ta[2].area = 343;
Syetem.out.print(”y = “ + y))

8ystem.out.println(“, t5 area = “+ tS5.area);

void setArea() {

areq =

(height * length) / 2;

Fée Ed Windom Halp Bemrads

%java Triangle
triangle 0, area
triangle 1, area
criangle 2, area =

3, area

triangle
y = 4, 15 area = 343

primitives and references

The case of the pilfered references

Tawny could see that Bent’s method had a serious
flaw. It's true that he didn’t use as many reference
variables as Bob, but there was no way to access any
but the last of the Contact objects that his method cre-
ated. With each trip through the loop, he was assign-
ing a new object to the one reference variable, so the
previously referenced object was abandoned on the
heap — unreachable. Without access to nine of the ten
objects created, Kent’s method was useless.

(The software was & huge succass and the dient gave Tawny and Bob an exdra week
in Hawall. Wa'd like to tefl you that by finishing this book you too will gat stufl Iike that.)

feference Variables: HeapQuiz Objects:

69

you are here »

4 methods use instance variables

How Objects Behave

This oughta
change her statel

State affects behavior, behavior affects state. we know that objects
have state and behavior, represented by instance variables and methods. But until now, we
haven't looked at how state and behavior are refated. We already know that each instance of a
class (each object of a particular type) can have its own unique values for its instance variables.
Dog A can have a name “Fido” and a weight of 70 pounds. Dog 8 is *Killer” and welighs 9 pounds.
And If the Dog class has a method makeNoise(), wel), don’t you think a 70-pound dog barks a
bit deeper than the little 9-pounder? (Assuming that annoying yippy sound can be considered
a bark.) Fortunately, that's the whole point of an object—it has behavior that acts on its state. In
other words, methods use Instance varlable values. Like,“if dog Is less than 14 pounds, make

yippy sound, else...” or “increase weight by 57 Let’s go change some state.

this is @ new chapter 71

objects have state and behavior

Remember: a class deseribes what an
object knows and what an object does

A class is the blueprint for an object. When you Sang

write a class, you’re describing how the JVM lnstanee title k

should make an object of that type. You already variables |artist 'KHOWS

know that every object of that type can have (state)

different instance variable values. But what about setTitla()

the methods? wmethods setArtist() does
behavior la

Can every objeet of that type have different (} play(

wethod behavlor?

Well... sort of *

Every instance of a particular class has the same
methods, but the methods can bekave differently
based on the value of the instance variables.

The Song class has two instance variables, fitle
and artist. The play() method plays a song, but
the instance you call play() on will play the song
represented by the vatue of the title instance
variable for that instance. So, if you call the play()
method on one instance you'll hear the song
“Politik”, while another instance plays “Darkstar”.
The method code, however, is the same.

void play() ({
soundPlayer.playSound(title) ;

}
\1(\s \r.s‘u & Song Song

Song t2 = new Song(): \a3 3.play() :

Niny € > 1o 99 s3.play() :
t2.setArtist (“Travis”); c \“‘3 gy 0¥ t2.play() ;
t2.setTitla (“Sing”) ; -
Song 83 = new Song() ; CA”lr.s Flay{) on {'}ns instance
83.setArtist (“Sex Pistols”); will cause MY Way to Pla‘/
83 .setTitle (“My Way”); (but not Lthe Sinadra one)

*Yas, another stunningly clear angwerl

72 chapter 4

size affects the bark

Dog’s bark is different from a big Dog’s bark.

Dog class has an instance variable sizg, that the
i method uses to decide what kind of bark sound

Szring name;

woid bark() {

if (size > 60) |

System.out.println (“Wooof! Wooof!”);
} else if (size > 14) {

System.out.println(“Ruff! Ruff!”);
} else {

System.out.println(“Yip! Yip!'”);

st

ass DogTestDrive |

public static void main (String(] args) f
Dog one = new Dog();
one.slze = 70;
Dog two = new Dog();
two.size = 8;
Dog three = new Dog();

three.size = 35;

Fila Edit Window Help Playdead

% java DogTestDrive

one.bark ()
Wooof! Wooof!

two.bark();

Yip! Yip!
Ruff! Ruff!

three.bark();

methods use instance variables

& Bark Different.

you are here v 73

method parameters

You can send things to a method

Just as you expect from any programming language, you can pass values into
your methods. You might, for example, want to tell a Dog object how many
times to bark by calling:

d.bark(3);

Depending on your programming background and personal preferences,
you might use the term arguments or perhaps parameters for the values passed
into a2 method. Although there are formal computer science distinctions that
people who wear lab coats and who will almost certainly not read this book,
make, we have bigger fish to fry in this book. So you can call them whatever
you like (arguments, donuts, hairballs, etc.) but we're doing it like this:

A method uses parameters. A caller passes arguments.

Arguments are the things you pass into the methods. An argument (a value
like 2, “Foo”, or a reference to a Dog) lands face-down into a... wait for it...
parameter. And a parameter is nothing more than a local variable. A variable
with a type and a name, that can be used inside the body of the method

But here’s the important part: If a method takes a parameter, you must pass
it something. And that something must be a value of the appropriate type.

Dog d = new Dog() ;

Call the bark method on the Dog refer-]
ence, and pass in the value 3 (as the d.bark (3) ;

argument to the method). &_ afsuvr-ChJC

The bits representing the int
e value 3 are delivered into the
bark method.

9 The bits land in the numOfBarks
parameter {an int-sized variable).

Pﬂ"émcfe..

void bark (int numO¥Harks) {

. Use the numOfBarks
while (numOfBarks > 0) ({ parameter as a variable in

System.out.println (“ruff”); the method code.

numOfBarks = numOfBarks - 1;

)

74 chapter4

methods use instance variables

can get things back from a method.

. can return values. Every method is declared with a return
mpe, but untl now we’ve made all of our methods with a void
rn type, which means they don’t give anything back.

ad go() {

Cute...
but not exactly what I
was expecting.

we can declare a method to give a specific type of value
=k to the caller, such as:

giveSecret() {

return 42;

declare a method to return a value, you must
g=urn a value of the declared typel (Or a value

@t is compatible with the declared type. We'll get
peo thar more when we talk about polymorphism
@ chapter 7 and chapter 8.)

Whatever you say
ou’ll give back, you
ter give back!

The tompiler won't let you return the wrong type of thing,
S®
\0\

int theSecret = life.giveSecret() ;

o\
wak2" \ Ky ave v churned from
. . . ting T4 3 n En
int giveSecret() ({ The b“fﬁs‘;gz:“mct\wd, and land in TR
the 5'Ne et
return @ Jariable pamed {'z\‘:_g__‘f_’f__.
} Jd\\S m\&SJC ‘Q‘JC
n an '\ht.

you are here » 75

multiple arguments

You can send more than one thing
to a method

Methods can have multiple parameters. Separate them
with commas when you declare them, and separate the
arguments with commas when you pass them. Most
importantly, if 2 method has parameters, you must pass
arguments of the right type and order.

Calling a two-parametfer method, and sending
i1 two arguments.

void go() {
TestStuff t = naw TestStuff();

t.takeTwo (12, 34); ™
cw‘c ArGuments Yo Pass lang
) in ﬂ?— z'w Passed the,, Fiest " he sme
the ¢ Tirst Parameter, o0, darshe"{ lands
setond Parameter, 3n4 :: drgument ip
on.
void takeTwo (int x, int y) {
int z = x + y;
Systam.out.println(“Total is “ + z);
)
You can pass variables info a method, as long as
the variable type matehes the parameter type. N
void go() foo and \oa¥ \3“'&:’%&} n
int foo = 7; Tne value® oinm S"\::: " {oo (‘h:i)\e
- 3. AN T\ ke e B) el
= 3 . .
int bar = 3; »; ;‘ﬂ ‘dwbc?;ar e m&,cgi’ﬂ ks bav
t . takeTwo (foo, bar); \)*‘?M“ﬂ '\Acﬁ)(l“'a\
} \\ b\b w \I 2
void takaTwo (int x, int y) (- \ os 27 H’-IS the same
3 vl '
int z = x + y; W\\a{:s th’edvac{: $ Jou addCd Qoo.’*
- . " | el yor S'NC ou passed Them "
System.out.println(“Total is ” + z); bav st the Lime Y
) ‘U‘ie ﬂktT“o ™

76 chapter 4

methods use instance variables

Java is pass-by-value.

That means pass-by-copy.

variab

) o Declare an int e and assign it
int x = 7; | the value '7'. The bit pattern for 7
int goes into the variable named x.
’ . @ Declare a method with an int
void go(int z){ } parameter named z.
int
Py of

N N ’—\ Call the go() method, passing
> ’L’god:p e the variable x as the argument.
The bits in x are copied, and
the copy lands in z.
int

int :
foo.go (x) ; void go(int z){ }

X does),’ ver Change the value of z inside
ﬂmo;?, :' dd hange, W 3':2:{; e the method. The value of x
L doesn't change! The argument
-------------- @ passed to the z parameter was
- int only a copy of x.
void go(int 2){ The method can't change the
z =0; bits that were in the calling
variable x.

you are hare » 77

arguments and return values

78

O Ghestions

Q:What happens if the argument you want to
pass is an object instead of a primitive?

A: You'll learn more about this in later chapters,
but you already know the answer. Java passes
everything by value. Everything. But... value means
bits Inside the variable. And remember, you don’t

stuff objects into variables; the variable Is a remote
control—a reference to an obfect. So if you pass a
reference to an object into a method, you're passing
a copy of the remote controf, Stay tuned, though, we'ill
have lots more to say about this.

Q,: Can a method declare muitiple return valuas?
Or Is there soma way to returin more than one
value?

A: Sort of. A method can declare only one return
value.BUT...If you want to return, say, three int values,
then the declared return type can be an int array.
Stuff those ints into the array, and pass it on back. It's
a little more involved to return multiple values with
different types; we'll be talking about that in a later
chapter when we talk about ArrayList.

Q,: Do | have to return the exact type | declared?

A:You can return anything that can be implicitly
promoted to that type.So, you can pass a byte where
an Int is expected. The caller won't care, because the
byte fits Just fine into the Int the caller will use for
assigning the resuit. You must use an expficit cast
when the declared type is smalfer than what you're
trying to return.

Q: Dol have to do something with tha return
value of a method? Can | just ignore it?

A:Java doesn’t require you to acknowledge a
return value. You might want to call a method with

a non-void return type, even though you don't care
about the return value. In this case, you're calling

the method for the work it does inside the method,
rather than for what the method gives returns. In
Java, you don’t have to assign or use the return value,

chapter 4

——— BULLET POINTSQ

Reminder: Java
cares about type!

You can’t return a Giraffe when
the return type Is declared
v)y as a Rabbit. Same thing with
9/7 parameters. You can’t pass a

b Giraffe into a method that
3 takes a Rabbit.

Classes define what an object knows and what an
object does.

Things an object knows are its instance varlables
(state).

Things an object does are its methods (behavior).

Methods can use instance vaniables so that objects
of the same type can behave differently.

A method can have parameters, which means you
can pass one or more values in to the method.

The number and type of values you pass in must
match the order and type of the parameters
declared by the msthod.

Values passed in and out of methods can be
implicitly promoted to a larger type or explicitly cast
to a smaller type.

The value you pass as an argument to a method
can be a Iteral value (2, ‘¢, etc.) or a varniable of
the declared parameter type (for sxample, x where
xis an int variable). (There are other things you
can pass as arguments, but we're not there yet.)

A method must declare a retum type. A void return
type means the method doesn't retum anything.

If a method declares a non-void retumn type, it must
retumn a value compatible with the declared retumn

type.

methods use instance variables

a@s you can do with parameters
)rn types

that we've seen how parameters and returm types work, it's ElectricGuitar
put them to good use: Getters and Setters. If you're into
2l formal about it, you might prefer to call them Accessors brand
siors. But that’s a waste of perfecdy good syllables. numOfPickups
e Getrers and Setters fits the Java naming conventon, so rockStarUseslt
what we'll call them. Noke: Using {—,\\lac
-and Setters let you, well, get and set things. Instance vari- RAMiInd comvention®
miues. usually. A Getter's sole purpose in life is 1o send back, getBrand() eans You i be
smurn value, the value of whatever it is that particular Geaer | setBrand() Lollowing an
posed 1o be Getting. And by now, it’s probably no surprise getNumOfPickups() '...\?orb"{'« Java
emer lives and breathes for the chance to take an argu-) tandavd!
= and use it to sef the value of an instance variable. setNumOfPickups() stan
getRackStarUsesit()
setRockStarUseslt()
@s ElectricGuitar {

=ring brand;
2=t numOfPickups;
Sooclean rockStarUsesIt;

g getBrand() {

return brand;

sid setBrand(String aBrand) {
brand = aBrand;

at getNumOfPickups () (
. return numOfPickups;

woid setNumOfPickups(int num) {
numOfPickups = num;

aan getRockStarUsealIt() {
prn rockStarUseslt;

.- setRockStarUsenlIt(boolean yeaOrNo) {
 zockStarUsesIt = yesOrNo;

you are here » 79

real developers encapsulate

Encapsulation

Do it or risk humiliation and
ridicule.

Until this most important moment, we’ve
been committing one of the worst OO
faux pas (and we're not talking minor
violation like showing up without the ‘B’
in BYOB). No, we're talking Faux Pas with
a capital ‘F’. And 'P".

Our shameful transgression?

Exposing our datal

Here we are, just humming along without
a care in the world leaving our data out
there for anyone to see and even touch.

You may have already experienced that
vaguely unsettling feeling that comes with
leaving your instance variables exposed.

Exposed means reachable with the dot
operator, as in:

theCat.height = 27;

.Think about this idea of using our remote
control to make a direct change to the Cat
object’s size instance variable. In the hands
of the wrong person, a reference variable
(remote control) is quite a2 dangerous
weapon. Because what’s to prevent:

yesh We €27 <

\c& *)(\S \\aWCT\I.

theCat.height = 0;

This would be a Bad Thing, We need to
build setter methods for all the instance
variables, and find a way to force other
code to call the setters rather than access
the data direcdy.

80 chapter 4

Jen says you're
well-encapsulated...

_ ko calt 2 sether
By ‘ﬁ‘?ﬁf;ﬁ& he eat frem

public void setHeight (int ht) {

1f (bt > 9) { “,
height = ht; ‘sf:fain ‘;hcdu
ntee a

: minimum ¢at height.

e the data

s it is that simple to go from
-nplementatxon that’s just
Begging for bad data to one

=2t protects your data and
cts your right to modify
sour implementation later.

WO, s0 how exactly do you
ﬂthe data? With the
smublic and private
acress modifiers. You're
‘&miliar with public-we use
| & with every main method.
.
:&r,e s an encapsulation
‘marter rule of thumb (all stan-
#ard disclaimers about rules
‘of thumb are in effect): mark
; instance vaniables private
md provide public getters
acd setters for access control.
em vou have more design
ad coding savvy i Java, you
probably do things a Jittle
Ferently, but for now, this

“Sadly, Bill forgot to
encapsulate his Cat class and
ended up with a flat cat.”

{overheard at the water cooler).

methods use instance variables

This week’s interview:
An Object gets candid about encapsulation.

HeadFirst: What's the big deal about encapsulaton?

Object: OK, you know that dream where you're giving a talk to 500 people when you
suddenly realize— you’re naked?

HeadFirst: Yeah, we've had that one. It’s right up there with the one about the Pilates
machine and... no, we won’t go there. OK, so you feel naked. But other than being a linde
exposed, is there any danger?

Object: Is there any danger? Is there any dmger? [starts laughing] Hey, did all you other
instances hear that, “Is there any danger?” he asks? [falls on the floor laughing]

HeadFirst: Whav's funny about that? Seems like a reasonable question.

Object: OK, I'll explain it. It’s [bursts out laughing again, uncontrollably]
HeadFirst: Can I get you anything? Water?

Object: Whew! Oh boy. No I'm fine, really. 'll be serious. Deep breath. OK, go on.
HeadFirst: So what does encapsulaton protect you from?

Object: Encapsulaton puts a force-field around my instance variables, so nobody can set
them to, let’s say, something tnappropriate.
HeadFirst: Can you give me an example?

Object: Doesn't take a PhD here. Most instance variable values are coded with centain
assumptions about the boundaries of the values. Like, think of all the things that would

break if negative numbers were allowed. Numnber of bathrooms in an office. Velocity of
an airplane. Birthdays. Barbell weight. Cell phone numbers. Microwave oven power

HeadFirst: I see what you mean. So how does encapsulation let you set boundaries?

Object: By forcing other code to go through setter methods. That way, the setter method
can validate the parameter and decide if i’s do-able. Maybe the method will reject it and
do nothing, or maybe it’ll throw an Excepdon (ke if it’s a null social security number

for a credit card application), or maybe the method will round the parameter sent in to
the nearest acceptable value. The point is, you can do whatever you want in the setter
method, whereas you can’t do ampthang if your instance variables are public.

HeadFirst: But sometimes I see setter methods that simply set the value without check-
ing anything, If you have an instance variable that doesn't have a boundary, doesn’t that
setter method create unnecessary overhead? A performance hit?

Object: The point 1o setters (and getters, too) is that you can change your mind later,
without breaking anybody else’s code! Imagine if’ half the people in your com-

pany used your class with public instance variables, and one day you suddenly realized,
“Oops- there’s something I didn’t plan for with that value, I'm going to have to switch to a
setter method.” You break everyone’s code. The ool thing about encapsulaton is that you
get to change your mind. And nobody gets hurt. The performance gain from using variables
directly is so miniscule and would rarely—if* wer— be worth it

you are here » 81

how objects behave

class GoodDog {

Encapsulating the
GoodPog class

private int size;

MavJ' the ‘-qa‘bt'
Q”A&QLVQ"' public int getSize() {
return size;
}
and . A L
. > public void setSize(int s) {

e e X s pie public void
sa{u‘r ™ size = §;

void bark() |

if (size > 60)

Even {,ho\?h the methods dont veally

add new unebionality, the La?l thing System.out.println (“Wooof! Wooof!”);
is that you tan thange your "“"dk) else if (size > 14) {
later. you tan tome back and make 3 System.out.println (“Ruff! Ruff'!”);
mekhod safer faster, better } else {
System.out.println(“Yip! Yip!”);
}
}
)
class GoodDogTestDrive |
public static veoid main (String(]l args) {

GoodDog one new GoodDog();

one.setSize(70);

GoodDog two new GoodDog () ;
two.setSize (8);
System.out.println (“Dog cne:
System.out.println (“Dog two:
one.bark();

two.bark ()

a2

chapter 4

“ + one.getSize());

“ + two.getSize());

methods use instance variables

How do objects in an array
behave?

|__pt like any other object The only difference is
|._Mw you get to them. In other words, how you get
|-ic remote control. Let’s try calling methods on
Dog objects in an array.

Declare and create a Dog array,
to hold 7 Dog references.

Dog[] pets;
pets = new Dog[7];

Dog(]

e Create two new Dog objects,
" and assign them to the first
two array elements.
pets (0]
pets[1]

new Dog();
new Dog () ;

e Call methods on the two Dog
objects.

pets[0] .setSize (30);
int x = pets[0] .getSize();
pets[l] .setSize(8):

Dog array object (Dog(])

you are here » 83

initializing instance variables

Peclaring and initializing
instance variables

You already know that a variable declaration needs at least a name
and a type:

Instance variables
always get a

int size; default value. If
String name; you don’t explicitly
And you know that you can initalize (assign a value) to the assign a value

variable at the same time:

to an instance
int size = 420; o
String name = “Donny”; variable, or you

don’t call a setter
But when you don't initialize an instance variable, what happens
when you call a getter method? In other words, what is the value of methOd’ the

an instance variable before you initialize it? instance variable
« BEEULETERTETTTY

1abl
class PoorDog { bwo ¥ rskante V2 .
detlace '} pssiop 3 value mtegers 0
private int sirze; if but don
private String name; floating points 0.0
What will these veturm?? NN PEAS false

public int getSize() {{¢&—
) return size; / references null

public String getName () {
return name;

}

}
\L? wilb

public class PoorDogTestDrive (L do Y% \L
?\

public static void main (String[] args) { puen
PoorDog one = new PoorxDog{) (s
System.out.println(“Dog size is “ + one.getSize());
Systam.out.println(“"Dog name is “ + one.getName());,

) . nte qavlablcsx
\(ou don't have to mtialize hz&:‘,\{; olue. Numch

becse 00 A \‘3“)3 df: 0, boa\za'«s gc{: false,
¢ Java Pooxboglestbrive rimitves (lnt.\ud\ng thar 151
! 4 doiect ve {evente vaviables 5 ot
e 1| just means 3 rcmo{:z con{'xo\ 3
o

membeY, J thing:
Dog name is null (.f:..ficconb"’““’-s/?' cammed to anY

buk no 36{"“31 OB.)CLL

Fils Edit Window Help CallVel

Dog size is 0

uJ;acncc.

84 chapterd

The difference between instance
and local variables

Instance variables are declared
inside a class but not within a methed.

class Horse {
private double height = 15.2;
private String breed;
// more code...

e Local variables are declared within a method.

classg AddThing {
int a;
int b = 12;

public int add() {

int total = a + b;
return total;

e Local variables MUST be initialized before usel

class Foo { |
public void go() f Wor't Lom‘n'\cﬁ You (;aasi\u
. detlare * without a)
J.-nt . but as soon 3s Yo 7
INE 2 = X Y35 o USE it the comPlET
| ~— Creaks vt

Flie €dit Window Help Yikes
% javac Foo,. java

Foo.]java:4: variable x might

not have been initialized

int z = x + 3;
l error A

methods use instance variables

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before

the variable is
initialized.

Di{”ﬁlemesﬁons

(\)v: What about method parameters?
How do the rules about local variables
apply to them?

A: Method parameters are virtually the
same as local variables—they're declared
inside the method (well, technically theyre
declared in the argument list of the method
rather than within the body of the method,
but they're still local variables as opposed to
instance variables). But method parameters
will never be uninitialized, so you'll never get
a compller error telling you that a parameter
variable might not have been initialized.

But that's because the compiler will give

you an error if you try to invoke a method
without sending arguments that the method
needs. So parameters are ALWAYS initialized,
because the compifer guarantees that
methods are always called with arguments
that match the parameters declared for the
method, and the arguments are assigned
{automatically) to the parameters.

you are here » 85

object equality

Comparing variables (primitives or references)

Sometimes you want to know if two pmmitives are the same. That's easy
enough, just use the == operator. Sometimes you want to know if two
reference variables refer to a single object on the heap. Easy as well, just use
the == operator. But sometimes you want to know if two objects are equal.
And for that, you need the .equals() method. The idea of equality for
objects depends on the type of object. For example, if two different String
objects have the same characters (say, “expeditious”™), they are meaningfully
equivalent, regardless of whether they are two distinct objects on the heap.
But what about a Dog? Do you want to treat two Dogs as being equal if they
happen to have the same size and weight? Probably not. So whether two
different objects should be treated as equal depends on what makes sense for
that particular object type. We'll explore the notion of object equality again
in later chapters (and appendix B), but for now, we need to understand that
the == operator is used only to compare the bits in two variables. What those
bits represent doesn't matter, The bits are either the same, or they're not.

To compare two primitives, use the == operator

The == operator can be used to compare two variables of any kind, and it
simply compares the bits,

if (a =Db) {...} looks at the bits in a and b and retums true if the bit pattern
is the same (although it doesn’t care about the size of the vanable, so all the
extra zeroes on the left end don't matter).

int a = 3; &mc 3“‘
‘2&‘ cave

byte b = 3; \;wh"‘ ov*-

if (a ==b) { // true } ghat here

To see If two references are the same (which means they
refer to the same object on the heap) use the == operator

Remember, the == operator cares only about the pattern of bits in the
variable. The rules are the same whether the variable is a reference or
primitive. So the == operator returns true if two reference variables refer to
the same object! In that case, we don’t know what the bit pattern is (because
it’s dependent on the JVM, and hidden from us) but we do know that whatever
it looks like, it will be the same for two references to a single object.

Foo a = new Foo():
Foo b = new Foo();
Foo ¢ = a;
if (a == b) { // false)

a==¢is true
if (a ==¢e) { // true) 8
if (b ==¢) { // false } a:-:b.s«CaIu

86 chapter 4

Use == to compare
two primitives,

or to see if two
references refer to
the same object.

Use the equals()
method to see

if two different
objects are equal.
{Such as two different
String objects that both

reprasent the characters
in “Fred”)

Foo

I always
keep my variables
private. If you want to
see them, you have to
talk Yo my methods.

_Q%rpen Your pencil

What'’s legal?

Given the method below, which
of the method calls listed on the
right are legal?

Put a checkmark next to the
ones that are legal. (Some
statements are there to assign
values used in the method calls).

KEEP

P
RIGHT

| Make it Stick

methods use instance variables

Roses aré red;
this poem is choppY, \
passing by value
js passing by copy- |
@& our]
o beter? Tey it Ra.:::; -
N hke'yo:nd {ine with your ownx.’ - o
du"l‘b Se;\e’ whole thing with, you! |
ace A
r::d you'lt pever forget it.
int a = calcAraa(7, 12);

int calcArea(int height, int width) ({

raturn height * width;

short ¢ = 7;

calchrea (c,15) ;

int d = calecArea(57);
calchrea (2,3);

long t = 42

int £ = calcArea(t,17);
int g = calcArea();
calchraea () ;

byte h = calcArea(4,20);

int j = calcArea(2,3,5);

you are here »

87

exercise: Be the Compiler

BE the compiler

Each of the Java fi]es on this page
8. Tepresents a complete source f]e.
Your job 15 to play compiler and
determine whether each of these files
wil] compile. If they won’t
compile, how wou]d you
fix them, and if they do
compile, what would he

their output?

class XCopy { class Clock {
String time;
public gtatic void main(String [) args) {

. . void setTime(String t) {
int orig = 42;

time = t;
XCopy x = new XCopy(): }
int y = x.go(orig); void getTime() ({
return time;

System.out.println{orig + * * + y);

}

int go(int arg) {
class ClockTestDrive {

arg = arg * 2; public static void mz2in(String (] args) {

return arg;
}
}

Clock ¢ = new Clock(});

c.setTime(*1245");
String tod = c.getTime(};
System.out.println(“time: “ + tod);

}

88 chapter4d

methods use instance variables

(¥ A bunch of Java components, in full costume, are playing a party
v game,“Who am 17" They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one guy, then write down all for whom that sentence
applies. Fill in the blanks next to the sentence with the names of one
or more attendees.

9 Tonight’s attendeas:
Instance variable, argument, return, getter, setter,

who 33“ encapsulation, public, private, pass by value, method

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

| prefer my instance variables private.

It really means ‘make a copy’.

Only setters should update these.

A method can have many of these.

| return something by definition.

| shouldn’t be used with instance variables.

| can have many arguments.

By definition, | take one argument.

These help create encapsulation.

| always fly solo.

you are here » 89

puzzle: Mixed Messages

Mixed
Messages
A short Java program s listed to your right.
Two blocks of the program are missing.
Your challenge is to match the candidate

blocks of code (below), with the output
that you'd see if the blocks were inserted.

Not all the lines of output will be used, and
some of the lines of output might be used
more than once. Draw lines connecting
the candidate blocks of code with their
matching command-line output.

Candidates:

90 chapterd

Possible output:

public class Mix4 {
int counter = 0;
public static void main(String (] args)
int count = 0;
Mix4 [) md4a =new Mix4([20);
int x = 0;

wmite (] ¢

mda(x] = new Mix4();
mda(x].counter = mda(x).counter + 1;
count = count + 1;
count + mda[x).maybeNew (x);
X = x + 1;
}
System.out.println(count + ™ *
+ mdall].counter);

count

}

public int maybeNew (int index) {
if (YA

Mix4 m4 = new Mix4();
m4d.counter = m4.counter + 1;
return 1;

}

return 0;

{

methods use instance variables

public class Puzzle4 ({
public static void main(String [] args) {

int y = 1;

int x = 0
Your job is to take code snippets from the int result = 0;
pool and place them into the blank lines while (x < 6) {

D in the code. You may not use the same

. snippet more than once, and you won't
need to use all the snippets.Your goa/
is to make a class that will compile and y=y * 10;
run and produce the output listed.

}
X = 6;
while (x > 0)

result = result +

Output }

System.out.println{“result “ + result);

“Fille Edil Window Holp BelyFlop
% java Puzzled }

}
result 543345
class {

int ivar;

doStuff({int)y {
if (ivar > 100) {
return

} else {

‘return

Note: Each snippet
from the pool can be
used only oncel

dOStufF(x);
obs.doStuff(x);

. obs[x).doStuff(factor);
V= obsixdoStuff(x); i
¥ obsivar=x; ~OPSXCOSMUNG - ivar N factor; Puzzled
7 obs[x).lvar = x; ivar Ivar . (2+factor); psieap int
obs[x).ivar = y; factor var * (5 - factor); Puzzledb() short
' ublic ivar * factor;
[' ' Puzzle4 [] obs = new Puzzle4(6); P obs [x] = new Puzzledb(x);
| Puzzledb [) obs = new Puzzle4bls); private x=x+1

obs (] = new Puzzledb();
obs [x] = new Puzzle4b();
obs = new Puzzledb(); .

Puzzledb [] obs = new Puzzle4d(6]);

X=x -1;

you are here » 91

puzzle: Five Minute Mystery

Five-Minute

Mystery

92

chapter 4

Fast Times in Stim-City

When Buchanan jammed his twitch-gun into Jai’s side, Jai froze. Jai knew that Buchanan
was as stupid as he was ugly and he didn’t want to spook the big guy. Buchanan ordered Jai
into his boss’s office, but Jai’d done nothing wrong, (lately), so he figured a linle chat with
Buchanan’s boss Leveler couldn’t be too bad. He'd been moving lots of neurat-stimmers in
the west side lately and he figured Leveler would be pleased. Black market stimmers weren’t
the best money pump around, but they were pretty harmiess. Most of the stim-junkies he’d
seen tapped out after a while and got back to life, maybe just a little less focused than before.

Leveler's ‘office’ was a skungy looking skimmer, but once Buchanan shoved him in, Jai
could see that it’d been modified to provide all the extra speed and armor that a local boss like
Leveler could hope for. “Jai my boy”, hissed Leveler, “pleasure 1o see you again”. “Likewise
I'm sure...”, said Jai, sensing the malice bebind Leveler’s greeting, “We should be square
Leveler, have] missed something?” “Ha! You’re making it look pretty good Jai, your volume
is up, but I’ve been experiencing, shall we say, a little ‘breach’ lately...” said Leveler.

Jai winced involuntarily, he’d been a top drawer jack-hacker in his day. Apytime someone

“figured out how to break a street-jack’s security, unwanted attention turned toward Jai. “No

way it’s me man”, said Jai, “not worth the downside. I'm retired from hacking, I just move
my stuff and mind my own business”. “Yeah, yeah”, laughed Leveler, “I'm sure you're
clean on this one, but I'll be losing big margins until this new jack-backer is shut
out!” “Well, best of luck Leveler, maybe you could just drop me here and I'll go
move a few more ‘units’ for you before I wrap up today”, said Jai.

“I'm afraid it’s not that easy Jai, Buchanan here tells me that word is you’re
current on J37NE”, insinuated Leveler. ‘“Neural Edition? sure] play around a bit, 8o
what?”, Jai responded feeling a little queasy. ‘“Neural edition’s how [let the stim-junkies
know where the next drop will be”, explained Leveler. “Trouble is, some stim-junkie’s stayed
straight long enough to figure out how to hack into my WareHousing database.” “I need a
quick thinker like yourself Jai, to take a look at my StimDrop J37NE class; methods, instance
variables, the whole enchilada, and figure out how they’re getting in. It should..”, “HEY!",
exclaimed Buchanan, “I don’t want no scum hacker like Jai posin’ around my code!” “Easy
big guy”, Jai saw his chance, “I’m sure you did a top rate job with your access modi.. “Don’t
tell me - bit twiddler!”, shouted Buchanan, “I left all of those junkie level methods public,

50 they could access the drop site data, but I marked all the critical WareHousing methods
private. Nobody on the outside can access those methods buddy, nobody!™

“I think I can spot your leak Leveler, what say we drop Buchanan here off at the corner
and take a cruise around the block”, suggested Jai. Buchanan reached for his twitch-gun but
Leveler’s stunner was already on Buchanan’s neck, “Let it go Buchanan”, sneered Leveler,

“Drop the twitcher and step outside, I think Jai and I have some plans to make”.

What did Jai suspect?
Will he get out of Leveler’s skimmer with all his bones intact?

methods use instance variables

| class Clock {
axerese SO]_lttiOnS String time;
void setTime(String t) {
time = t;
B }
String getTime() {

return time;

class ClockTestDrive {
public static void main(String [] args) {
Clock ¢ = new Clock();
c.getTime(*12457);
String tod = c.getTime();
System.out.println(“time: * + tod);

} } Note: ‘Getter methods have a return
Bss XCopy compiles and runs as it stands | The type by definition.
&2 84'. Remember Java is pass by value, (which
s by copy), the variable ‘orig is not changed by the
A class can have any number of these. instance variables, getter, setter,method
ethod can have only one of these. return
his can be implicitly promoted. return, argument
orefer my instance variables private, encapsulation
eally means 'make a copy’. pass by value
Inly setters should update these. instance variables
A method can have many of these. orgument
eturn something by definition. getter
shouldn't be used with instance variables public
| can have many arguments. method
definition, | take one argument. setter
These help create encapsulation. getter, setter, public, private

1 always fly solo. return

you are here » 23

puzzie answers

Puzz]e Solutions

public class Puzzled (
public static void main(String [] args) {
Puzzle4b [1 obs = new Puzzle4b[6]
int y = 1;
int x = 0}
int result = 0;
while (x < 6) {
obs[x] = new Puzzled4b()
obs(x). ivar = y;

y =y * 10;
x=xe+1l

)

X = 6}

while (x > 0) {
X=Xx-1;

result = result + obs[x]doStuff(x):
4

System.out.println(“result “ + result);
*
Y

class Purzledb {
int ivar;
public int doStuff (int factor) ({
if (dvar > 100) {
return ivar* factor;
} elge {

return ivar™ (5 -~ factor);
} Output

} 5 BellyFiop
} %java Puzzleq

result 543345

94 chapter 4

Answer to the 5-minute mystery...

Jai knew that Buchanan wasn’t the sharpest
pencil in the box. When Jai heard Buchanan
talk about his code, Buchanan never menthoned
his instance vanables. Jai suspected that

while Buchanan did in fact handle his methods
correctly, he failed to mark his instance variables
private. That slip up could have easily cost

Leveler thousands.

Candidates:

Possible output:

14

5 writing a program

Extra-Strength Methods

I can lift

Let’s put some muscle in our methods. we dabbied with variables, played
with a few objects, and wrote a littie code. But we were weak.We need more tools. Like
operators.We need more operators so we can do something a little more interesting than, say,
bark. And loops. We need loops, but what's with the wimpy while loops? We need for loops

if we're really serious. Might be useful to generate random numbers. And turn a String
into an int, yeah, that would be cool. Better learn that too. And why don't we learn it all by
building something real, to see what it’s like to write (and test) a program from scratch. Maybe
a game, like Battleships. That's a heavy-lifting task, so it'll take two chapters to finish. We'll build

a simple version in this chapter, and then build a more powerful deluxe version in chapter 6.

this is a new chapter 95

building a real game

Let’s build a Battleship-style
game: “Sink a Dot Com”

It’s you against the computer, but unlike the real
Batteship game, in this one you don’t place any ships
of your own. Instead, your job is to sink the computer’s
ships in the fewest number of guesses.

Oh, and we aren't sinking ships. We're killing Dot
Coms. (Thus establishing business relevancy 5o you can
expense the cost of this book).

Goal: Sink all of the computer’s Dot Coms in the fewest
number of guesses. You're given a rating or level, based
on how weil you perform.

Setup: When the game program is launched, the
computer places three Dot Coms on a virtual 7 x 7
grid. When that’s complete, the game asks for your first

guess,

How you play: We haven’t leamed to build a GUI yet, so
this version works at the command-line. The computer
will prompt you to enter a guess (a cell), that you’ll type
at the command-line as “A8", “C5", et¢.). In response

to your guess, you'll see a result at the command-

line, either “Hit”, “Miss”, or “You sunk Pets.com” (or
whatever the Jucky Dot Com of the day is). When
you’ve sent all three Dot Coms to that big 404 in the
sky, the game ends by printng out your rating.

7% 7 arid ?:La spel’
A £
B | E
o S| Phegm
F
¢ AsiMe.com
o 1 2 3 4 5 6

X

96 chapter 5

starts at zevo, like Java arrays

You’re going to build the
Sink a Dot Com game, with
a7 x 7 grid and three
Dot Coms. Each Dot Com
takes up three cells.

part of a game inferaction

e Edil Window Halp Sefl

$java DotComBust

Enter a guess A3

miss
Enter
miss
Enter
miss
Enter
hit
Enter
hit
Enter
Ouch!
kill
Enter
miss
Enter
hit
Enter
hit
Enter
Ouch!

a guess

a guess

a guess

a guess

a guess

You sunk

a guess

a guess

a guess

a guess

You sunk

B2

D2

D3

D4

Pets.com

B4

G3

G5

AskMe.com

First, a high-level design

We know we'll need classes and methods, but what
ghould they be? To answer that, we need more
fmformation about what the game should do.

First, we need to figure out the general flow of the
game. Here’s the basic idea:

o User starts the game

o Game creates three Dot Coms

Game places the three Dot
Coms onto a virtual grid

Game play begins
Repeat the following until there are
no more Dot Coms:
Prompt user for a guess
(I (AZ","CO", etc.)
Check the user guess against
all Dot Coms Yo look for a hit,
miss, or kill. Take appropri-
ate action: if a hit, delete cell

(A2, D4, etc.). If akill, delete
Dot Com.

Game finishes

Give the user a rating based on
the number of guesses.

Now we have an idea of the kinds of things the
program needs 1o do. The next step is figuring
put what kind of objects we'll need to do the
work. Remember, think like Brad rather than
Larry; focus first on the things in the program

rather than the procedures.

writing a program

Game set-up

e » Getuser

guess o
remove loca-
tion cell
remove
Dot Com
A diamond
rc?\'ﬁc“b a

detision pont.

e display user

score/rating

game
over

Whoa. A real flow chan.

you are here » 97

a simpier version of the game

The “Simple Dot Com Game”
a gentler introduction

It looks like we’re gonna need at least two classes, a
Game class and a DotCom class. But before we build
the full monty Sink a Dot Com game, we'll start with
a suipped-down, simplified version, Simgple Dot Com
Game. We'll build the simple version in this chapter,
followed by the deluxe version that we build in the

6ame starts, and creates ONE DotCom
and gives it a location on three cells in
the single row of seven cells.

Instead of "A2”,"C4”, and so on, the
locations are just integers (far example:
12,3 are the cell locations in this
picture:

next chapter.

=3

Everything is simpler in this game. Instead of a 2-D
grid, we hide the Dot Com in just a single row. And
instead of fhree Dot Coms, we use one.

The goal is the same, though, so the game still needs
to make a DotCom instance, assign it a locatdon
somewhere in the row, get user input, and when all
of the DotCom’s cells have been hit, the game is over.
This simplified version of the
game gives us a big head start
on building the full game,

If we can get this small one
working, we can scale it up to
the more complex one later.

SimpleDotComGame

SimplaDotCom

Int] locationCalis
Int nUMOMHits

In this simple version, the
game class has no instance
variables, and all the game
code is in the main() method.
In other words, when the
program is Jaunched and
main() begins to run, it will
make the one and only DotCom
instance, pick a locaton for it (three
consecutive cells on the single virtual

seven-cell row), ask the user for a guess, check the
guess, and repeat until all three cells have been hit.

Keep in mind that the virtual row is... virtual In other
words, it doesn’t exist anywhere in the program. As
long as both the game and the user know that the
DotCom is hidden in three consecutive cells out of a
possibie seven (starting at zero), the row itself doesn’t
have to be represented in code. You might be tempted
to build an array of seven ints and then assign the
DotCom to three of the seven elements in the array,
but you don't need to. All we need is an array that
holds just the three cells the DotCom occupies.

98 chapter 5

String checkYoulseff{String guess)
vold seﬂ.ocaﬂonCel!s(lntﬂ foc)

1 2 3 4 5 6

Game play begins. Prompt user for
a guess, then check to see if it hit
any of the DotCom's three cells.

If a hit, increment the numOfHits
variable.

e Game finishes when all three cells have

been hit (the numOfHits variable val-
ue is 3), and tells the user how many
guesses it took to sink the DotCom,

A complete game Interaction

File Edit Window Help Desto

$java SimpleDotComGame
enter a number 2

hit

enter a number

hit

enter a number

miss

enter a number

kill

You took 4 guesses

Peveloping a Class

As a programmer, you probably have a methodology/
process/approach to writing code. Well, so do we, Our
sequence is designed to help you see (and learn) what
we're thinking as we work through coding a dlass. It
=n't necessarily the way we (or you) write code in the
Real World. In the Real World, of course, you'll follow
the approach your personal preferences, project, or
employer dictate. We, however, can do pretty much
whatever we want. And when we create a Java class as a
| “leamning experience”, we usually do it like this:

writing a program

The three things we'll write for
each class:

prep code

(-1 real code

This bar is displayed on the next set of pages to tell
you which part you're working on. For example, if you
see this plcture at the top of a page, it means you're
working on prepcode for the SimpleDotCom class.

SimpleDotGom class
| code T I cod
! 0 Figure out what the class is supposed to do.
O List the instance variables and methods.
' prep code
a Writfa prepcode for the methods. (You'll see A form of pseudocods, to help you focus on
this in just a moment.) the logic without stressing about syntax.
0 Wirite test code for the methods.
| test code
O Implement the class. A class or methods that will test the real coge
and valldate that it's doing the right thing.
1 Test the methods.
{0 Debug and reimplement as needed. real code
The actual implementation of the class. This is
{1 Express gratitude that we don’t have to test N A al Java code.
our so-called fearning experience app on -To 'D'o:
actual live users, i5i
tCom cliass
SimpleDotHe™ =
1 write prep cod°

VAN

Assuming that all but the tinlest programs

meed more than one class (if you're following
good OO principles and not having one class
do many different jobs), where do you start?

53 T
vaweE®w simploDotComGam

Flex those dendrites. class

How would you decide which class or classes 0 writa prep \

to build first, when you’re writing a program? wite test code [nol

O write test code
O write final Java code

O witofinal Java cot

you are here » 99

SimpleDotCom class

You'll get the idea of how prepcode (our version of pseudocode) works as you
read through this exaraple. It's sort of half-way between real Java code and a plain

- Ismphwcom English description of the class. Most prepcode includes three parts: instance
::: Eumgk variable declarations, method declarations, method logic. The most imporant

part of prepcode is the method logic, because it defines what has to happen,
Sting checkYourseH(Sting guoss) which we later translate into kow, when we actually write the method code.

voud setLocationCelis{iny) foc)

DECLARE an int array to hold the location cells. Call it locotionCells.
DECLARE an int to hold the number of hits. Call it numOfHits and SET it to 0.

DECLARE a checkYourself{) method that takes a String for the user's guess (*17,"3", etc.).
checks it, and retums 2 result representing a “hit”, “miss”, or "ill".

DECLARE a setlocationCelis() setter method that takes an int array (wWhich has the three cell
locations as ints (2,34, etc).

METHOD: Svring checkYourself{String userGuess)
GET the user guess as a String parameter
CONVERT the user guess to an int
— REPEAT with each of the location cells in the int array
/7 COMPARE the user guess to the location cell
— IF the user guess matches
INCREMENT the number of hits
// FIND OUT if it was the last location cell:
—IF number of hits is 3, RETURN "kill“ as the result
ELSE 1t was not a kill, so RETURN"hit"*
—END IF
ELSE the user guess did not match, so RETURN “miss”
——END IF
— END REPEAT
END METHOD

METHOD: void setlocationCells(int{] celiLocations)

GET the cell locations as an int array parameter

ASSIGN the cell locations parameter 1o the cell locations instance variable
END METHOD

100 chapter5

R

Writing the method
implementations

let’s write the real
wethod code now, and get
this puppy working.

Before we start coding the
methods, though, let's back
up and write some code to
test the methods. That's right,
we're writing the test code
before there’s anything to test!

The concept of writing

the test code first is one of
the practices of Extreme
Programming (XP), and

it can make it easier (and
faster) for you to write your
code. We’re not necessarily
saying you should use XP,
but we do like the part about
writing tests first. And XP just
sounds cool.

writing a program

Oh my! For a minute
there T thought you
weren't gonna write your
test code first. Whoo!
Don't scare me like that.

Extreme Programming(XP) is a newcomer to the software
development methodology world. Considered by many
to be “the way programmers really want to work’ XP
emerged In the late 90's and has been adopted by
companies ranging from the two-person garage shop
J 0 the Ford Motor Company. The thrust of XP s that the
customer gets what he wants, when he wants it, even
when the spec changes [ate In the game.

XP is based on a set of proven practices that are all
designed to work together, aithough many folks do pick
a2nd choose, and adopt only a portion of XP's rules. These
practices include things like:

Make small, but frequent, releases.
Develop in iteration cycles.

Extreme Programming (XP)

Don't putin anything that’s not in the spec (no matter
how tempted you are to put in functionality “for the
future®).

Write the test code first,
No kitler schedules; work regular hours.

Refactor (improve the code) whenever and wherever you
notice the opportunity.

Don't release anything until it passes all the tests.
Set realistic schedules, based around small releases.
Keep it simple.

Program in pairs,and move people around so that
everybody knows pretty much everything about the code.

you are here» 101

SimpleDotCom class

prep code 'tastcod real code

Writing test code for the StmplePotCom class

We need to write test code that can make a SimpleDotCom object
and run its methods, For the SimpleDotCom class, we really

care about only the checkYourself() method, although we will have
to implement the setLocationCells() method in order to get the
checkYourself() method to run correctly.

Take a good look at the prepcode below for the checkYourselff)
methaod (the setLocationCells() method is a no-brainer setter method,
so we're not worried about it, but in a ‘real’ application we might
want a more robust ‘setter’ method, which we would want to test).

Then ask yourself, “If the checkYourself() method were
implemented, what test code could I write that would prove to me
the method is working correctly?”

Based on this prepcode: Here's what we should test:
METHOD String checkYourseif{String userGuess) 1. Instantiate a SimpleDotCom object.
GET the user guess as a String parameter 2. Assign it a location (an array of 3 ints, like
CONVERT the user guess to an Int {2.3.4)).

3. Create a String to represent a user guess
(27, "0", etc.).
4. Invoke the checkYourself() method pass-

REPEAT with each of the location cells in the int array
/f COMPARE the user guess 10 the location cell

IF the user guess matches ing it the fake user guess.
INCREMENT the number of hits 5. Print out the resuit to see if it's correct
/7 EIND OUT if it was the last location cel: (‘passed” or “falled”).

IF number of hits is 3, RETURM “Kill" as the resuit
ELSE 1 was not a kill, so RETURN" Hit”
END IF
ELSE the user guess did not match. soc RETURN “Miss”
END IF
END REPEAT
END METHOD

102 chapter5

P cod e real code

Blnib Questions

=Maybe I'm missing some-
g here, but how exactly do
ju run a test on something

@t doesn’t yet existl?

£ You don't. We never said
o start by running the test;

e start by writing the test. At
time you write the test code,
won't have anything to run

£ 2g3inst, so you probably won't
able to complle It until you
e ‘stub’ code that can com-
‘ae. but that will always cause
= test to fail {like, return null.}

- ' 2Then | still dow't sea the
pint. Why not wait until the
eada is written, and then whip

the test code?

£ The act of thinking through

and writing) the test code helps

=arify your thoughts about what
method Itself needs to do.

&s soon as your implementation
‘zode is done, you already have
=t code just waiting to validate
& Besides, you know If you don't
@5 it now, you'll never do It.
ere’s always something more
meresting to do.

C , write a little test code,
=n write only the implementa-
‘mon code you need in order to
‘=ass that test. Then write a little
ore test code and write only
new implementation code
seded to pass that new test. At
ch test iteration, you run al!
previously-written tests, so
‘=at you always prove that your

2 code additions don’t break
=reviously-tested code.

writing a program

Test code for the SimplePotCom class

public class SimpleDotComTestDrive { .
\ﬁ&{‘%x 2
public static void main (String[] args) { g::;:
SimpleDotCom dot = new SimpleDotCom(); ¢
o
T
ke \fb o““wtwc ;“b
int[] locations = {2,3,4}; W“(og 3,‘,,,5;\\:&" '
P
dot.satLocationCells (locations) ; .
S e the ety
.
make & fake

String userGuess “2”;

usey 3“&55

String raesult = dot.checkYourself (userGuess) ;

invoke {he theekYoursel£()

obiett, on the dot som

and :
ac_c,ua:_ Pauléﬂ'e

String testResult = “failed”;

if (result.aquals(“hit”)) (

tastResult = “passed”; |
- f the Fake quess (1) gjves
} back a t”, s working
System.out.println (testResult) ;(\
int out the tes
| }:m“' or failcd"? result

rpen your pencl
In the next couple of pages we implement the SimpleDotCom class,
and then later we return to the test class. Looking at our test code
above, what else should be added? What are we not testing in this
code, that we should be testing for? Write your ideas (or lines of
code) below:

103

you are here »

SimpleDotCom class

real code

The checkYouIﬂ method

There isn’t a perfect mapping from prepcode to javacode; you'll see a few
adjustments. The prepcode gave us a much better idea of what the code needs to
do, and now we have to find the Java code that can do the Aow.

In the back of your mind, be thinking about parts of this code you might want
(or need) to improve. The numbers are for things (syntax and language
features) you haven’t seen yet. They’re explained on the opposite page.

public String checkYourself (String stringGuess) ({

GET the user
guess Lonve .
CONVERT int guess = Integer.parselnt(stringGuess); & to an"‘:{fhc S{rmg
the user guess to K
an int String result = “miss”; ¢ :‘1 €a VQWG:HC to hold the result we'll
(I
(‘e wrn. put “miss” i as the default
HE W dssume @ “miss”
REPEAT with .)
each cell in the int for (lnt cell : locat:.onCells) { N y-ePca_é \W‘éh .
array array (ot 3¢h tell i 4}, lotation:
IF the user guess if (guess == cell) { to eell ’Oﬁa{ioh of the boh ells
N m .
maiches el Pare the user guess 4, thi %0ject)
result = “hit”; ement (zell) in the drray "
INCREMENT we g0t 3 hit!
the number of -
hits
P83k € get out of fhe |
o test the otper . "o
} // end if ¢ other ¢ells
} /7 end for
/7 FIND QUT if
it was the fast cell if (numOfHits == locationCells.length) {
i vt ot of th loop, bt Iets see if e
E]
1S 3, result = “kill”,' <__ now ld d, (.] see wWe re
. ead (hit 3 fimes) gnd
RETURN "l vesult Sri Limes) and thange the
as the result ; . *ing to Kill
} /7 end if
ELSE it was
not a kill, so . .
RETURN hi" System.out.println(result); ¢—_ display the vesult for the user
ELSE return result; (“Miss”, unless it was thanged to “Hit” or “Kill")
RETURN “or
“miss” eturn the veswlt back to

} 7/ end method the Ca“ihs method

104 chapter§

Em real code

Just the new stuff

The things we haven’t seen before

are on this page. Stop worrying! The

of the details are at the end of

chapter. This is just enough to let tnat

keep going. A\;fﬁs:"‘“ Jave:
<

!

writing a program

A method in the
Integer class that
knows how to t\f’a\r‘scn
Agfﬁnsin{o{hcihf
it vepresents.

\f

Tokes |

String

Convert

String to an int

and assign it £o the in

. The for loop

The post-increment
operator

. break statement

ing a

Integer.parseInt (“3”)

_ ; “vepeat
Read this for loop detlaration as vef b olop, (;
;ON‘ CQL"' dcmcy\t n {f}\? loca{"{',lbh&llsaway OIC f,:::s()c';&;'\sp » SO é.he
n element M » ns i
areay: ake the net & O le el "IN lolationgrgy, 7 232h int

<

for (int cell : locationCells) { }

Detlave 3 variable that will hold one element '\ . ovex J()\c,\\:i
from the arvay. Each time through fhe | The arvd) o T e Yoot e ed X0
this varisble Gin th; roudh he foop, Kme LYY T be 35T e
s varia n this case an int variable named gath V™ ke 37Y2 ¢ on RS &
cell™, will hold 3 different element From the e\an“JC_\‘;‘ o el h;\df
arvay, wntil there are no move elements (or $he &}\3 “:E s ehapter

o

tede does 3 “bregk®.. sep #4 below).

The 44 means add | 4o
whatever's there (in other
words, intvement by .

numOfHits++

numo-cHi‘tS‘}“}‘ is the same (in
this case) as s3ying numOFHits =
rumOfthits + 1, exsept slightly
move efficient

break;
Gets You ot of a loogp- lmncdlaﬁeiy- Right heve.
No itevation, o boolean test, just get out now!

105

you are here »

SimpleDotCom class

prep code 't {111} real code

Final code for SimplePotCom and SimplePotComTester

therejare po o
Dumb Questions
public class SimpleDotComTestDrive (

Q:What happens in

Integer.parselnt() if the thing you public static void main (String() args) {
pass isn’t a number? And does it SimpleDotCom dot = new SimpleDotCom();
recognize spelled-out numbers,

like “three”? int() locations = {2,3,4}:;

dot.setlocationCells (locations);

A. String userGuess = “27;
- Integer.parselnt() works only

on Strings that represent the ascil String result = dot.checkYourself (userGuess);
values for digits (0,1,2,3,4,5,6,7.8,9). }

If you try to parse something like
“two" or “blurp’ the code will blow
up at runtime, (By blow up, we
actually mean throw an exception,
but we don't talk about exceptions
until the Exceptions chapter, o for public class SimpleDotCom {
now, blow up is close enough.)

int[) locationCells;
int numOfHits = 0;

Q}In the beginning of the public void satlLocationCells (int(] locs) (

book, there was an example of a locationCells = locs;

for loop that was really different)

from this one—are there two

different styles of for loops? public String checkYourself (String stringGuess) {

int guess = Integer.parselnt(stringGuess);

String result = “miss”;
A:Yesl From the first version of for (int cell : locationCells) {
Java there has been a single kind if (guess == cell) ({
of for loop (explained later In this result = “hit”;
chapter) that looks like this: numOfRits++;

) , : break:
for{inti=0;1 < 10;i++) {) What should we see
// do something 10 times) // out c¢f the loop when we run this code?

} The test code makes a

if (numOfRits == SimpleDotCom cbject
You can use this format for any locationCells.length) | and gives it a location at
kind of loop you need. But... result = “kill”; 2,3,4.Then it sends a fake
beginning with Java 5.0 (Tiger),) user guess of “2 into the
you can also use the enhanced for System.out.println(result) checkYouself() method.
loop (that's the official description) return result; If the code is working
when your loop needs to iterate) // close method correctly, we should see the
over the elements In an array (or Y /7 close cla: result print out:
another kind of collection, as you'll

see in the next chapter).You can

always vse the plain old for loop ™ litle bua furking here. ’ s

; ere’s a little bug furking here. It complies an hit
to iterate over an array, b‘f‘ the rung, but sometimes... don’t worry about it for now,
enfianced for loop makes it easler. but we will have 1o face it a little later.

java SimpleDotComTestDrive

108 chapters

writing a program

real code

q@rpen your pencil
We built the A‘ test class, and the SimpleDotCom class. But we still haven‘t
made the actual game. Given the code on the opposite page, and the spec for
the actual game, write In your ideas for prepcode for the game class. We've given
you a few lines here and there to get you started. The actual game code is on the
next page, so don’t turn the page until you do this exercisel

The SimpleDotComGame
needs to do this:

1. Make the single

You should have somewhere between 12 and 18 lines (including the ones we wrote, SimpleDotCom Object.

but not including lines that have only a curly brace).
. .) 2.Make a location for it (three
METHOD public static void main (String [] orgs) consecutive cells on a single

1 DECLARE an int variable to hold the number of user guesses, named numOfGuesses row of seven virtual cells),
3. Ask the user far a guess.
4.Check the guess.

5,Repeat until the dot com is
dead .

6.Tell the user how many
guesses it took.

COMPUTE 5 random number between 0 and 4 that will be the starting location cell position

A complete game interaction

File Edit Windaw Halp

Rungwg

%java SimpleDotComGame
WHILE the dot com s siill atve :

enter a number 2

hit

enter a number 3

hit

enter a number {4

GET user input from the command line

nmiss
enter a number 1
kill

You took 4 éuesses

you are herer 107

SimpleDotCom class

prep code

108

chapter 5

real code

Prepcode for the StmplePotCombame class

Everything happens in maln()

There are some things you'll have to take on faith. For example, we have one
line of prepcode that says, “GET user input from command-line”. Let me tell
you, that’s a little more than we want to implement from scratch right now. But
happily, we're using OO. And that means you get to ask some other class/object
to do something for you, without wortying about how it does it. When you write
prepcode, you should assume that somehow you'll be able to do whatever you
need to do, so you can put all your brainpower into working out the logic.

public static vold main (String [] args)

DECLARE an int vaniable to hold the number of user guesses, named numOfGuesses. set it 16 0.

MAKE 2 new SimpleDotCom instance
COMPUTE a random number between 0 and

4 that will be the starting location cel! position

MAKE an int array with 3 ints using the randomly-generated number. that number incremented by |,
and that number incremented by 2 (example: 3,4,5)

INVOKE the setlocationCells() method on the SimpleDotCom instance
DECLARE a boolean variable representing the state of the game. named isAlve. SET it to true

WHILLE the dot com is still alive (isAlive == true) :

GET user input from the command line
/7 CHECK the user guess

INVOKE the checkYourself(}) method on the SimpleDotCom instance

INCREMENT numnOfGuesses variable
// CHECK for dot com death
IF result is "kill"

SET isAlve to false (which means we won't enter the loop again)

PRINT the number of user guesses
END If

END WHILE
END METHOD

metacegnitive 4ip

Don't work one part of the brain for too long a stretch at one time.
Working Just the left side of the brain for mora than 30 minutes

is like working just your left arm for 30 minutes. Give each side

of your brain a break by switching sides at regular intervals. -

Whan you shifi to one side, the other side gels to rest and

recover. Left-brain activitias include things like slep-by-step
sequances, logical problem-solving, and analysis, while the
right-brain kicks in for metaphors, creative problem-solving,
pattem-matching, and visualizing.

____ BULLEY POINTS "

writing a program

Your Java program should start with a high-
level design.

Typically you'll write three things when you
create a new class:

prepcode
testcode
real (Java) code

Prepcade should describe what to do, not how
to do it. Implementation comes later.

Use the prepcode to help design the test
code.

Wiite test code before you implement the
methods.

Choose for loops over while loops when you
know how many times you want to repeat the
loop code.

Use the pre/post increment operator 1o add 1
to a variable (x+4;)

Use the pre/post dacrement to subtract 1 from
a variable (x—;)

Use Integer.parselnt () togettheint
value of a String.

Integer.parsalnt () works only if the
String represents a digit (0°,"1°,"2", etc.)

Use break to leave a loop early (i.e. even if
the boolean test condition is still frue).

How many

hits did you get
last month?

you are here» 109

SimpleDotComGame class

prep code [real code)
The game’s mainl) method

Just as you did with the SimpleDotCom class, be thinking about parts of this code
you might want (or need) to improve. The numbered things @ are for stuff we
want to point out They're explained on the opposite page. Oh, if you're wonder-
ing why we skipped the test code phase for this class, we don’t need a test class for
the game. It has only one method, so what would you do in your test code? Make

a separate class that would call main() on this class? We didn’t bother.

DECLARE a vari-
able to nold user
guess count. set it
to 0

MAKE i SimpleDot-
Coin object

COMPUTE 2
rancom nurnber
between 0 and 4
MAKE an int array
with the 3 cell loca-
tions, and

INVOKE setioca-
uonCells on the dot
com object

DECLARE 2 bool-
ear isAlive

WHILE the dot
com 15 still alive

GET user input
// CHECK it

INVOKE checkYo-
urself() on dot com

INCREMENT
numOfGuesses

SET zameAlive to
false

PRINT the number
of user guesses

) chapter5

public static void main(String[] args) (

make 3 VY iable
6—_ many 5“555 o

new GameHalpar(); &— +thisis a spetial ¢lass we wrote that has
the method for getting wer input. for
now, pretend it's part of Java

new SimplaDotCam(); €—— ke the dot Com ob}e&f

int numOfGuesmses = 0;

GameHelper helpar =

SimplaeDotCem theDotCom =

int randomNum = (int) (Math.random() * 5) ;6\ make 3 vandom numbey for the Firsﬁ

tefl, and wse it 4o make the cell

L/— locations array

int(] locations = (randomNum, randomNum+l, randemNum+2};
.)
theDotCom. saetlocationCells (locations) ; . give the dot tom ks locations {the array

boolean isAlive = true;
S make 3 boolean vaviable to track whether the game

is still alive, Lo use in the while loop test vepeat
o while game is still alive.

whila(igAlive == true) ;
il ek ST
String guess = halper.getUserInput (“enter a numbar”) ;&
String result = theDotCom.checkYourself (guess) ; ask the dot com A
[4
Gu] - € Juess; s3ve the V‘C‘Ee&
numO assagtt; &—— intrement guess tount: result iy, 3 Sty " Yrned

if (result.equals(“kill”)) Q\ was it 2 %
N —

N0 .

"2 if so, set isAlive to false (so we won't
and print. user quess count

System.cut.println(“You took “ + numOfGuesses + “ guesses”); 2

isAlive = false; re—enter the locp)
Yy // close if
} // close while

} // cloze main

<"1 real code

&;peoda

random() and geserinpuf()

Iwo things that need a bit more
explaining, are on this page. This is
just a quick look to keep you going;
more details on the GameHelper
glass are at the end of this chapter,

This is 3 ‘tast’) and ; i
jcmmcdia{:ely a-Hzav if’{tf cg;ctcs e g
e of the ant i G, is forml
:o o Mfth::hfozgtw a double, %ur{: less than ome. So Lhis formula

st + i
want & nice whole number b;cz:e':f é\vé
and &), In Lhis cace, the cast lops of §

writing a program

The Ma{h.vﬁr\doﬂ\ method
vetuwrns & number from zevo

ome the

e ‘EYPC in the

3 b)), veturns 3 number
i e e 0 -~ &9,

[,39(} {p an \h{')

Make a random

the frattions) Pavt of the double,
number 5/

int randomNum = (int) (Math.random() * 5)

!

We detlare an int vaviable o hold

A clase that comes method of 4
the vandom number we get back. with Java //\\4 nethed ¢
This meth
M‘a‘&‘?‘ at the Cvmmato P" pt
An instante we made earlier, displs € You pacs - hhd—lme‘
o(: a class that we built to Bc; Yed iy, the 'é(hm Cre gets
Gettin i he\ wi‘[',}l {:he 53mc~ H‘,‘! talled l _°"c ﬂae '"eﬂod ‘Ha")'usf
g user input P ooking for oty

Gamettelper and you haven't
seen it yet (you za'\ll).

@

String guess = helper.getUserInput (“enter a number”);

1 T

A method of the QameRelper class
that asks the user for command-
line input, veads it in after the
user hits RETURN, and gives batk
the vesult as o String.

using the GameHelper “ser input.

class

We detlare 4 S"{ring vaviable o

hold the user inpu Sty
get bk (51, G o y? ™

you are here» 111

GameHelper class (Ready-bake)

One last class: GameHelper

We made the dot com class. Just copy* the code below and compile it into
class named GameHelper. Drop all three
We made th class. a P P
© mace fie gume _ classes (SimpleDotCom, SimpleDotComGame,
All that’s left is tbe helper class— the one with the GameHelper) into the same directory, and make it
getUserInput() method. The code to get command- your working directory.

line input is more than we want to explain right now.

It opens up way too many topics best left for later. Eamhke

(Later, as in chapter 14.) Whenever you see the Cade logo, you're see-
ing code that you have to type as-is and take on faith.
Trust it. You'll learn how that code works later.

I pre-cooked
some code 50 you
don't have to make
it yourself.

Ready-bake
| lCade

import java.io.¥*;
public class GameBalper {
public String getUserInput(String prompt) {
String inputline = null;
System.out.print (prampt + * V) ;
try {
BufferedReader is = new BufferedReadar (
naew InputStreamReadex (System.in));
inputline = is,readLina();
if (inputline.length() = 0) raturn null;
} cateh (IOExcepticn a) (
System.out.printlin(“IOExcaeption: ™ + e);
}
return inputlina;

“We know how much you en)oy typing. but for those rare
momants when you'd rather do something eise, we've mads
the Ready-bake Code avallabla on wickedlysmart.com.

112 chapter 5

writing a program

Let’s play What's this? A bug?

Gaspl
Here's what happens when we Here's what happens when we
ran it and enter the numbers enter 111
1,2,3,4,5,6. Lookin' good, o
A complete game [nteraction A different gawe interaction
{your mileage may vary) (ytkes)

Flie Edlit Window Help Smile Fila Edit Window Heip Falnt

%java SimpleDotComGame %java SimpleDotComGame

enter a number 1 enter a number 1
miss hit
enter a number enter a number 1
miss hit
entex a number 1
kill

You took 3 guesses

enter a number
miss
enter a number
hit

enter a number

onter I 2 NPy pencl -

kill .

X It’s a cliff-hanger!
Will we find the bug?
Will we fix the bug?

You took 6 guesses

r the next chapter, where we answer

ns and more...

Stay tuned
these questi

And in the meantime, see If you can come up with
ideas for what went wrong and how to fix it.

you are here» 113

for loops

More about for loops

We've covered all the game code for this chapter (but we’ll pick it up again
to finish the deluxe version of the game in the next chapter). We didn’t
want to interrupt your work with some of the details and background info,
so we put it back here. We’ll start with the details of for loops, and if you're
a C++ programmer, you can just skim these last few pages...

Regular (non-enhanced) for loops
ﬂsc Code to
Yepeatd 90¢s heye

(th
?os{’.—-'\h{xan:n{‘, o?c\f‘a{'ﬁ* ¢ b°dy)

V2
for (int i = 0; i < 100; i++){'}
T RS

1\
initializZation boolean fest iberation expression

What it means in plain English: “Repeat 100 times.”
How the compiler sees it:

¥ create a variable / and set it to 0.

v repeat while / is less than 100.

+ at the end of each Joop iteration,add 1 to /

Part One: initialization

Use this part to declare and initialize a varlable to use within the loop body.
You'll most often use this variable as a counter. You can actually initialize more
than one variable here, but we'li get to that later in the book.

Part Two: boolfean test

This Is where the conditional test goes. Whatever's in there, it must resolve to a
boolean vaiue (you know, true or false). You can have a test, like (x >= 4), or you
can even invoke a method that returns a boolean.

Part Three: iteration expression

in this part, put one or more things you want to bappen with each trip through
the loop. Keep In mind that this stuff happens at the end of each loop.

114 chapter 5

repeat for 100 reps

=

$ through a loop _e

 fint 1 = 0; 1 < B; i++) (

enter loop

body

4

print the value
of i

Y
increment |

(the iteration
expression)

see between for and while
= ——

loop has only the boolean test; it doesn't have
-in initialization or iteration expression. A while
> 5 good when you don't know how many times to
> and Just want to keep going while some condi-

% s true. But If you know how many times to loop
Je3 the length of an array, 7 times, etc.), a for loop is
Eaner. Here's the loop above rewritten using while:

int i = 0; h‘\ ;:ieﬁ’;‘?_\(c %}’d&:’ake and
ize

while (i < 8) { ¢ Counter

Systam.out.println(i);

it+; e_\"“ we have ﬁo .

: the cowsta.mc""’fné

System.out.println(“done”) ;

writing a program

output:

0
1
2
3
4
5
6
7

Fike Edit Window Help

%java Test

++ -

Pre and Post Increment/Decrement Operator

The shortcut for adding or subtracting 1 from a variable.
X++;
Is the same as:
Xx = x + 1;
They both mean the same thing in this context:
"add 1 to the current value of x° or “Increment x by 1”
And:
X==;
is the same as:
X =x - 1;
Of course that's never the whole story. The placement of the
operator {either before or after the variable) can affect the re-
sult. Putting the operator before the variable (for example, ++x),
means,“first,increment x by 1, and then use this new value of x.”

This only matters when the ++x Is part of some larger expres-
sion rather than just in a single statement.
int x = 0; int = = ++x;
produces: xls1,z1is 1
But putting the ++ after the x give you a different result:
int x = 0; int z = x++;

produces: xIs 1, but z/s 01 z gets the value of x and then x is
Incremented.

you are here» 115

enhanced for

The enhanced for loop

Beginning with Java 5.0 (Tiger), the Java language has a second kind of for loop
called the énhanced for, that makes it easier to iterate over all the elements in an
array or other kinds of collections (you'll learn about other collections in the next
chapter). That’s really all that the enhanced for gives you—a simpler way to walk
through all the elements in the collection, but since it’s the most common use of a
Jorloop, it was worth adding it to the language. We'll revisit the enkanced for loop in
the next chapter, when we talk about collections that aren’ arrays.

Thc cod
Detlave an itevation variable The colon ¢.) repeat S;ﬁ
fhat vill held & simgle element means Yy (bhe body) "¢

n the arvay- l /' \[

for (8tring name : nameArray) {)

T . _
s h iteration, that ank Lo ikevate over
:::;; ’/ewmutg? ibn the Y:&E:v&mjc element The Ldlctﬁzn of Cl;:_‘:t}arhcr °: :odt savds
e . a w'l“ wmati *‘)\3 somew ’ AR M.
compatble with the i o o the T T ey = (el “Mary’ BA P
detlaved variable type. yavigble “rame Strinall nam e wime eaviable has the value

\({E& ﬁ“‘f;’*&ﬁfj ::t:ond ibevation, 3 value of “Mary
vea , on Wt

What it means in plain English: “For each element in nameArray, assign the
element to the ‘name’varlable, and run the body of the loop.”

How the compller sees it: Note: dff’a\dinﬁ on the
pr ralmnir.s Ja"'ﬁ‘ége ﬂﬁt‘,"\lt

¥ Create a String variable called name and set it to null. .
used in the Pas{] Some PGOf'!e
* Assign the first value in nameArray to name. K C:'F the enhanced Lor 2e
e for " u
% Run the body of the loop (the code block bounded by curly braces). in” | bmh o &’f for
ooF, becduse that's how it
+ Assign the next value in nameArray to name. :‘ﬁd‘b for EACH thing IN the
olleztion..”

+ Repeat while there are still elements in the array.

Part One: /teration variable declaration

Use this part to declare and Initialize a variable to use within the loop body. With each
iteration of the loop, this variable wili hold a different element from the collection.The
type of this varlable must be compatible with the elements in the arrayi For example,
you can't declare an /nt teratlon variable to use with a String[] array.

Part Two: the actual colfection

This must be a reference to an array or other collection. Again, don’t worry about the
other non-array kinds of collections yet—you'll see them in the next chapter.

116 chapters

Converting a String to an int

int guess = Integer.parselnt(stringGuess);

The user types his guess at the command-
line, when the game prompts him.That
guess comes In as a String (“27707 etc),
and the game passes that String into the
checkYourself() method.

But the cell locations are simply ints In an
array, and you can’t compare an Intto a
String.

For example, this won't work:
String num =“2%;

intx=2;

if (x == num) // horrible explosionl

Trying to compile that makes the compiler
laugh and mock you:

operator == cannot be applied to

int, java.lang.String

if (x == num) {)

A

So to get around the whole apples and
oranges thing, we have 10 make the String
“27into the int 2. Built Into the Java class
library is a class called Integer (that's right,
an Integer class, not the int primitive),

and one of its jobs is to take Strings that
represent numbers and convent them into
actual numbers,

Integer.parseInt (“3”)

/‘

a method in the |nte
f-'au that knows hows'f;
‘Parse” 3 String into th
int it rcprescna. €

writing a program

Casting
primitives

lon » short
9 can be cast to

bits
R0 f Side o the lefy
Z wer
% but you might J,%] ¢ et ofy

lose something

In chapter 3 we tatked about the slzes of the various primitives, and how you
can't shove a blg thing directly into a small thing:
long y = 42;
int x = y; // won’t compile

A long 1s bigger than an int and the compller can't be sure where that fong has
been. It might have been out drinking with the other longs, and taking on really
big values. To force the compller to jam the value of a bigger primitive variable
into a smaller one, you can usa the cast operator. (1 looks like this:

long vy = 42; // so far so good
int x = (int) y; // x = 42 cool!

Putting in the caQ tells the compller to take the value of y, chop it down to int
size, and set x equal to whatever is left. If the value of y was bigger than the
maximum valus of x, then what's [eft wil be a weird (but calcuiable*) number:

long y = 40002;
// 40002 exceeds the 16-bit limit of a short

short x = (short) y; // x now equals -25534!
Still, the point is that the compiler lets you do it. And let's say you hava a float-
ing point number, and you just want to gat at the whole number (jnf) part of it:

float £ = 3.14f;

int x = (int) £; // x will equal 3

And don’l sven think about casting anylhing 1o a boolean or vice versa—just
walk away.

‘It involves sign bits, binary, ‘two's complement’ and other geekery. all of which
are discussed at the baginning of appendix 8.

you are herey 117

exercise: Be the JVM

BE the JVM

» The Java file on this page
! represents a complete Source
file. Your job is to play JVM
and determine what would be
: the output when the
program runs?

fls B@ Window Help OM

% java Output
class Output 12 14

public static void main(String [] args) {

Output o = new Output();

o0.90(); -or-

)

s 31 o o
int y = 7; i

for(int x = 1; x < 8; x++) {

y++;

if (x> 4) {

System.out.print(++y + “ *); -or-

}

if (y > 14) ¢ Fils E&1 Wicow Hep Bolave
System.out.println(“ x = * + Xx); I::Sji;axoitgm
break;

}

}

118 chapters

writing a program

Code Magnets

A working Java program s all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working Java program that
produces the output listed below? Some of the curly braces feil on the
floor and they were too small to pick up, so feel free to add as many of
those as you need!

if(x==1){'

System.out.println(x + * * + y); '
= 4: ;y-—r |
for(int Y 7 4y > 21 Y

‘for(int X =0; x < 4; x++) (.

you are here » 119

puzzle: JavaCross

Across

1. Fancy computer word
for build

4. Multi-part loop

6. Test first

7. 32bits

10. Method’s answer
11. Prepcode-esque
13. Change

15. The big toolkft
17. An array unit

18. Instance or local

T

20. Autgmatic toolkit

22. Looks like a primitive,
but.

25. Un-castable

26. Math method

28. Converter method
29, Leave early

Down

2 Increment type

3. Class’s workhorse
S5.Prelsatypeof _____

6. For's iteration

7. Establish first value

8. While or For

9, Update an Instance variable
12 Towards blastoff

14. A cycle

16. Talkative package

19. Method messenger
(abbrev)

JavaCress

How does a dossword puzzle
help you learn Java? Well,all
of the words are Java related.
In addftion, the clues provide
metaphors, puns,and the like.
These mental twists and turns
bum altemate routes to Java
knowledge, right into your
brain!

21, Asif

23. Add after

24. Pihouse

26. Complleitand ____

27. ++ quantity

writing a program

A short Java program is listed below. One block of the program
is missing, Your challenge Is ta match the candidate block of
code {on the left), with the output that you'd see If the block
were inserted, Not all the lines of output wilt he used, and some
of the lines of output might be used more than once. Draw lines

Mixed
Messages connecting the candidate blocks of code with their matching

command-line output.

class MixForS5S {
public static void main(String []) args) |{
int x = 0;
int y = 30;
for (int outer = 0; outer < 3; outer++) {
for(int inner = 4; inner > 1; inner-—--) {

3
y =y -2 o et e
1f (x == 6) |
break;
}
x = x + 3;
}
y =y -2
)
System.out.println(x + “ Y + y);
}
}
Candidates: Possible output:
4eh cath
':nd':r’“ with
::,cmb\c ovkpels

26T
B « R

you are here» 121

exercise solutions

k Exercise Solutions

Be the JVM: Code Magnets:

class Qutput { class MultiFor ({

public static void main(String [] args) {

public static void main(String [] args) {
Output o = new Output();

0.90(); for(int x = 0; x < 4; x++) {
} for(int y = 4; ¥y > 2; y-~) {
void go{) { System.out.println(x + “ “ + y);
int y = 7; }
for(int x = 1; x < B; x++) {
yae; if (x == 1) { [What would happen
. . X++} if this code block came
i >
Hx)t } before the 'y' for loop?
System.out.print(++y + * “); }
} }
if (y > 14) { }
£y €0 Vindow feb Lhonooks
System.out.println(” x = “ + x); , java Multifor
break;
}
}
}
Y Did you remember to factor in the

break statement? How did that
affect the output?

Fils Eft Widow Help MotorcycisMainiznants

% java Output
1315 x =&

122 chapter 5

writing a program

Q Puzzle Selutions

Sl
Ll sl i
=]
4
i

ﬁ
EHH

y

=l
> | [Z

I
EEmEII =IEIEBEE
ﬂlg-=lIll

e
H[Z[m=
™)
®|
m)
IHE
o]+
IMINH

P M
BO[O[L [E |A N
| S T
ﬂ=ﬂlﬂlll H|

Candidates; Passible output:

youare here» 123

6 getto know the Java API

Using the Java Library

S0 it's true?
- We don't have to
& I\ build it ourselves?

Java ships with hundreds of pre-built classes. You don‘t have to
relnvent the wheel if you know how to find what you need in the Java library, known as

the Java APL. You've got better things to do. If you're going to write code, you might as well
write only the parts that are truly custom for your application.You know those programmers
who walk out the door each night at 5 PM? The ones who don't even show up until 10 AM?
They use the Java API. And about eight pages from now, so will you.The core Java library
Is a giant pile of classes just waiting for you to use like building blacks, to assemble your own
program out of largely pre-bullt code. The Ready-bake Java we use in this book Is code you
don't have to create from scratch, but you still have to type it. The Java AP is full of code you

don’t even have to type. All you need to do is learn to use it,

this Is a new chapter 125

we still have a bug

In our last chapter, we left you
with the cliff-hanger. A bug.

How it's supposed to look How the bug looks
Here's what happens when we Here's what happens when we
run it and enter the numbers enter 222,

1,2,3,4,5,6. Lookin' good.

A complete game interaction A different game fnteraction
(your mileage may vary) (yikes)

Flle Edit Window Help Smilte File Edil Window Help Felnl

%java SimpleDotComGame

%java SimpleDotComGame

enter a number 2
hit

enter a number 1
miss
enter a numbexr 2

hit

enter numbeyx
miss

enter a number 2
kill

enter number

miss

You took 3 guesses

enter number
hit

enter nurtber
hit In the current version, once

enter a number you get a hit, you can simply

kill repeat that hit two more
You took 6 guesses times for the kill!

126 chapter 6

get to know the Java API

So what happened?

Here's where it
goes wrong. We

counted a hit every ——

time the user
guessed a cell
locatlon, even If
that location had
already been hitf

We need a way to
know that when

a user makes

a hit, he hasn't
previously hit that
eell. If he has, then
we don't want to
count It as a hit.

public String checkYourself (String stringGuess) (

Integer.parselnt (stringGuess) ; ¢ to ;ﬂ:ﬁtﬁhc gb‘i"s
nin
String result = “miss”; \ Make a variable £o hold the vesult we'll
vetorn. Put “miss” in 3¢ the default

(n.e. we dssume 3 "niu").

int queass =

for (int cell : locationCalls) (

E Compare the user
(e, n the arvay.

break; '(—\ 6&0{‘{ Opﬂ\g
loop, no
to best the athey qrp

} // end if
} // end for

if (numOfHits — locationCells.length) ((_\Wc'rc ot of the |

‘ e loop, but
let's see if we're now ‘dead’
(hit 3 Limes) and thange the
vesult String 4o “ill”.

result = “kill”;
} // end if

System.out.println(result); C— D“?la‘l the vesult for the wer
roturn result; ('miss”, unless it was changed to Wit or “Kil").

Y Return the result back {.

} // end methed the ta"inﬁ method.

you are here » 4127

fixing the bug

How do we fix it?

We need a way to know whether a celi has already been hit. Let's run
through some possibilities, but first, we'll took at what we know so far...

We have a virtual row of 7 cells, and a DotCom will occupy three
consecutive cells somewhere in that row. This virtual row shows a
Dot¥Com placed at cell locations 4,5 and 6.

€— The iy
m 3 celf ;&"ﬂ;w, with {he

o 1 2 3 4 5 6 Dstc,, o) “tfor ihe

The DotCom has an instance variable—an int array—that hotds that
DotCom object's cell locations.

4 3 6
The aregy ;
& holds 5 S harstance varigh
locationCells This #azce:f&" < tel] !9;30‘3
(instance variable of 0 t 2 4,5, and & Ttolds the 3 valugs o_p

the DotCom)

ose 3
€ Wer needs 4, S“C:f Ehe numbey s

@ Optionone

We could make a second array, and each time the user makes a hit, we
store that hit in the second array, and then check that array each time
we get a hit, Yo see if that cell has been hit before,

array (deafim\Cdk) has been hit

false false true

A |£'_“) N a .
n pav—baula in in
(the eell location at {:h:f sd;:c injhei ?:*&YC"‘OC;’;:E%Q{

6—/ This vy
hitCells array 3 Ehe ‘S’G{:c)" :}'i:c?;ile! ‘-’allz\,s vepresenting
(this would be o 0 1 2 location cefis arvay. me ¢ DotCom’s
new boolean array eell at index 2 i« Lig mple, if ¢he
instance variable of the “NiéCell” v * ‘L"("‘" €t index 2 iy,
the DotCom) 3 £o “true’

128 chapter 6

get to know the Java API

Option one is too clunky

Option one seems like more work than you'd expect. It means that each
time the user makes a hit, you have to change the state of the second
array (the ‘hitCells’ array), oh -- but first you have to CHECK the 'hitCells’
array to see if that cell has already been hit anyway. It would work, but
there's got to be something better...

Option two
We could just keep the one original array, but change the value of any hit
cells Yo -1. That way, we only have ONE array to check and manipulate

{‘J\e a\rray.
locationCells ﬁ b

(instance varigble of
the DotCom)

Option two is a little better, but
still pretty clunky
Option two is a little less clunky than option one, but it's not very efficient, You'd

still have to loop through all three slots (index positions) in the array, even if
one or more are aiready invalid because they've been 'hit' (and have a -1 value).

There has to be something better...

you are hers)» 129

prep code

prep code [iESt code EITIRTY

@ Optionthree

smaller array.

have been hit

We delete each cell location as it gets hit, and then modify the array to
be smaller. Except arrays can't change their size, so we have to make a
new array and copy the remaining cells from the old array into the new

4 S5 6
locationCells array
BEFORE any cells

Lo v | |

5 6
locationCells array
AFTER cell '5’, which
was at index 1 in the
array, has been hit | | |
0 1

Option three would be much better if the array could shrink, so that we wouldn't have
to make a new smaller array, sopy the remaining values in, and reassign the reference.

Thc3 arvay starts ouf with 3 size
_gihd we loop through 4)) 2 cells
aP::{:M in the arvay) %o look {or
2 h between the “er guess and
e tell value (4,5 1) "

When cell 'S i 4;
'smaflcr arvy wi*éhto:fy 'I:itcri:aciw}
ing cell Joga ions, and assign it £on{:_hc

origing! loeationCells refevence.

The orlalnal prepeode for part of the
checkYourself() method:

Lite would be good If only we could
change If to:

REPEAT with each of the location cells in the int array —} k“PEAT with each of the remaining location cells

1/ COMPARE the user guess to the location cell

IF the user guess matches

1/ COMPARE the user guess to the ocation cell
IF the user guess matches
P REMOVE this cell from the array

INCREMENT the number of hits
/I FIND OUT if it was the last location cell:

/1 FIND OUT if it was the last location cell:

IF number of hits is 3, RETURN “kill”
ELSE it was not a ki, so RETURN"hit"
END IF

ELSE user guess did not match, so RETURN "miss”

END (F
END REPEAT

130 chapter6

P | IF the array is now empty. RETURN “kill"
ELSE it was not a kill. so RETURN"hit”
END IF
ELSE user guess did not match, so RETURN “miss”
END IF
END REPEAT

get to know the Java API

If only I could find an array
that could shrink when you remove
something. And one that you didn’t have
to loop through to check each element, but
instead you could just ask it if I contains
what you're laoking for. And it would let you
get things out of it, without having Yo know
exactly which slot the things are in.
That would be dreamy. But I know it's
just a fantasy...

when arrays aren’t enough

Wake up and swell the library

As if by magic, there really is such a thing.
But it’s not an array, it’s an Arraylist.

A class in the core Java library (the API).

The Java Standard Edition (which is what you have unless you're work-
ing on the Micro Edition for small devices and believe me, you'd know)
ships with hundreds of pre-built classes. Just like our Ready-Bake code
except that these built-in classes are already compiled.

Just use ‘em.

One of a Pazillion tlasses in
the Java libvary.

You tan use it in your code
as i-c you wrote it yowsclf.

(Note: the add(Object elem) method
actustly looks a little stvanger than the
one we've shown heve... we'll get to the
veal one later in the book. For now, Jux{: e
think of it a1 an 3dd0) method that g in Areaylist
takes the object you want {0 3dd.) &

132 chapter6

get to know the Java API

Some things you can do with Arraylist

- e-bracket syntax
't worry about this new <Bag> 3)
@® Mdkeone ?;:: o it st means “make This 2 fist of Ea o)
| ! B ! i <t dbyeet 8
ArrayList<Egg> myList = new ArrayList<Egg> () A wew Mat:{c O\)‘)CH:'S e

Lvea*,cd -dl,‘s . ‘\CA?
@ Put something in it o besasst
Eqgqg s = new Egg{); va ‘\
. “pox”
v Now H\C Aﬂ' a‘fl"ls{" srows 3
biett
myList.add(s); ¢ bholdﬂmcﬁs?;".)
S
@ Put another thing in it /"N
Egg b = new Egg () \.) The Avra List grows z0s;
) t"e ‘C“—%J Ess Ob\jtct.asam t.o ho]d
myList.add (b) ;
S
@ Find out how many things are in it b is holding 2 objetts 2
ayList is holding J
int theSize = mylist.size(); k/ T{.;:j:()v“{;hod retums 2.-'-
- obieet
@ Find out if it contains something The ArrayList DOES eontain {-;h:tigﬁ ch!c

[b“s()
boolean isIn = myList.contains(s); K veferented by ') so tontd

zevo—bated (means fivst index is 0)
erented by %' was the
indenD£0 veturns L

@ Find out where something is (i.e. its index) Arraylast is

A : £
i ; = : ; \ and sinte the °‘{)¢bt ve
int idx myList.indexOf (b); wetond thing in The tist,

@ Find out if it's empty its definitely

NOT c"‘?{) 0 isEm
boolean empty = myList.isEmpty(); & eturns _ﬂl{c ¥ 2o isEmpty0

@ Remove something from it Hey look — it shrank!

myList.remove (s);

you are here» 133

when arrays aren’t enough

&rpen your pencl

Fill in the rest of the table below by looking at the ArrayList code
on the left and putting in what you think the code might be if it
were using a regular array instead. We don't expect you to get all

of them exactly right, so just make your best guess.

Arraylist

reqular array

ArrayList<String> myList = new
ArrayList<String>();

String (] myLiS{', = new Stringl2];

String a = new String(“whoohoo”);

Strina & = new String("whoohoo);

myList.add(a};

String b = new String(“Frog”);

String b = new String(“Frog”);

myList.add(b);

int theSize = myList.size();

Object o = myList.get(1l);

myList.remove (1);

boolean isIn = myList.contains(b);

134 chapter 6

Dumb Questions

Q:So Arraylist is cool, but
how would | know it exists?

A:The question is really,
"How do | kpow what'’s [n the

API?” and that’s the key to your
success as a Java programmer.
Not to mention your key to
being as lazy as possible while
still managing to build software.
You might be amazed at how
much time you can save when
somebody else has already done
most of the heavy lifting, and

all you have to do Is step in and
create the fun part.

But we digress... the shont
answer is that you spend some
time learning what's In the core
APl. The long answer is at the
end of this chapter, where you'll
learn how to do that.

Q: But that’s a pretty big
Issue.Not only do | need to
know that the Java (ibrary
comes with ArrayList, but more
importantly | have to know
that ArrayList Is the thing that
can do what | want! So how

do | go from a need-to-do-
something to a-way-to-do-it
using the API?

A: Now you're really at the
heart of it. By the time you've
finished this book, you'll have

a good grasp of the language,
and the rest of your learning
curve really Is about knowing
how to get from a problem to

a solution, with you writing the
least amount of code, If you can
be patlent for a few more pages,
we start talking about it at the
end of this chapter.

get to know the Java API

Java-Exyose&

This week's interview:
Arraylist, on arrays

HeadFirst: So, ArrayLists are like arrays, right?
ArrayList: In their dreams! 7 am an object thank you very much.

HeadFirst: If I'm not mistaken, arrays are abjects too. They live on the heap right
there with alt the other objects.

ArrayList: Sure arrays go on the heap, dwh, but ap array is still a wanna-be
ArrayList A poser. Objects have state and behavior, right? We'’re clear on that. But
have you actually tried calling a rmethod on an array?

HeadFirst: Now that you mention it, can’t say I have. But what method would I
call, anyway? I only care about calling methods on the stuff T put in the array, not
the array itself. And I can use array syntax when I want to put things in and take
things out of the array.

ArrayList: Is that so? You mean to tell me you actually remsved something from an
array? (Sheesh, where do they #ain you guys? M¢Java’s?)

HeadFirst: Of course I take something out of the amray. I say Dog d = dogArray[])
and I get the Dog object at index | out of the array.

ArrayList: Allright, I'll try to speak slowly so you can follow along. You were nof,
I repeat nol, removing that Dog from the array. All you did was make a copy of the
reference to the Dog and assign it to another Dog variable.

HeadFirst: Oh, I see what you’re saying. No I didn’t actually remove the Dog
object from the array. It’s sall there. But I can just set 1ts reference to null, I guess.

ArrayList: But I'm a first-class object, so I have methods and I can actually, you
know, do things like remove the Dog’s reference from myself, not just set it to null.
And I can change my size, dyramically (look it up). Just try to get an aray to do that!

HeadFirst: Gee, hate to bring this up, but the rumor is that you’re nothing more
than a glorified but less-efficient array. That in fact you're just a wrapper for an
array, adding extra methods for things like resizing that I would have had to write
myself. And while we’re at it, you can't even hold primitives! Isn’t that a big limitation?

ArrayList: I can’t believe you buy into that urban legend. No, I am not just a less-
efficient array. I will admit that there are a few extremely rare situatons where an
array might be just a tad, T repeat, tad bit faster for certain things. But is it worth the
miniscule performance gain 1o give up all this power. Still, look at all this flexibility. And
as for the primitives, of course you can put a primtive in an ArrayList, as Jong as it’s
wrapped in a primitive wrapper class (you’ll see a lot more on that in chapter 10},
And as of Java 5.0, that wrapping (and unwrapping when you take the primidve out
again) happens automatically. And allright, I'll acknowledge that yes, if you’re using an
ArrayList of primitives, it probably is faster with an array, because of all the wrapping
and unwrapping, but still... who really uses primitives tiese days?

Oh, look at the dme! 'm late_for Pilales. We'll have to do this again sometime.

youare here» 135

difference between Arraylist and array

Comparing Arraylist to a regular array

Arraylist

regular array

Arraylist<String> myList = new
ArrayList<String>();

String [] myList = new String[2];

String a = new String{“whoohoo”);

String a = new String{(“whoohoo”);

myList.add({(a);

myList[0) = a;

String b = new String(“Frog”);

String b = new String(“Frog”);

myList.add(b);

myList{1l) = b;

int theSize = myList.size():; int theSize = myList.length; &
)¢ wineve
[Weres by ook
Object o = myList.get (1); String o = myList(l); tarks

myList.remove (1) ;

myList(1l] = null;

boolean isIn = mylList.contains(b);

boolean isIn = false;
for (String item : myList) {
1f (b.equals(item)) {

isIn = true;

break;

Notice how with ArrayList, you’re working
with an object of type ArrayList, so you're just
invoking regular old methods on a regular old
object, using the regular old dot operator.

138 chapter 6

With an array, you use special array syntax (like
myList[0} = foo) that you won't use anywhere
else except with arrays. Even though an

array is an object, it lives in its own special
world and you can’t invoke any methods on
it, although you can access its one and only
instance variable, length.

. A plain old array has to know its

size at the time Iit’s created.

But for ArrayList, you just make an object of
type ArrayList. Every time. It never needs to
know how big it should be, because it grows

get to know the Java API

Cowmparing Arraylist to a regular array

@ Arrays use array syntax that’s not

used anywhere else in Java.

But ArrayLists are plain old Java objects, so
they have no special syntax.

and shrinks as objects are added or removed. myList[1]
new String(2] Needs 8 size: The arvay brackets [J are special
syntax used only foc avvays

new ArrayList<String> ()

No size required (although you ean
g'lvc it a size '.4-' you want £o).

@ Arraylists in Java 5.0 are
. To put an object in a regular array, parameterized.
you must assign it to a specific
location.

(An index from 0 to one less than the length of

We just said that unlike arrays, ArrayLists
have no special syntax. But they do use
something special that was added to Java 5.0
the array.) Tiger—parameterized types.

myList[1l] = b;

T

Needs an index-

ArrayList<String>

The <String> in angle brackets is a “Lype
pavameter”. ArvayList<String> means simply “a
list of Strings”, as opposed to AvvayList<Dog>
whith means, “3 list of Dogs".

Prior to Java 5.0, there was no way to declare
the type of things that would go in the
ArrayList, so to the compiler, all ArrayLists
were simply heterogenous collections of
objects. But now, using the <typeGoesHere>

If that index is outside the boundaries of the
array (like, the array was declared with a size of
2, and now you’re trying to assign something
to index 3), it blows up at runtime.

With ArrayList, you can specify an index us-
ing the add(anlnt, anObject) method, or you
can just keep saying add(anObject) and the
ArrayList will keep growing to make room for
the new thing. syntax, we can declare and create an
myList.add (b); ArrayList that knows (and restricts) the

/\ types of objects it can hold. We’ll look at the

details of parameterized types in ArrayLists

in the Collections chapter, so for now, don’t
think too much about the angle bracket <>
syntax you see when we use ArrayLists. Just
know that it’s a way to force the compiler to
allow only a specific type of object (the type in
angle brackets) in the ArrayList.

No index.

thenes rusme b an=

the buggy DotCom code

Let's fix the DotCom code.

Remember, this is how the buggy version looks:

(instead of
We've renamed the class DMT ':»ouwd ‘vers'mn. but this
public class DotCom | S_mka), kor the vew 3 *;:s{ aber.
s khe same tode You saw ™ the
int(] locationCells;
int numOfHits = 0;
public void setLocationCells{int[] locs) {
locationCells = locs;
}
public String checkYourself (String stringGuess) |
int guess = Integer.parselnt (stringGuess);
String res8ult = “miss”;
for (int cell : locationCells) {
Wbcrg it
all
Counted mh“""ﬁ wron
without op ck-s"‘“h““ 3 hi
had "9 wheth,
slveady bon e o that el

break;
)

} // out of the loop

if (numOfHits == locationCells.length) |
result = “kill”;
}
System.out.println{result);
return result;
}y // close method

} // clese class

138 chepter 6

get to know the Java API

prep code - real code

New and improved PotCom class

import java.util .Arraylist; oW we £yl about

¢h
public class DotCom { apter.

private ArraylList<8String> locationCells; "
// privare int numOLRits; . \w\dg,g nas.
// don’t need that now r—\ ind AYYd to an An-aYL\S‘h that

eced thar nc Charge the String M

public void setLocationCells(ArrayList<String> loc) |
locationCells = loc;

} New and ‘"“Fw e

public String checkYourself (String userInput) { F
g g P Ma L'IS*»J bY askm

K
» X ‘ndc*OPO
String result = “miss”; |£;{I,w£nn{hc\m then ¥
' \‘7’\53'-i

int index = locationCells.indexOf (userInput) ;

if (index >= 0) { e—— Hindex sreater fhs,
locationCells.remove (index) ; . ist, o Yemove it eFinitely in the

1€ the list s empty) this

if (locationCells.isEmpty()) { < U "4 \iling blow!

result = “kill”;
} else {

result = “hic”;
}y // close if

Y // close outeyx if
return result;

} // close method
) // close class

you are here» 139

making the DotComBust

Let’s build the REAL game:
“Sink a Dot Com”

We’ve been working on the ‘simple’ version, but now
let’s build the real one. Instead of a single row, we'll
use a grid. And instead of one DotCom, we'll use
three.

Goal: Sink all of the computer’s Dot Coms in the
fewest number of guesses. You're given a rating level
based on how well you perform.

Setup: When the game program is launched, the
computer places three Dot Coms, randomly, on the
virtual 7 x 7 grid. When that’s complete, the game
asks for your first guess.

How you play: We haven’t learned to build a GUI
yet, so this version works at the command-iine. The
computer will prempt you to enter a guess (a cell),
which you'll type at the command-line (as “A8", “C5”,
etc.). In response to your guess, you'll see a result at
the command-line, either “hit”, “miss”, or “You sunk
Pets.com” (or whatever the lucky Dot Com of the day
is). When you’ve sent all three Dot Coms to that big
404 in the sky, the game ends by printing out your
rating.

eath B%
7 X7 gvid 2 “pell
A £
[8
-
D : a .‘.{'* ;
E
F
G =
) PSR

0 1 2 3 4 5 6

,& starts 3t zevo, like Java away;

140 chapter8

You’re going to build the
Sink a Dot Com game, with
a7 x 7 grid and three
Dot Coms. Each Dot Com
takes up three cells.

part of a game interaction

File Edit Window Halp Sel

%java DotComBust
Enter a guess A3
miss

Enter a guess
miss

Enter a guess
miss

Enter a guess

hit

Enter a guess D3
hit

Enter a guess D4
Ouch! You sunk Pets,com
kill

Enter a guess B4

miss

Enter a guess G3
hit
Enter a guess G4
hit

Enter a guess G5

Ouch! You sunk AskMe.com

What needs to change?

We have three classes that need to change: the ®
DotCom class (which iz now called DotCom instead of
SimpleDotCom), the game class (DotComBust) and the
game helper class (which we won’t worry about now).

o DotCom class

® Add a name variable
to hold the name of the DotCom
(“Pets.com”, “Go2.com”, etc.) so each Dot-
Com can print its name when it’s killed (see
the output screen on the opposite page). ®©

e DotComBust class (the game) ®

® Create three DotComs instead of one.

® Give each of the three DotComs a name.
Call a setter method on each DotCom
instance, so that the DotCom can assign the ®
name to its name instance variable.

get to know the Java API

DotComBust class continued...

Put the DotComs on a grid rather than

just a single row, and do it for all three
DotComs.

This step is now way more complex than
before, if we’'re going to place the DotComs
randomly. Since we’'re not here to mess
with the math, we put the algorithm for
giving the DotComs a location into the
GameHelper (Ready-bake) class.

Check each user guess with all three
DotComs, instead of just one.

Keep playing the game (i.e accepting

user guesses and checking them with the
remaining DotComs) until there are no more
live DotComs.

Get out of main. We kept the simple one in
main just to... keep it simple. But that’s not
what we want for the real game.

3 Classes:

DotCom

GameHelper

Tha game class. The actual
Makes DotComs,
gets usar input,

plays until a(l Dol

Coms are dead

5 Objects:

DotComBust

DotCom objacts.
DotComs know their
name, location, and
how 10 check 8 user
guass for a match,

The helper class
(Ready-Bake).

It knows how to
accapt user com-
mand-iine input,
and make DotCom
locations.

Plus 4
Arraylisys: 1 for
the DotComBust
and 1 for each
of the 3 DotCom
objects,

Gameelper

you are here» 141

detailed structure of the game

Who does what in the PotComBust game
(and whewn)

The game instantiates N
o class, 7/

DotComBust
object

instantiates

GameHelper
object

DotComBust
object

GameHelper
object

DotComBust
object

ArrayLi object (to
hold DatCom objects)

142 chapter

The main() method

in the DotComBust

class instantiates the
DotComBust object that
daes all the game stuff.

The DotComBust (game)
object instantiates an
instance af GameHelper,
the object that will help
the game do its work.

The DotComBust object
tnstantiates an ArraylList
that will hold the 3 DatCom
objects.

get to know the Java AP

The DatComBust object
creates three DotCom
abjects (and puts them in
the Arraylist)

DotComBust

object ArrayList object to :
. DotCom
hold DotCom objects objects
The DotComBust object asks the The DatComBust object gives each of the Dot-

Com abjects a location (which the DotComBust
got from the helper object) like *A2", "B2",
etc. Each DotCom object puts his own three
location cells in an Arraylist

helper object for a tocation for a
DotCom (does this 3 times, one for
each DotCom)

w3)\ Arraylist object
- (1o hold DotCom
cell locations)

DotComBust
object
e - = Arraylist
ArraylList object to j Jobject
hold DotCom objects ODI;’}::T'E -
The DotComBust object asks the helper The DotComBust object loops through the list

of DotComs, and asks each one to check the user
guess for a match. The DotCom checks its locations
ArrayList and returns a result (“hit”, “miss”, ete.)

object for a user guess (the helper
prompts the user and gets input from
the command-line)

— - I.' 4ol I
e £53 ; 1) ArraylList object
s £l i .-'-wf (to hotd DotCom
- v g\ E cell locations)

DotComBust
object

And so the game continues... get- . 2\ Arraylist
ting user input, asking each DotCom Arraylist object to (88 Yobject
to check for a match, and continuing hold DotCom objects - .

untit all DotComs are dead objects

youareherer 143

the DotComBust class (the game)

e Prep code for the real DotComBust class

GameHelper helper
AmayList dotComsL st ' The DotComBust class has three main jobs: set up the game, play the game

Int numOfGusses until the DotComs are dead, and end the game. Although we could map
those three jobs directly into three methods, we split the middle job (play the

sellpGame() game) into two methods, to keep the granularity smaller. Smaller methods

startPlaying() (meaning smaller chunks of functionality) help us test, debug, and modify

checkUserGuess() . the code more easily.

finishGame()

DECLARE and instantiate the GameHelper instance variable, named helper.

DECLARE and instantiate an ArrayList to hold the list of DotComs (initially three) Call it

Variable dotComslst.

DECLARE an int variable to hold the number of user guesses (so that we can give the user a

Declarations score at the end of the game). Name it numOfGuesses and set it to 0.

DECLARE a setUpGame() method to create and initialize the DotCom objects with names
and locations. Display brief instructions 10 the user

Method DECLARE a startPlaying(} method that asks the player for guesses and calls the
checkUserGuess() method until all the DotCom objects are removed from play.

Declarations DECLARE a checkUserGuess() method that loops through all remaining DotCom objects and
calls each DotCom abject’s checkYourse!f() methed.

DECLARE 2 finishGame() method that prints a message about the user’s performance, based
on how many guesses it took to sink all of the DotCom objects.

METHOD: vold setUpGame()
l make three DotCom objects and nome them
Method CREATYE three DotCom objects.
SET a name for each DotCom,
ADD the DotComs to the dotComsUst (the Arraylist).
REPEAT with each of the DotCom objects in the dotComsList array

CALL the placeDotCom() method on the helper object. to get a randomly-selected
location for this DotCom (three cells, vertically or horizontally aligned, on a 7 X 7 grid).

SET the location for each DotCom based on the resuit of the placeDotCom() call,
9 END REPEAT
< END METHOD

Implementations

nere”

142 chapterb

get to know the Java API

Method implementations continuved:

METHOD: vold startPlaying()
REPEAT while any DotComs exist
GET user input by calling the helper getUserinput() method
EVALUATE the user’s guess by checkUserGuess() method
END REPEAT
END METHOD

METHOD: vold checkUserGuess(String userGuess)
/1 find out if there's o hit (and kill) on any DotCom
INCREMENT the number of user guesses in the numOfGuesses variable
SET the local result variable (a String) 10 "miss”, assuming that the user’s guess will be a miss.
REPEAT with each of the DotObjects in the dotComsList array
EVALUATE the user’s guess by calling the DotCom object's checkYourselff) method
SET the resuft variable to “hit” or “kill” if appropriate
IF the resuft is “kill", REMOVE the DotCom from the dotComsList
END REPEAT
DISPLAY the result value to the user
END METHOD

METHOD: void finishGame()
DISPLAY a generic "game over” message, then:
IF number of user guesses is smal,
DISPLAY a congratulations message
ELSE
DISPLAY an insulting one
END IF
END METHOD

Wn your penci
How should we go from prep code to the

final code? First we start with test code, and
then test and bulld up our methods bit by
bit. We won't keep showing you test code

in this book, 50 now It's up to you to think
about what you'd need to know to test these

methods. And which method do you test
and write first? See If you can work out some
prep code for a set of tests. Prep code or
even bullet points are good enough for this
exercise, but if you want to try to write the
real test code (in Java), knock yourself out.

145

you are here »

the DotCemBust code (the game)

mm

import java.util.*;
public class DotComBust |

new GameHelper () ;
new Arraylist<DotCom> ()

private GameHelper helper =
private ArraylList<DotCom> dotComsList =
private int numOfGuesses = (;

private void setUpGame () {

// first make some dot coms and give them locations

DotCom one = new DotCom() ;
one.setName (“Pets.com”) ;
DotCom two = new DotCom();
two.seatName (“eToys.com”) ;
DotCom three = new DotCom{();
three.setName (“Go2.com”) ;
dotComsList.add (one) ;
dotComsList.add (two);
dotComsList.add(three) ;

System.out.println(“Your goal is to sink three dot coms.”);
System.out.printin(“Pets.com, eToys.com, Go2.com”);

mnom ;

‘Match the
‘annotations at the
‘bottom of each page
‘'with the numbers

In the code. Write
the number in the
slot In front of the
‘corresponding
annotation.

You'll use aach
‘annotation Just once,
“and you'll need all of

the annotations. :

A

System.out.println(“Try to sink them all in the fewest number of guesses”}:;

for (DotCom dotComToSet : dotComsList) |

ArrayList<String> newlocation =
dotComToSet.setLocationCells (newlocation); ‘
} // close for loop
} // close setUpGame method

private void startPlaying() |
while (!dotComsList.isEmpty())
String userGuess =
checkUserGuess {(userGuess) ; ‘
) // close while
tinishGame () i @)
} // close startPlaying method

helpex.placeDotCom(3); .

helper.getUserInput (“Enter a guess”); o

ask the helper for 3 DotCom lotation
-

~— 23l our gy thetkUser Gugs method

__as long 25 the DotCom
ld’, 1S NOT Cm?‘t‘f

dcda*& ard ¥ ba\:‘z‘ic —/SE". user ih?u{: rqaea{ with each Do{Ca-n in the list
~ Lne vaviables weHt ™ ~tall the oot
?\rm{: lmc£ give it ﬂ‘ftafu_a?d on {:J'us DO{:Com
instruttions For vom the hefpey. on You just got
user e 'em
makc three Do&,Cm o‘,{:b:h?‘;;[:s

_La” our owrn ‘Finiﬂ\éamc meﬂ»,od nan-ct) a"d sw C" "

148 chapter 8

get to know the Java API

real code

Whatever you do,
DON’T turn the

page!
private void checkUserGuess (String userGuess) |
9
numOfGuesses++; @ No_t until y?u ve
finished this
String result = “miss”; ’ exercise.

for (DotCom dotComToTest : dotComsList) ({ ’
result = dotComToTest.checkYourself (userGuess);
if (result.equals (“hit”)) {

break; @
}

if (result.equals(“kill”)) {
dotComsList.remove (dotComToTest) ; 0
break;

Our version is on
the next page.

}

} // close for
System.out.println(result); @
} // close method

private void finishGame () ¢

System.out.println(“All Dot Coms are dead! Your stock is now worthless.”);

if (numOfGuesses <= 18) {
System.out.println(*It only took you “ + numOfGuesses + “ guesses.”);
System.out.println(“ You got out before your options sank.”);

} else {
System.out.println (“Took you long encugh. “+ numOfGuesses + “ guesses.”);
System.out.println(“Fish are dancing with your options.”);

}

} // close method

public static void main (String[] args) {
DotComBust game = new DotComBust (); G
game.setUpGame () ;
game.startPlaying() ; a

} // close method

__vepeat with all DotComs in the list —_ Print the

— Print 3 message telling the vesult for

— this auy's dead, so £ake hin out of the user how he did in the game

DotComs list then get out of the loop

th
4ol the game object

has made -
intrement the number of guesses the user sssume it's @ ‘miss, unless told otherwise to set up the game
~tell the o
dme op cet he DotCom to theck the user guess,
—‘B;f, out of .£h¢.|°°i’ _ J3me play loop (&’e eps to _‘{33"{: the mai, _?::k:\ c(i; a ::I; (or kilD
Y: no point in testing "mPut and ¢heek; Ps asking for usey 3
he others "3 the guess) _ treate the game object

youare here > 147

the DotComBust code (the game)

e

import java.util.*; Detlare and \n*’;‘\a\\‘:':td_
public class DotComBust | the variables we
private GameHelper helper = new GameHelper(); [N ot of
private Arraylist<DotCom> dotComsList = new ArrayList<DotCom> (); Make an fova L‘(, ohher
3]
private int numOfGuesses = 0; DO‘%C:" ;ﬁ,&ﬂ\a{t:"‘“ hold
words, 8 !t)
| | ONLY DetCom cbjects
private void setUpGame () (sk 25 {1 wauld
// first make some dot coms and give them locations ‘Lm an 3reay ok DotCom
DotCom one = new DotCom(); 053“_{;;).
one. setName (“Pets.com”) ; ob
A om dojects
DotCom two = new DotCom{); Ma\“‘ three D and sbLB <m.
two.setName (“eToys.com”) ; aive m}\:i:cz\sb
DotCom three = new DotCom(); m the g
three.setName (“Go2.com”);
dotComsList.add (one)
dotComsList.add (two);
dotComsList.add (three) ; Peint brief
insbrustions for usev.
System.out.println(“Your goal is to sink three dot coms.”);
System.out.println(“Pets.com, eToys.com, Goz2.com”);
System.out.println (“Try to sink them all in the fewest number of gquesses”):;
for (DotCom dotComToSet : dotComsList) | &—-Repeat with each DotCom in the list.
Ask the helper for 3
ArrayList<String> newLocation = helper.placeDotCom(3); £ DotCom lotation (3“
Aveaylist of Strings).
dotComToSet.setLocationCells (newLocation);
S Call the cetty,
DotCom to give ’f‘{:ﬁdlon this
(4 .) .
} // ¢close for loop J“S{: 50{: _‘xrom ﬂ;ch }c otation You
} // close setUpgame method Cipev.

private void startPlaying() ¢ 3
As long as the DotCom list is NOT cnﬂ:y(:({:b; | means NOT, it's
while (!dotComsList.isEmpty()) ((‘d\c ame 3% (doi:ConsttiSEmy{y() == Lalee).

String usexGuess = helper.getUserInput (“Enter a guess”); & ﬁg{umr in?u{‘,

checkUserGuess (userGuess) ; ¢ Call
our oxm checkb{s«é
uess method.

) // close while
finishGame (); € Call our own finishGame method.

} // close startPlaying method

148 chapter 6

get to know the Java API

. real code

private void checkUserGuess (String userGuess) {

made
numOfGuesses++; é"’—_ intrement the number of quesses the user has

&—— assume it's 2 ‘miss’, unless told obhevrwise
with all DotComs in the list

String result = “miss”;
for (DotCom dotComToTest : dotComsList) { &— rc?ea‘l’a

result = dotComToTest.checkYourself (userGuess); ¢~ ask the Do{‘,Com to ctheek ﬂ\c usev
quess, looking for a hit (or lall)

if (result.equals(*hit”)) {

9et out of the | .
(e ‘bcs{:ing {:hce oo;seaﬂ)‘a no point

break;

}
if (result.equals (“kill”)) {

. this quy’ dead .
dotComsList.remove (dotComToTest) ; 3uY's dead, so take him out of 4
broaks & DotComs list then get out of the]oo;

}
} // close for

System.out.println(result); (‘ print the vesult for £he user int ‘
} 7/ close method print 3 message ‘Ec”ms the
user how he did in the 9ame

L

private void finishGame () {
System.out.println(“All Dot Coms are dead! Your stock is now worthless.”);

if (numOfGuesses <= 18) {
System.out.println(“It only took you “ + numOfGuesses + “ guesses.”);
System.out.println (™ You got out before your options sank.”);

} else {
System.out.println(“"Took you long enough. “+ numOfGuesses + “ guesses.”);

System.out.println(“Fish are dancing with your options”):;

}
} // close method

public static void main (Stringl] args) {

DotComBust game = new DotComBust(); g reate ¢
game.setUpGame () ; he Jame ob‘jec{:

game.startPlaying() ; (tell the .
} // close method Jime Ob*)“é to set up the am
e

tell {he

9ame °b'ccf to
39me Play loop (s " O Start ¢,
input 8ndy¢:::k keeps asking foy. m:a "

you are here» 149

the DotCom code

real code

The final version of the
PotCom class

import java.util.*;

DotCom's instante variables
public class DotCom { |
- an AwayL-'\s{ of eell lotations
private ArrayList<String> locationCells;
]
private String name; — 4he DotCom's name

{ &— te

public void setLocationCells (ArrayList<String> loc) fh:c{g:{c::%ﬁt'ﬁ wpdates
e T (Random lotation provided by

} the 6amc9e|\>er placeDotCom()

method.)

public void setName (String n)¢b— Your basic setter method
name = ny

The AW ?Lns{: index0£() method in

he
ackion] |§ the user guess is one
entries in the Awayzas{: index0£0)
public String checkYourself (String userInput) { wl b iks Ar\'a [ot location
String result = “miss”; 'm{ md“o(,‘(gt Yd:wn e

int index = locationCells.indexOf (userInput); K
if (index >= 0) {

Usina AvrayList’s vemovel J method to delete an entry.
locationCells.remove (index) ;?/ " 7

if (locationCells.isEmpty () R Msm?‘ﬂ\c .SE...?{) method to see if all

result = “kill”; the lotations havc been gucsscd

System.out.println(“Ouch! You sunk * + name + ™ HEN G
} else {

result = “hit”; T
C" {he us
} // close if e when 3 DotCop, has been sunk
} // close if

return result; &

Return miss’ op hit’
} // close method

or kill’

} // close class

150 chapter 6

Super Powerful Boolean Expressions

So far, when we've used boolean expressions for our loops or
if tests,they've been pretty simple. We will be using more
powerful boolean expressions in some of the Ready-Bake code
you're about to see, and even though we know you wouldn't
peek, we thought this would be a good time to discuss how to

energize your expressions.

‘And’ and ‘Or’ Operators (&&, ||)

Let's say you're writing a chooseCamera() method, with Jots of rules
about which camera to select. Maybe you can choose cameras
ranging from $50 to $1000, but in some cases you want to limit the

price range more precisely. You want to say something like:

‘I the price range is between $300 and $400 then choose X.'

if (price >= 300 && price < 400) {

camera = “X";

Let's say that of the ten camera brands available, you have some

logic that applies to only a few of the list:

if (brand.equals(“A”) || brand.equals(“B")) {
// do stuff for only brand A or brand B

Boolean expressions can get really big and complicated:

if ((zoomType.equals(“optical”) &&

(zoomDegree >= 3 && zoomDegree <= 8)) ||

(zoomType.equals(“digital”) &&

(zoomDegree >= 5 && zoomDegree <= 12)))

// do appropriate zoom stuff

}

If you want to get really technical, you might wonder about the
precedence of these operators. Instead of becoming an expert
in the arcane world of precedence, we recommend that you use

parentheses to make your code clear.

get to know the Java AP

Not equals (!= and !)
Let's say that you have a logic like, “of the ten available
camera models, a certain thing is true for all but one.”
if (model != 2000) {

// do non-model 2000 stuff

}

or for comparing objects like strings...
if (!brand.equals(“X")) {
// do non-brand X stuff

}

Short Circuit Operators (&&, ||)

The operators we've looked at so far, && and ||, are
known as short circuit operators. In the case of &&,
the expression will be true only if both sides of the &&
are true. S0 if the JVM sees that the left side of a &&
expression is false, it stops right there! Doesn't even
bother to look at the right side.

Similarly, with ||, the expression will be true if either side is
true, so if the JVM sees that the left side is true, it declares
the entire statement to be true and doesn't bother to
check the right side.

Why is this great? Let's say that you have a reference
variable and you're not sure whether it's been assigned

to an object. If you try to call a method using this null
reference variable (i.e.no object has been assigned), you'll
get a NullPointerException. So, try this:

if (refvar != null &&
refVar.isvalidType()) {
// do ‘got a valid type’ stuff

}
Non Short Circuit Operators (&, |)

When used in boolean expressions, the & and | operators
act like their & and || counterparts, except that

they force the VM to always check both sides of the
expression. Typically, & and | are used in another context,
for manipulating bits.

you are here» 151

Ready-bake: GameHelper

This is the helper class for the game.

/= =\ Ready-bake

Besides the user input method

(that prompts the user and reads input from the command-line), the
helper's Big Service is to create the cell locations for the DotComs.
If we were you, we'd just back away slowly from this code, except
to type it in and compile it. We tried to keep it fairly smail to you

wouldn't have to type so much, but that means it isa't the most

import java.io.*;

import java.util.*; DotComBust game class until you have

public class GameHalper |

private static final String alphabet = “abcdefg”;
private int gridlLength = 7;

private int gridSize = 49;

private int {] grid = new int[gridSize};

private int comCount = 0;

public String getUserlnput (String prompt) {
String ioputLine null;
System.out.print (prompt + “
try |

BufferedReader is new BufferedReader (
new InputStreamReader (System.in)):;
inputline is.readLine():

if (inputline.length({) == 0)
catch (IOException e) {
System.out.println{“*IOException: “ + e);
}

return inputline.toLowerCase (),

")

return null;

)

}

{

new ArrayList<String>()
//
/7

public ArrayList<String> placeDotCom(int comSize)
ArraylList<String> alphaCells
String []1 alphacoords new String (comSize];
String temp = null;

int (] coords = new int(comSize]; //
int attempts = 0; //
boolean success = false; /7
int location = 0; /7
comCount++; //
int incr = 1; //
if ((cemCount % 2) == 1) { //
incr = gridLength; //
)
while (!success § attempts++ < 200) | //
location = (int) (Math.random() * gridSize):; //

//8ystem.out.print (™ try “ + location);

int x = 0; //
success = true; //
while (success &§& x < comSize) | //
if (grid{location] == 0) { //

152 chapter

readable code. And remember, you won't be able to compile the

this class.

Note: For extra tredit, you might
)cr‘f |\m-—Lowwm:v\{iv-.s' ﬂ\c
Sy:{:cm.ou-{',prin{:(ln)'s in the
?IBCCDO{COM() nc{hod, Ju&{

to wateh it work! These print
statements will let you “theat”

by giving you the lotation of the
DotComs, but it will help You test it

holds ‘£6’ type coords
temporary String for concat
current candidate coords
current attempts counter

flag = found a good location ?
current starting location

nth dot com to place

set horizontal increment

if odd dot com (place vertically)
set vertical increment

main search loop (32)
get random starting point

nth position in dotcom to place
assume success

look for adjacent unused spots
if not already used

get to know the .Java APl

2"\ Ready-bake
ICade

Gameltelper class code continved...

coords [x++] = location; // save location

location += incr; // try ‘next’ adjacent

if (location >= gridSize) { // out of bounds - ‘bottom’
success = false; // failure

}
if (x>0 && (location % gridLength == 0)) { // out of bounds - right edge

success = false; // failure
}
} else { // found already used location
/7 System.out.print (™ used “ + location);
success = false; // failure
}
}
} // end while
int x = 0; // turn location into alpha coords

int row = 0;

int column = 0;

// System.out.println{(™\n”);
while (x < comSize) {

grid[coords[x]] = 1; // mark master grid pts. as ‘used’
row = (int) (coords[x] / gridLength); // get row value
column = coords[x] % gridLength; // get numeric column value

temp = String.valueOf (alphabet.charAt (column)); // convert to alpha

alphaCells.add (temp.concat (Integer.toString (row))); h&hﬁh
X++; Twis s the skatewew .
// System.out.print (™ coord “+x+7 = % + alphaCells.get(x-l));<“/_uﬂsﬁd,uGcﬂjvmai
} DokCom i o2t
)

// System.out.println(*\n”);

return alphaCells;
}

you are here» 153

API packages

Using the Library (the Java API)

You made it all the way through the DotComBust game,
thanks to the help of ArrayList And now, as promised,
it’s time to learn how to fool around in the Java library.

In the Java API, classes
are grouped into packages.

To use a class in the API, you
have to know which package
the class is in. -

Every class in the Java library belongs to a package.
The package has a name, like javax.swing (a
package that holds some of the Swing GUI classes
you'll learn about soon). ArrayList is in the package
called java.util, which surprise surprise, holds a

pile of utility classes. You’ll learn a lot more about
packages in chapter 16, including how to put your
own classes into your own packages. For now though,
we're just looking to use some of the classes that come
with Java.

Using a class from the API, in your own code, is
simple. You just treat the class as though you wrote

it yourself... as though you compiled it, and there it
sits, waiting for you to use it. With one big difference:
somewhere in your code you have 16 indicate the full
name of the library class you want to use, and that
means package name + class name.

Even if you didn't know it, you’ve already been using

classes from a package. System (System.out.println),
String, and Math (Math.random((}), all belong to the

java.lang package,

154 chapter6

You have to know the full name*
of the class you want to use in
your code.

ArrayList is not the full name of ArrayList, just as ‘Kathy’
isn’t a full name (unless it’s like Madonna or Cher, but we
won’t go there). The full name of ArrayList is actually:

java.util.ArrayList
S —
PaCkaae name (,\355 nare

You have to tell Java which ArraylList you
want to use. You have two options:

e IMPORT

Put an import statement at the top of your source code file:
import java.util.Arraylist;
public class MyClass {... }

OR

TYPE

Type the full name everywhere in your code. Each time
you use it. Anywhere you use it.

When you declare and/or instantiate it:

java.util .ArrayList<Dog> list = new java.util.ArrayList<Dog>();

When you use it as an argument type:
public void go(java.util.ArrayList<Dog> list) { }

When you use it as a return type:
public java.util.ArrayList<Dog> foo() (...}

*Unless the class is in the java.lang package.

get to know the Java API

therefare me
Dum uestions

Q: Why does there have to
be a full name? Is that the only
purpose of a package?

A: Packages are important
for three main reasons. First, they
help the overall organization of a
project or library. Rather than just
having one horrendously large
pile of classes, they're all grouped
into packages for specific kinds
of functionality (like GUI, or data
structures, or database stuff, etc.)

Second, packages give you a name-
scoping, to help prevent collisions
if you and 12 other programmers
in your company all decide to
make a class with the same name.
If you have a class named Set and
someone else (including the Java
AP} has a class named Set, you
need some way to tell the JVM
which Set class you're trying to use.

Third, packages provide a level of
security, because you can restrict
the code you write so that only
other classes in the same package
can access it. You'll learn all about
that in chapter 16.

Q" OK, back to the name
collision thing. How does a full
name really help? What’s to
prevent two peopie from giving a
class the same package name?

A:Java has a naming convention
that usually prevents this from
happening, as long as developers
adhere to it. We'll get into that in
more detail in chapter 16.

youare hered» 155

when arrays aren’t enough

Whaere'd that >3’ come from?

(or, what does it mean when
a package starts with Javax?)

In the first and second versions of Java (1.02
and 1.1),all classes that shipped with Java (In
other words, the standard library) were in packages

that began with Java.There was always Java.lang, of course

— the one you don‘t have to import. And there was Java.net,
Java.io, Java.util (although there was no such thing as ArrayLIst
way back then), and a few others, including the java.awt
package that held GUI-related classes.

Looming on the horizon, though, were other packages not
included in the standard library. These classes were known as
extenslons, and came in two maln flavors: standard, and not
standard. Standard extenslons were those that Sun considered
official, as opposed to experimental, early access, or beta
packages that might or might not ever see the light of day.

Standard extensions, by convention, all began with an'x’
appended to the regular java package starter. The mother of all
standard extenslons was the Swing library. It included several
packages, all of which began with Javax.swing.

But standard extensions can get promated to first-class, ships-
with-)ava, standard-out-of-the-box library packages. And that’s
what happened to Swing, beginning with version 1.2 {(which
eventually became the first version dubbed ‘Java 29.

“Cool’ everyone thought (Including us).“Now everyone who has
Java will have the Swing classes, and we won't have to flgure
out how to get those classes installed with our end-users.”

Trouble was lurking beneath the surface, however, because
when packages get promoted, well of COURSE they have to
start with Java, not Javax. Everyone XNOWS that packages in
the standard library don't have that "x} and that only extensions
have the “x" So, Just (and we mean just) befare version 1.2

went final, Sun changed the package names and deleted the
"x” {among other changes). Books were printed and in stores
featuring Swing code with the new names. Naming conventions
were intact. All was right with the Java world,

Except the 20,000 or 50 screaming developers who realized
that with that simple name change came disaster! All of their
Swing-using code had to be changed| The horror! Think of all
those import statements that started with javax...

And In the final hour, desperate, as their hopes grew thin, the
developers convinced Sun to “screw the convention, save our
code? The rest Is history. So when you see a package in the
library that begins with javax, you know It started life as an
extension, and then got a promotion.

156 chapter 6

BULLET POII"’S\\ -

Arraylist is a class in the Java API.
To put somsthing into an ArrayList, use add().

To remove something from an ArayList use
remove().

To find out where something is (and if it is) in an
ArrayList, use indexOf().

To find out if an ArrayList is empty, use
iIsEmpty().

To get the size (number of elements) in an
Arraylist, use the stze{) method.

To get the length (number of elements) in a
regular old array, remember, you use the length
varlable.

An Amaylist reslzes dynamlcally to what-

ever size is needed. It grows when objects

are added, and it shrinks when abjecis are
removed.

You declare the type of the airay using a type
paramater, which is a type name in angle
brackets. Example: ArrayList<Button> means
the ArrayList will be able to hold only objects of
type Button (or subclasses of Button as you'll
leam in the naxt coupls of chapters).

Although an AsrayList holds objects and not
primitives, the compiler will automatically “wrap”
(and “unwrap” when you take it out) a primi-
tive Into an Object, and place that object in the
Arraytist instead of the primitive. (More on this
feature later in the book.)

Classes are grouped into packages.

A class has a full name, which is a combina-
tion of the package name and the class name.
Class ArrayLIst is really java.util Amraylist.

To use a class in a package other than java.
lang, you must tell Java the fult name of the
class.

You use either an Import statement at the top of
your source code, or you can type the full name |
every place you use the class in your code.

get to know the Java API
therejare no
Dumb Que,st!(?ns

. Does import make my
class bigger? Does it actually
compile the imported class or
package into my code?

A: Perhaps you're a C pro-
grammer? An import is not the
same as an include.So the
answer is no and no. Repeat after
me:“an import statement saves
you from typing.“ That’s really it.
You don’t have to worry about
your code becoming bloated, or
slower, from too many imports.
An import is simply the way you
glve Java the full name of a class.

Q: OK, how come | never had
to import the String class? Or

System? One more time, in the unlikely

avent that you don’t already
have this down:

A: Remember, you get the
java.lang package sort of “pre-

imported” for free, Because

the classes in java.ang are so
fundamental, you don't have to
use the full name.There s only
one java.lang.String class, and one
Java.lang.System class, and Java
darn well knows where to find
them,

: Dol have to put my own
classes into packages? How do |
do that? Can | do that?

A: In the real world (which
you should try to avold), yes, you
wlil want to put your classes into
packages.We’ll getinto that in
detall in chapter 16. For now, we
won’t put our code examples In a
package.

you are here » 157

getting to know the API

How to play with the API

Two things you want to know:
o What classes are In the llbrary?

12

Once you find a class, how do
you know what it can do?

o Browse a Book

BN _-‘.-v B L
[« ~HoRcll+F m-umcu:‘:g__:.f;.m

“Good to know there’s an ArrayList in
the java.ulil package. But by myself, how
would I have figured that out?”

- Jutia, 31, hand model

bad e oy

{Bocysgil

158 chapter 6

dea™2petorn O XTI Packegn Clasa Use Tine. ind incex Hotp
i | i Yo rmand e
M Caeel L — B - - - |
Packsges t Java™ 2 Platform Standard Edlijon 5.0
B A I API Spedification
PRy (]| T doomment s the API moctfcatan (or the Java 3 Pheform Somitent Ediion 5.0
¥
A ||| 3w
1 m]h
“mm Priwides the cluses novesury K1 crese n applet o &
AbpraciOocument Cootry || [Iooaapple chizned A dpplet e i Cogumanica witi 1 applet
Abmireclocunan e |) oML,
Aiavactcaoriervios | Creizaing all af the chasaes Jor orculieng osct indertaocs wd for | |
Aol riacts | pelonag prechice mxd mages
IN ,'\ \[[J'I‘SI'IFLL o | Jsmantooke | Proscides ctaaes for codor spaces.
Rl ’ 4 ! Provigs i ndd chassos for ams fomag dats berwoen
A Deskiop Quick Referenice et e R
O.REILLY' Thrsted Fleingam

el

get to know the Java API

o Browse a Book

Flipping through a
reference baok is the
best way to find out
what’s in the Java
library. You can easily
stumble on a class that
looks useful, just by Java sl Curroncy
browsing pages.

Returnad Byr Java daxt DecimalFormat gtCumency() , fave.text. DecimalF ormatSymboks. gatOwrency ().
java_tent. Numberformat gatCumeney(). Cofrancy. gatinstance()

elass name
H% Date jva L0
L—3 jawutil cloneatilo serisiiznble comparable
?3&“36 nameé / This dass represents dates and limes 3nd lets you orork with them in a system-indepen-

dent way. You can creale a Dato by specifying the nuaber of milliseconds from the

epoch (mmdnight GMT, January lst, 1970) oc the year, mooth, date, and, optiopally, the
olion /;7 hour, mivute, 1nd second. Years arc specificd as the pumbet of years since 1900. If you
tlass dgs.',ﬂv‘bo call the Date comstrucior with no argumenis, the Dae is inittalized to the curent time
and datc. The instance methods of the class allow you (o get and set the various date
and tme fields, (0 compare dates and Umes, and 1o convert dates 1o and from string
representations, As of Jave 1), many of the dale methods bave been deprecated in
favor of the methods of the Colendar class,

pubfic sy Dafbe mplemants Uonesble. Comparable, Seraitrabls (
// Publc. Constructors

public Dattef);

pobdic Datedong date):
¢ public Data(String s}:

o public Darbefint ysar, Int month, int date):
+ public Pate(int yoar, int month, int date, int Ars, nt rab);
o public Date(int ysar, int month, int date, Int Ars. int i, int sac).
/ Progmrty Aixessor Nathods (by property name)
Pl seTlmeting s
3 ;
methods (and other ¢h; 7/ b Instancs Msthoss
we'll 4 Ik ngs public booisan afterava.uil.Date when);
about I3te) putifc olsan Before(aa.uth.Date when):
12 putiic int compareTodava.uiil. Date anotherlista):
7/ Methods mplsmenting Oomparsbls
12 public int compareYo(Object o);
// Pubiic dethods Owermiding Olect
1.2 public Object clome{);
public boghesn ecquali{Oblect otf):
putlic int hmshCoded)
public String toStringt);
// Deprecated Pudlic Methods
¢ gublicint getDate();
» public int gutDay():
7 publicin getHoars();
v pubic int getMinates().

& poblicint puth():

]

o public static long parss{String s\,

s publicvord satDatefin dato);

2 public void setHours(int howrs).

» public void setMilautesfint minates);
+ public'void sathomhgnt month);

you are here» 159

using the Java AP| documentation

e Use the HTML API docs

Sevol| through Lhe Packages
and selett ope (eliek it)

o restriet the list in the

#rom tha{ Patkasb

Constructs an cmpty List with the specified mita) cap, u,ods er
covol Khvouah J()\c ;\a:lsﬁ"tp — "ﬂ' or LhLk o0
ek ome L5 ™ 0 I ook ol
and sele p\ass ‘d\ak w (L o) Y "“M
b\msc the - S}vamt- _ Appeads the spocified ele@ent to he end of d&“&
Ine mam br " m“w;‘;pcdfulx .).-:Iz;mmh: spocified §

Java comes with a fabulous set of online docs
called, strangely, the Java API. They're part of
a larger set called the Java 5 Standard Edition
Documentation (which, depending on what
day of the week you look, Sun may be refer-
ring to as “Java 2 Standard Edition 5.07), and
you have to download the docs separately;
they don't come shrink-wrapped with the Java
5 download. If you have a high-speed internet
connection, or tons of patience, you can also
browse them at java.sun.com. Trust us, you
probably want these on your hard drive.

The API docs are the best reference for get-

ting more details about a class and its methods.

Let’s say you were browsing through the refer-
ence book and found a class called Calendar,
in java.util. The book tells you a little about it,
enough to know that this is indeed what you
want to use, but you still need to know more
about the methods.

The reference book, for example, tells you
what the methods take, as arguments, and what
they return. Look at ArrayList, for example.

In the reference book, you’ll find the method
indexOf(), that wé used in the DotCom class.
But if all you knew is that there is a method
called indexOf() that takes an object and re-
turns the index (an int) of that object, you still
need to know one crucial thing: what happens
if the object is not in the ArrayList? Looking

at the method signacure alone won't tell you
how that works. But the API docs will (most of
the time, anyway). The APl docs tell you that
the indexOf() method returns a -1 if the object
parameter is not in the ArrayList. That's how
we knew we could use it both as a way to check
if an object is even in the ArrayList, and to get
its index at the same time, if the object was
there. But without the API docs, we might have
thought that the indexOf() method would
blow up if the object wasn’t in the ArrayList.

only elasses

Constrscts mm empty st with an miita) capacity of *

Mrarliat(Collagt{on<? axtands 2 a)
retumod by the odllection’s Serator.

T\{asisvl\\gw\(wu“ !

Consmrcic 1 list contmining the elements of the spex 5006 sb“c
sevol

Arcayidupiist inttislCapacity)

L eoudl the
\’ch\“"“bawe;

boolean |ygqnl) (Callansione? extenda g> o)
the order that they are rehumed by the specified Coliection’s Jeralar.

Apponds 21l of the clemeats in 1he specificd Coliection 10 the end of tis lise, in

160 -chapter 6

voolesalpagntnrine Lndex, Ca)isotion<? sxtands K> ol

owerified nndtion

Inserts all of the clements in the spocified Collection ino tis List, staning at the

W working Java program that produces the output

get to know the Java API

CoJe Magnets

Can you reconstruct the code snippets to make a

I listed below? NOTE: To do this exercise, you need

=zl one NEW plece of info—Iif you look in the API for

| ArrayList, you'll find a second add method that takes
i| two arguments:

3 add(int Index, Object) | public static void printhAL (ArrayList<String> aly {

It lets you specify to the
ArrayList where to put the object you're adding.

if (a M contﬂins (\\

two”~)) {

a‘add(“Z.Z”) .

public static void main (String[] args) {

}

System.out.print(elemant + DS I

}
System.out.println(®)’

a.contains (“three”)) ({

a.add (“four”) ;
1

public class ArrayListMagnet {

if (a.indexOf (“four”) !'= 4) (
a.add(4, “4.27);

}
’]

<String> ()

ArrayList<String> a = new Array]

Flo £0t Widow Holp Cancs for (String element .

% java ArrayListMagnet
zero one two three

4 one ¢t e b3 , 0 W
2exo hree fou a_udd(3r't‘hre° Yi

zero one three four y;
zero one three four print-ﬂ-'(a'

you are here» 161

puzzle: crossword

JavaCress 7.0

How doaes this crossword puzzle help you learn ‘.
Java? Well, all of the words are Java related

(except one red herring).

Across

1. | an't behave

6. Or,In the courtroom
7. Where [t’s at baby

9. A fork's origin

12. Grow an ArrayLlist
13. Wholly massive

14. Value copy

16. Not an object

17. An amray on steroids
19. Extent

21. 19’s counterpart

B] '.
Hint: When in doubt, remember AmayList. '........ u .

H B JaNER
4 aAEEmEN BN N
E § § an=m
dumimm & ____ W

Down

2. Where the Java action is.
3. Addressable unit

4, 2nd smallest

5. Fractional default

8. Library’s grandest

10. Must be low density

11. Re's In there somewhere

22. Spanish geek snacks (Note: This has 15. Asif

nothing to do with Java)
23, For lazy fingers
24. Where packages roam

More Hints:

e Supiew saM gt
wkeny yuyy 94
SAIWLG 0L B ¥

BMAeLy sy g

13{GePILBAO S1BUM T

umoQ

162 chapter6

16. dearth method

18. What shopping and arrays have in common
20. Library acronym

21. What goes around

siazadde Ysjueds - eaer Incqe 10N 72
1UdLXA S ARuy (7

3AWpd UoWWoD 9L

sNARUY JuyL L

SapAURA G °|

ssory

Exercise Solutions

get to know the Java API

import java.util.*;'

Filo Edit Window Halp Oance

% java ArraylistMagnet
2ero one two three
zero one three four

2ero one three four
zero one three four

public class ArrayListMagnet { Ir

public statie void main (Stringl] args) {

ArraylList<String> a = new ArrayList<String>();

a.add(0,”zero”) ;
a.add(1l,”one”);

a.add(2,”two”) ;

a.add(3,”three”) ;
printhAL(a) ;

if (a.contains (“threa”)) {
a.add(“four”) ;
}

*a.remove(Z);

if (a.indexOf (“four”) != 4) {
a.add(4, “4.27);

if (a.contains(“two”)) {
a.add(*2.2");

}
printAL(a);

public QEAtic vold printAL(Arraylist<String> al) {

al) {

for (String element :

wy oL
’

System.out.print (element + “

}
Syatem.out.println (™ “);

you are here» 163

puzzle answers

I

JovaCraess
ANSWeErs

yOUI'
erte your OWN set of clues! Look at each word, and try to

write your own clues.Try making them easier, or harder, or
more technical than the ones we have.

6. Down
2
3.
12 4
13. 5.
14. 8.
16. 10
17. 11
19. 15
21, 16.
22, 18.
23, 20
24, 21

164 chapters

7 inheritance and polymorphism

We were underpaid,

Better LiVi ng in overworked coders 'till we

tried the Polymorphism Plan. But

o bj ectVi I Ie thanks to the Plan, our future is

bright. Yours can be tool

Plan your programs with the future in mind. ifthere were a way to wiite
Java code such that you could take mare vacations, how much would it be worth to you? What
if you could write code that someone efse could extend, easily? And if you could write code
that was flexible, for those pesky last-minute spec changes, would that be something you're
interested in? Then this Is your lucky day. For just three easy payments of 60 minutes time, you
can have all this, When you get on the Polymorphism Plan, you'll learn the 5 steps to better class
design, the 3 tricks to polymorphism, the 8 ways 10 make flexible code, and if you act now—a
bonus lesson on the 4 tips for exploiting inheritance. Don'’t delay, an offer this good will give
you the design freedom and programming flexibllity you deserve. It’s quick, it's easy, and it's

available now, Start today, and we'll throw In an extra level of abstraction!

this is a new chapter 16!

the power of inheritance

Chair Wars Revisited...

Remember way back in chapter 2, when Larry (procedural guy)
and Brad (0O guy) were vying for the Aeron chair? Let’s look at
a few pieces of that story to review the basics of inheritance.
LARRY: You've got duplicated code! The rotate procedure
is in all four Shape things. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn't see the final design. Let me
show you how OO inheritance works, Larry.

Square Amoeba

| looked at what all four

rotata() rotate() classes have In sommon.
playSound() playSound()

«

They’re Shapes, and they all rotate and
playSound. So | abstracted out the
common features and put them into a
new ¢lass called Shape. —

rotats()
playSound()

3

Then ! linked the other
four shape elasses to
the new Shape class,
in a relationship called
Inheritance.

superelass

You can read this as, “Square inherits from Shape”,
“Clrcle Inherits from Shape”, and 50 on. | removed

rotate() and playSound() froam the other shapes, so now /
thera's only one copy to maintain.

suboiasses

AN

Triangle

Square Circle

The-Shape class Is called the suparclass of the other four
ctagsas. The other four are the subclasses of Shape. The
subclasses Inherit the methods of the superclass. In othar
worgs, if the Shape class has the functionality, then the
subclasses aulomatically get thet same functionslity.

168 chapter 7

inheritance and polymorphism

What about the Amoeba rotatel)?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

How can amoeba do something different if it inherits its
functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows
exactly which rotate() method to run when someone tells the
Amoeba to rotate.

superolass
(wore abstract)

=~

rotate()

playSound() [made the Amoeba class override the

rotate(} and playSound() methods
of the superciass Shape. Overriding
Just means that a subelass redefines
one of s inherlted methods when
It needs to change or extend the
behavtor of that method.

subelasses
Imore speolfic)

\ Square : Circle Triangle Amosba

rotate()
/i amoeba-specific
/ rotate code

playSound()
I/ amoeba-specific
/1 sound code

Overriding methods
75 9

RANN
QWEWwR

How would you represent a house cat and a tiger, in an
inheritance structure. Is a domestic cat a specialized
version of a tiger? Which would be the subclass and
which would be the superciass? Or are they both
subclasses to some other class?

0o

How would you design an Inheritance structure? What
methods would be overridden?

Think about it. Before you turn the page.

you are herey 167

s way inheritance works

1 chapter 7

Understanding Inheritance

When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits from the
superclass.

In Java, we say that the subclass extends the superclass.
An inheritance relatonship means that the subclass inherits
the members of the superclass, When we say “members of
a class” we mean the instance variables and methods.

For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automaducally inherits the instance vanables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPower () and
30 on. But the PantherMan subclass can add new
methods and instance variables of its own, and it can
override the methods it inherits from the superclass
SuperHero.

superolass
(woreabstract) fsut instance varlables
2 | spociapower (state, attributes)
useSpeciatPower() . methods
putOnSuit() {behavior)
subclasses
(wore specifle)
\é, FriedEggMan PantharMan Overriding
T useSpaclalPower() methods

“

‘putOnSuit()

—

Y FriedEggMan doesn’t need any behavior that’s unique,

/&, o he doesn’t override any methods. The methods and
@& instance variables in SuperHero are sufficient.

PantherMan, though, has specific requirements for his suit
and special powers, so ugeSpecialPower () and
petonsuit () are both overridden in the PantherMan
class.

Instance variables are not overridden because they
don'’t need 1o be. They don't define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inhenited tights (o
purple, while FriedEggMan sets his to white.

An Inheritance example:

public class Doctor {
boolean worksAtHospital;
void treatPatient () |

// perform a checkup

)

public¢c ¢class FamilyDoctor extends Doctor ({

boolean makesHouseCalls;
void giveAdvice() {

// give homespun advice
}

)

public ¢lags Surgeon extends Doctor{

void treatPatient () ({
// perform surgery
)

void makeIncision() {
// make incision (yikes!)
)

inheritance and polymorphism

I inherited my
pracedures so I didn't
bother with medical school.
_ Refax, this won't hurt a bit.
(now where did I put that
power saw..)

superclass

worksAtHospital

| treatPatient ()

one nstanee variabie

one method

your pencil —

How many instanca variables does
Surgeon have?

How many instance variables does
FamilyDoctor hava?

How many methads does Doctor have?

Adds one new method | makelncision(}

subslasses How many methods does Surgeon have? ____
surgoon FamiyDoctr How many methods does FamilyDoctor
- . Adds one new have?
Overrides the Inherited makesHouseCalls instance varable
treatPatient() method | treatPatient () Can a FamilyDoctor do treatPatient()? ______
giveAdvics () Adds one new method

Can 3 FamilyDoctor do makelncision()?

169

you are here »

Let’s design the inheritance tree for
an Animal simulation program

Imagine you're asked to design a simulation program that
lets the user throw a bunch of different animals into an
environment to see what happens. We don’t have to code the
thing now, we’re mostly interested in the design.

We've been given a list of some of the animals that will be
in the program, but not all. We know that each animal will
be represented by an object, and that the objects will move
around in the environment, doing whatever it is that each
particular type is programmed to do.

And we want other programmers to be able to add new
kinds of animals to the program at any time.
First we have 1o figure out the common, abstract

characteristics that all animals have, and build those
characteristics into a class that all animal classes can extend.

o Look for objects that have common
attributes and behaviors.

What do these six types have In
common? This helps you to abstract
out behaviors. (step 2)

How are these types related? This
helps you to define the inheritance
tree relationships (step 4-5)

170 chapter 7

Using inheritance to avoid
duplicating code in subclasses

We have five instance variables:
picture ~ the file name representing the JPEG of this animal

food — the type of food this animal eats. Right now, there
can be only two values: meat or grass.

hunger — an int representing the hunger level of the animal.
It changes depending on when (and how much) the
animal eats.

boundaries — values representing the height and width of
the ‘space’ (for example, 640 x 480) that the animals will
roam around in.

location ~ the X and Y coordinates for where the animal is
in the space.

We have four methods:

makeNoise () — bebhavior for when the animal is supposed to
make noise.

eat() — behavior for when the animal encounters its
preferred food source, meat or grass.

sleep() — behavior for when the animal is considered asleep.

roam() - behavior for when the animal is not eating or
sleeping (probably just wandering around waiting to bump
into a food source or a boundary).

Lion

inheritance and polymorphism

2

Design a class that represents
the common state and behavior.

These objects are all animals, so
we'll make a common superclass
called Animal.

we'll put in methods and instance
variables that all animals might
need.

Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()

sleep()
roamy()

Wolf

Cat

you are here» 171

designing for inheritance

Po all animals eat the same way?

Assume that we all agree on one thing: the instance
variables will work for all Animal types. A lion will
have his own value for picture, food (we're thinking
meat), hunger, boundaries, and location. A hippo
will have different values for hig instance variables,
but he’ll stiil have the same variables that the other
Animal types have. Same with dog, tiger, and so on.

Decide if a subclass
needs behaviors (method

But what about behavior

Which methods should we override?

Does a lion make the same noise as a dog? Does
a cat eat like a hippo? Maybe in your version, but

in ours, eating and making noise are Animal-type-

specific. We can'’t figure out how to code those
methods in such a way that they’d work for any
animal. OK, that’s not true. We could write the

makeNoise () method, for example, so that all it does
is play a sound file defined in an instance variable
for that type, but that's not very specialized. Some

animals might make different noises
for different situations (like one
for eating, and another when
bumping into an enemy, etc.)

So just as with the Amoeba

overriding the Shape class rotate()
method, to get more amoeba-specific (in
other words, unique) behavior, we’ll have
to do the same for our Animal subclasses.

Animal

picture
food

hunger
boundaries
location

172 chapter7

I'm ore bad™ss
plant-eater.

implementations) that are specific
to that particular subclass type.

Looking at the Animal class,

we decide that eat() and
makeNoise() should be overridden
by the individual subclasses.

In the dog
community, barking is an

important part of our cultural
identity. We have a unique sound,
and we want that diversity to
be recognized and respected.

these two methods, eat0)

We bCHZC" aven"ldt

and makeNoise(), s Lhat eath animal Lype Lan

. ye &on
ine i cL‘-G‘f. behavior for eating 3
e o, i locks fee sleef) and

voaml) &3n SQY W;L'

Looking for wore inheritance

opporfunities

The class hierarchy is starting to shape up. We

have each subclass override the makeNoise() and
eal() methods, so that there’s no mistaking a Dog

bark from a Cat meow (quite insulting to both
parties). And a Hippo won't eat like a Lion.

But perhaps there’s more we can do. We have to
look at the subclasses of Animal, and see if two
or more can be grouped together in some way,
and given code that’s common 10 only that new

group. Wolf and Dog have similarities. So do

Lion, Tiger, and Cat.

Lion

makeNoise()
eat()

Hippo

makeNoise()
oat()

inheritance and polymorphism

o

Look for more opportunities to use

abstraction, by finding two or more
subclasses that might need common
behavior.

We look at our classes and see

that Wolf and Dog might have some
behavior In common, and the same goes
for Lion, Tiger, and Cat,

Animal

picture
food
hunger
boundaries
location

Tiger

roamy() Wolf ang D

c u| makeNoise()
| eat()

1

-
9 makeNoise()

makeNolse()

eat()

oal()

imakeNoise()
eat()

you are here » 173

designing for inheritance

e Finish the class hierarchy

Since animals already have an organizational Animal
hierarchy (the whole kingdom, genus, phylum

thing), we can use the level that makes the most picture

sense for class design. We'll use the bialogical food
“families” to organize the animals by making a hunger
Feline class and a Canine class. boundaries

We decide that Canines could use a common location

roam() method, because they tend to move in
packs. We also see that Felines could use a
common roam() method, because they tend to
avoid others of their own kind. We‘Ir let Hippo
continue to use its inherited roam() method—
the generic one it gets from Animal.

S0 we're done with the design for now: we'll
come back to it later in the chapter.

slaep()

Fellne

Canline

roam()

Hippo
roamy()

makeNolse()
aay()

makeNolse()
eat()

Tiger

makeNoise()
eat()

i | makeNalsa() Wolf

makeNolse()

makeNoisa() |
eat()

' =

174 chapter?7

inheritance and polymorphism

Which method is ¢alled?

The Wolf class has four methods. One
inherited from Animal, one inherited from
Canine (which is actually an overridden
version of a method in class Animal}, and
two overridden in the Wolf class. When
you create a Wolf object and assign it to

a variable, you can use the dot operator

on that reference vaniable to invoke all
four methods. But which version of those
methods gets called?

makeNoisa()
eat()

slsep()
roam()

make 3 new Wolf objct{: Wolf w = new Wolf ()

ealls the version in Wolf w.makeNoise (};
¢alls the version in Canine w.roam() ;

talls the vevsion in Wolf w.eat();

calls the version in Animal w.sleep();

When you call 2 method on an object
reference, you're calling the most specific
version of the method for that object type.

In other words, the lowest one wins!

“Lowest” meaning lowest op the
inheritance tree. Canine is lower than

Animal, and Wolf is lower than Canine, ‘
so invoking a method on a reference 21 '
to a Wolf object means the JVM starts ‘

looking first in the Wolf class. If the [VM
doesn’t ind a version of the method in
the Wolf class, it starts walking back up
the inheritance hierarchy until it finds a
match.

makeNoisa()
eat()

you are here* 175

practice designing an inheritance tree

Designing an Inheritance Tree

superclass

(wore abstract) |
Class Superslasses Subclasses ~3 L
Clothing — Boxers, Shirt subslasses fD\

(more spesifie)
Boxers Clothing more pes
Shirt Clothing Boxers Shirt
Inharitance Table

Sharpen your pencil

Find the relationships that make sense. Fill in the last two columns

Class Superclasses

Subelasses

Musician

Rock Star

Fan

Bass Player

Concert Pianist

Hint: not avarything can be connected 10 something ofse.
Hint: you're allowed to add to or change the classes listed.

{nheritance Class Diagram

Draw an inheritance diagram here.

Ot Ghestions

Q.' You said that the JVM starts
walking up the inheritance tree,
starting at the class type you invoked
the method on (like the Wolf example
on the pravious page). But what
happens if the JVM doesn’t ever find
a match?

176 chapter?

A: Good question! But you don't
have to worry about that. The compiler
guarantees that a particular method

is callable for a specific reference type,
bat it doesn't say (or care) from which
class that method actually comes from
at runtime.With the Wolf example, the
compiler checks for a sleep() methad,
but doesn't care that sleep(Is actually
defined In (and inherited from) class
Animal. Remember that if a class
Inherits a method, it has the method.

Where the inherited method Is defined
(in other words, In which superclass

it Is defined) makes no difference to
the compller. But at runtime, the JVM
will always pick the right one_And
the right one means, the most specific
version for that particular object.

Inheritance and polymorphism

Using 1S-A and HAS-A

Remember that when one class
inherits from another, we say that the
subclass extends the superclass. When
you want to know if one thing should
extend another, apply the IS-A test.

Triangle IS-A Shape, yeah, that works.
Cat IS-A Feline, that works too.
Surgeon IS-A Doctor, still good.

Does it make sense %o
say a Tub I5-A Bathroom? Or a
Bathroom IS-A Tub? Well it doesn't to
me. The relationship between my Tub
and my Bathroom is HAS-A. Bathroom
HAS-A Tub. That means Bathroom
has a Tub instance variable.

Tub extends Bathroom, sounds
reasonable.
Until you apply the IS-A lest.

To know if you’ve designed your types
correctly, ask, “Does it make sense to
say type X IS-A type Y?” If it doesn’t,
you know there’s something wrong
with the design, so if we apply the IS-A
test, Tub IS-A Bathroom is definitely
false.

What if we reverse it to Bathroom
extends Tub? That stll doesn't work,
Bathroom IS-A Tub doesn’t work.

Tub and Bathroom arerelated, but
not through inheritance. Tub and
Bathroom are joined by a HAS-A
relationship. Does it make sense to
say “Bathroom HAS-A Tub™? If yes,
then it means that Bathroom has a
Tub instance variable. In other words,
Bathroom has a reference to a Tub, but
Bathroom does not extend Tub and
vice-versa,

Int size;
Bubbles b;

Tub bathtub;
Sink theSink;

int radius;
Int colorAmt;

Bathroom HAS-A Tub and Tub HAS-A Bubbtes.
Bul nobody Inherlts from (extends) anybody else.

you are here» 177

exploiting the power of objects

178 chaptar 7

But wait! There’s more!

The IS-A test works enywherein the inheritance tree. If your
mheritance tree is well-designed, the IS-A test should make
sense when you ask any subclass if it IS-A any of its supertypes.

if class B extends class A, class B 1S-A class A.

This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both B and A.

Canine extends Animal
Wolf extends Canine
Wolf extends Animal

Canine 1S-A Animal
Wolf IS-A Canine
Wolf IS-A Animal

makeNoisea()
eat()

| sleep()
roam()

makeNoisa()
aat()

With an inheritance tree like the
one shown here, you're always
allowed to say “Wolf extends
Animal” or “Wolf IS-A Animal”.
It makes no difference if Animal
is the superclass of the superclass
of Wolf. In fact, as long as Animal
is somewhere in the inheritance
hierarchy above Wolf, Wolf IS-A
Animal will always be true.

The structure of the Animal
inheritance tree says to the world:

“Wolf IS-A Canine, so Wolf can do
anything a Canine can do. And
Wolf IS-A Animal, so Wolf can do
anything an Animal can do.”

It makes no difference if Wolf
overrides some of the methods
in Animal or Canine. As far as
the world (of other code) is
concerned, a Wolf can do those
four methods. How he does them,
or in which class they're overridden
makes no difference. A Wolf can
makeNoise (), eat(), sleep(), and
roam() because a Wolf extends
from class Animal.

How do you know if you've got
your inheritance right?

There’s obviously more to it than what we’ve
covered so far, but we'll look at a lot more OO
issues in the next chapter (where we eventually
refine and improve on some of the design work
we did in ¢his chapter).

For now, though, a good guideline is to use the
IS-A test. If “X IS-AY” makes sense, both classes
(X and Y) should probably live in the same
inheritance hierarchy. Chances are, they have
the same or overlapping behaviors.

Keep in mind that the
inheritance 1S-A relationship
works in only one direction!

Triangle IS-A Shape makes sense, so you can
have Triangle extend Shape.

But the reverse—Shape IS-A Triangle—does
not make sense, so Shape should not extend
Triangle. Remember that the 1S-A relavonship
implies that if X ISAY, then X ¢an do anything
aY can do (and possibly more).

I“a\l Makc

inheritance and polymorphism

blue
 violets are P
S fcr?sr-zdS‘hape, the reve
squd d
arede
ered, violets oo
e 'a'a prink,b notd drinks i
eris- i
I‘ 5 . Make one t!_\a ho! Rememb_et,\
‘I OKYOUY:\; t'he \S-A retatio! s
| v):i?;;‘:;ds YR Is-AY must

Put a check next to the relationships that
make sense.

[] Oven extends Kiichen

(] Gultar extends Instrument
(] Person extends Employee
(] Ferrari extends Engline

O] FriedEgg extends Food
L] Beagle extends Pet

] Container extends Jar

[J Metal extends Titanlum
[] GratefulDead extends Band
[] Blonde extends Smart

(] Beverage extends Martini

Sharpen Your pentil ————

HinL apply the 1S-A test

you are here »

179

who inherits what

thes
Dumb Questions

Q: So we see how a subclass gets
to inherit a superclass method, but
what if the superclass wants to use
the subclass version of the method?

A: A superclass won't necessarily

Q: In a subclass, what if | want to
use BOTH the superclass version and
my overriding subclass version of a
method? In other words, | don’t want
to completely replace the superclass
version, | just want to add more stuff
to it.

You can design your superclass
methods in such a way that they
contain method implementations

that will work for any subclass, even
though the subclasses may still need
to ‘append’ more code. In your subclass

know about any of its subclasses.

You might write a class and much

later someone else comes along and
extends it. But even if the superclass
creator does know about (and wants
to use) a subclass version of a method,
there’s no sort of reverse or backwards
inheritance. Think about it, children
inherit from parents, not the other way
around.

superclass”

A: You can do this! And it's an
important design feature. Think of the
word “extends” as meaning,”l want

to extend the functionality of the

public void roam() {
super.roam () ;
// my own roam stuff Y

overriding method, you can call the
superclass version using the keyword
super. It’s like saying, “first go run the
superclass version, then come back and
finish with my own code...”

this ealls £he inhevrited version of
roarn(), then tomes back Lo do
our owWn subdass-—s?ccij;ic tode

Who gets the Porsche, who gets the porcelain?
thow to know what a subclass san /R
[nhertt from its superclass)

A subclass inherits members of the
superclass. Members include instance
variables and methods, although later in

this boak we’ll look at other inherited members. A
superclass can choose whether or not it wans a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access Jevels that we’ll cover in this book,
Moving from most restrictive 10 least, the four access
levels are:

private default protected public

180 chapter?

Access levels control who sees what, and are crucial
10 having well-designed, robust Java code. For now we’ll
focus just on public and private. The rules are simple for
those two:

public members are inherited
private members are not inherited

When a subclass inherits a member, it is as if the
subclass defined the member itself. In the Shape
cxample, Square inherited the rotate {) and
playSound () methods and 10 the outside world (other
code) the Square class simply fas a rotate () and
playSound () method.

The members of a class include the variables and
mecthods defined in the class plus anything inherited
from a superclass.

Note: get more details about default and protected in chapter
|& (chlo\fncnU and appendix B.

When designing with inheritance,
are you USIng or abusing?

Although some of the reasons behind these rules won’t be
revealed undl later in this book, for now, simply knowinga
few rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type
of a superclass. Example: Willow is a more specific type of
Tree, so Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among
multiple classes of the same general type. Example:
Square, Circle, and Triangle all need to rotate and play
sound, so putdng that functionality in a superclass Shape
might make sense, and makes for easier maintenance and
extensibility. Be aware, however, that while inheritance is
one of the key features of object-oriented programming,
it's not necessarily the best way to achieve behavior reuse.
It'll get you started, and often it’s the right design choice,
but design patterns will help you see other more subtle
and flexible options. If you don’t know about design
patterns, a good follow-on to this book would be Head First
Design Patterns.

DO NOT use inheritance just so that you can reuse

code from another class, if the relationship between the
superclass and subclass viclate either of the above two
rules. For example, imagine you wrote special printing
code in the Alarm class and now you need printing code
in the Piano class, so you have Piano extend Alarm so that
Piano inherits the printing code. That makes no sense! A
Piano s not a more specific type of Alarm. (So the printing
code should be in a Printer class, that all printable objects
can take advantage of via a HAS-A relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test. Always ask yourself if the subclass
IS-A more specific type of the superclass, Example: Tea IS-
A Beverage makes sense. Beverage IS-A Tea does not.

inheritance and polymorphism

2 _
—— BULLET POIM& —_—

Asubclass extends a superclass.

A subclass inherits all pubfic instance
variables and methods of the superclass, but
does not inherit the private instance variables
and methods of the superciass.

Inherited methods can be overridden; instance
variables cannof be overidden (aithough they
can be redefined in the subclass, but that's
not the same thing, and there's almost never a
nesd to do it)

Use the 1S-A test to verify that your
inheritance hierarehy is valig. if X extends Y,
then X /S-A Y must make sense.

The [S-A relationghip works in only one
direction. A Hippo Is an Anlmal, but nat all
Animals are Hippos.

When a method is overridden in a subclass,
and that method is Invoked on an instance of
the subclass, the overridden version of the
method is called. {The lowest one wins.)

If class B extends A, and C extends B, class
B IS-A class A, and class C IS-A class B, and
class C also 1S-A class A.

you are herey 181

exploiting the power of objects

So what does all this
inheritance really buy you?

You get a lot of OO mileage by designing
with inheritance. You can get rid of duplicate
code by abstracting out the behavior common
to a group of classes, and sticking that code
10 a superclass. That way, when you need to
modify it, you have only one place to update,
and the change is magically reflected in all the
classes that inherit that behavior. Well, there's
no magic involved, but it is pretty simple:
make the change and compile the class
again. That's it. You don’t have to touch the
subclasses!

Just deliver the newly<changed superclass, and
all classes that extend it will automatically use
the new version.

A Java program is nothing but a pile of classes,
30 the subclasses don't have to be recompiled
in order to use the new version of the
superclass. As long as the superclass doesn’t
break anything for the subclass, everything’s
fine. (We’ll discuss what the word ‘break’
means in this context, later in the book. For
now, think of it as modifying something in
the superclass that the subclass is depending
on, like a particular method’s arguments or
return type, or method name, etc.)

182 chapter 7

@ You avoid duplicate
code.
Put common code in one piace, and let
the subclasses inherit that code froma
superclass. When you want to change that
behavior, you have o modify it in only
one place, and everybody else (i.e. all the
subclasses) see the change,

@® You define a common
protocol for a group of
classes.

Um, what
the heck does
THAT mean?

Inheritance lets you guarantee that
all classes grouped under a certain
supertype have all the methods that
the supertype has.”

In other words, you define a common protosol for a
set of classes related through Inheritanee.

When you define methods in a superclass, that can be
inherited by subclasses, you’'re announcing a kind of
protocol to other code that says, “All my subtypes (i.e.
subclasses) can do these things, with these methods
that look like this...”

In other words, you establish a contract.

Class Animal establishes a common protocol for all
Animal subtypes:

Youre telling the world {;\sa{:
Pnimal £3n do these Towr

maketolse()

Sea B . That inthdes the methed
sleep() ks and vebum types-
roam() Jrguments 3

And remember, when we say any Animal, we mean
Animal and any class that extends from Animal Which
again means, any class that has Animal somewhere above it
in the inheritance hierarchy.

But we're not even at the really cool part yet, because
we saved the best—polymorphism—for last.

When you define a supertype for a group of classes,
any subclass of that supertype can be substituted where the
supertype is expected.

Say, what?

Don’t worry, we're nowhere near done explaining it.
Two pages from now, you'll be an expert

"When we say “all the mathods” we mean “all the /inherifable methods®, which
for now actually means, “all the public methods®, although later we'il refine that
gefinition a bt more.

inheritance and polymorphism

And 1 care because...

Because you get to take advantage of
polymorphism.

Which matters to me
because...

Because you get to refer to a subclass
object using a reference declared as the

supertype.

And that means to me...

You get to write really flexible code.
Code that’s cleaner (more efficient,
simpler). Code that'’s not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You'll see how it works on the next page.

We don't know about you, but
personally, we find the whole
tropical vacation thing
particularly motivating.

<P

you are here» 183

the way polymorphism works

To see how polymorphism
works, we have to step back
and look at the way we
normally declare a reference
and create an object...

184 chapter?7

The 3 steps of object
declaration and assignment

1 3 2
/\—)‘*—/\ /\N—\
Dog myDog = new Dog() ;

Declare a reference
variable

Dog myDog
Tells the JVM to allocate space for a
reference variable.The reference varlable
is, forever, of type Dog. In other words,

a remote control that has buttons to

control a Dog, but not a Cat or a Button
or a Socket.

e Create an object

Dog myDog = new Dog() ;

Tells the JVM to allocate space for
a new Dog object on the garbage
collectible heap.

new Dog{();

Dog object

Link the object
and the reference

Dog myDog = new Dog() ;

Assigns the new Dog to the refer-
ence variable myDog. In other words,
program the remote control.

Dog object

inheritance and polymorphism

The important point is that the
reference type AND the object
type are the same.

In this example, both are Dog.

Dog
—

A

These two ave the same type. The veberente
variable type is declaved as Dog, and the object
is tveated as new Dog().

But with polymorphism, the
reference and the object can
be different.

Animal myDog = new 1291();

Animal

These two are NOT the same type. The
vefevente variable type is declaved as Animal,
but the objccf is ereated as new P_gg().

you are here v+ 185

polymorphism in action

With polymorphism, the reference
type can be a superclass of the

actual object type. uh... nope.
Still not gettin' it,

When you declare a reference variable,
any object that passes the IS-A test for the
declared type of the reference variable
can be assigned to that reference. In
other words, anything that extends the
declared reference variable type can
be assigned to the reference

variable. This lets you do a—
things like make polymorphic o
arrays. e
ak)‘ woﬁ'dsl
OK, OK maybe an example will help. Dedare v & \,\09 ¥ obf‘t“c‘; o byt Aimal:
e
an 2073 that
Animal [] animals = new Animal[5];
animals [0] = new Dog():
animals [1l] = new Cat(): g But look wha{yougd'-{'ﬂdo you canvu{:ANY
animals [2] = new Wolf(); subzlass of Ahm\a| in the Animal away
animala {3] = new Hippo();
animals [4] = new Lion(); Mnd here's ¢ best 1)
raison dl@b- 'F pe Ymorphie pard ¢
3e£ to loop 43 ﬂ:,hww Xample), yibe
for (int 1 = 0; i < animals.length; i++) { CAmn-a!—.:lan c.zaw‘JYa nd ¢g)| one
et docs the right thing/ o o cvevy
animals[i].eat () ; &
When & i 0, a Dog is at index O in f‘"‘ ey, s
animals[i] .xoam() ; Jor st D Dogs e methd. Wi i 1 o
aet the Cat's eatl) method
}
Same with Yoamo-
186 chapter7

inheritance and polymorphism

But wait! There's more!

You can have polymorphic
arguments and return types.
e ———— A —

If you can declare a reference vartable
of a supertype, say, Animal, and assign a

subclass object to it, say, Dog, think of how .
that might work when the reference is an ; &

argument to a method...

class Vat (

public void giveShot (Animal a)

// do horrible things to the Animal at ;::;?";:’ P""z'ﬂc‘&r tan take ANY
€ s the 4
// the other end of the ‘a’ parameter #‘ Vet is done Sivinrs&e:ﬁf’:i when
makeNoi . finimal {o n@choi:e(g, and wka‘{:;v el .ﬂme
a. eNoise() ; uhr:alfy out theve on the heap H-.;Z’Amma’
w - s
} o5& "HJ;(CNoue() 'ﬂtﬂsod hn” v s

class PetOwner

public void start() (The Veb's Sichho{O wethod ii“ J‘c;k;;n‘f
- ive it s long as The
Vet v = new Vet(): Animal you 3¢ Asmc?\t it a subelass

pass in as the a9

o
new Dog() ; 4’ }N,.al, it will work:

Dog d =
Hippo h = naw Hippo() ; /

v.giveshot(d); & Pey's makeNoise() vuns

v-giveshot(h); &—— Hippo's makeNoise) pung

you are here» 187

exploiting the power of polymorphism

NOW I get itl If T write
my code using polymorphic arguments,
where I declare the method parameter as a
superclass type, L can pass in any subclass object at
runtime, Cool. Because that alse means I can write my
code, go on vacation, and someone else can add new
subclass types Yo the program and my methods will
still work... (the only downside is I'm just making life
easier for that idiot Jim).

TR With polymorphisw, you can write tode that doesnt

have to change when you Introduce new subelass
types [nto the program.

Remember that Vet class? If you write that Vet class using
arguments declared as type Animal your code can handle any
Animal subclass. That means if others want to take advantage of
your Vet class, all they have to do is make sure their new Animal
types extend class Animal. The Vet methods will sl work, even
though the Vet class was written without any knowledge of the
new Animal subtypes the Vet will be working on.

RALNN

QWEWR
Why is polymorphism guaranteed to work this way? Why Is
it always safe to assume that any subclass type will have the
methods you think you're calling on the superciass type (the
superclass reference type you're using the dot operator on)?

188 chapter 7

therejare po |
Dun% « uestions

Q: Are there any practical limits
on the levels of subclassing? How
deep can you go?

A: If you look in the Java API,
you'll see that most inheritance
hierarchies are wide but not deep.
Most are no more than one or two
levels deep, although there are
exceptions (especially in the GUI
classes).You'll come to realize that
it usually makes more sense to keep
your inheritance trees shallow, but
there isn’t a hard limit (well, not one
that you'd ever run into).

Q: Hey, I just thought of
something... if you don’t have
access to the source code for a class,
but you want to change the way a
method of that class works, could
you use subclassing to do that? To
extend the “bad” class and override
the method with your own better
code?

AI Yep.That's one cool feature
of 00, and sometimes it saves you
from having to rewrite the class
from scratch, or track down the

programmer who hid the source code.

Q_: Can you extend any class? Or
is it like class members where if the
class is private you can't inherit it...

A: There’s no such thing as a
private class, except in a very special
case called an inner class, that we
haven’t looked at yet. But there are
three things that can prevent a class
from being subclassed.

The first is access control. Even though
aclass can’t be marked private,a
class can be non-public (what you

get if you don't declare the class as
public). A non-public class can be
subclassed only by classes in the
same package as the class. Classes in

a different package won't be able to
subclass (or even use, for that matter)
the non-public class.

The second thing that stops a class
from being subclassed is the keyword
modifier final. A final class means
that it’s the end of the inheritance
line. Nobody, ever, can extend a final
class.

The third issue is that if a class has
only private constructors (we'll
look at constructors in chapter 9), it
can't be subclassed.

inheritance and polymorphism

Q: Why would you ever want to

make a final class? What advantage
would there be in preventing a class
from being subclassed?

A: Typically, you won't make your
classes final. But if you need security

— the security of knowing that the
methods will always work the way
that you wrote them (because they
can’t be overridden), a final class
will give you that. A lot of classes in
the Java API are final for that reason.
The String class, for example, is final
because, well,imagine the havoc if
somebody came along and changed
the way Strings behave!

Q: Can you make a method final,
without making the whole class
final?

AZ If you want to protect a specific
method from being overridden, mark
the method with the fina 1modifier,
Mark the whole class as final if you
want to guarantee that none of the
methods in that class will ever be
overridden.

vou are herer 189

Keeping the contract: rules for overriding

When you override a method from a superclass, you're agreeing to
fulfill the contract. The contract that says, for example, “I take no
arguments and I return a boolean.” In other words, the arguments
and rerurn types of your overriding method must look to the outside
world exactly like the overridden method in the superclass.

The methods are the contract.

If polymorphism is going to work, the Toaster’s version of the
overridden method from Appliance has to work at runtime.
Remember, the compiler looks at the reference type to decide
whether you can call a particular method on that reference. With

an Appliance reference to a Toaster, the compiler cares only if class
Appliance has the method you're invoking on an Appliance reference.
But at runtime, the JVM looks not at the reference type (Appliance) but
at the actual Toaster object on the heap. So if the compiler has already
approved the method call, the only way it can work is if the overriding
method has the same arguments and return types. Otherwise,
someone with an Appliance reference will call turnOn() as a no-

arg method, even though there’s a version in Toaster that takes an
int. Which one is called at runtime? The one in Appliance. In other
words, the ionOn(int level) method in Toaster is not an override!

Q Arguments must be the same, and return
types must be compatible.

The contract of superclass defines how other ¢ode can use a method.
Whatever the superclass takes as an argument, the subctass over-
riding the method must use that same argument. And whatever the
superclass declares as a return type, the overriding method must de-
clare either the same type, or a subclass type. Rermember, a subclass
object is guaranteed 1o be able to do anything its superclass declares,
30 it's safe to return a subclass where the superclass Is expected.

The method can’t be less accessible.

That means the access level must be the same, or friendlier. That
means you can't, for example, override a public mathod and make
it private. What a shock that would be to the cods invoking what it

T

This i NOT an
oim.\del'

Appliance

boalean tumOn()
boatean tumOft()

Toaster

boolean tumOn(int level)

Y a3 legal
“{'-Mfﬁjn

overl OAD,
overR {DE

Appliance

public boolean tumOn()
public boolean turnOn()

thinks (at compile time) is a public method, if suddenly at runtime T L,EQN’!
the JVM slammed the door shut because the overriding version NO —\4 Toaster i’
called at runtime is private! s not 3 \esalu o
So far we've leamed about two access levels: private and public. °“‘W'.de df\\c attess |private boolean tumOn{)
The other two are In the deployment chapter (Release your Code) "C‘b“% ik o lead!
and appendix B. There's alsa another rule about overriding related level a;\D; petavst
to exception handiing, but we'll wait until the chapter on exceptions ~ o¥€¥ Ldn b £hangt
(Risky Behavlor) to cover that. you dio®
argumen

190 chapter7

inheritance and polymorphism

Overloading a method

Method overloading is nothing more than having
two methods with the same name but different
argument lists. Period. There’s no polymorphism

involved with overloaded methods! An Overloaded meﬂl()d 1S
Overloading Iets you make multiple versions just a di{ferent meﬂlod ﬂl&t

of a method, with different argument lists, for

}clonvenient(;le :;) t}llle cai(lers. Flor ex_ampl}f, if)ﬁ).u ha [JPenS to have ﬂle same
ave a method that takes only an int, the calling N
code has to convert, say, a double into an int methOd name. It has HOﬂ'ﬂng
before calling_your method. But if you overloaded {o do wi‘&'_ inhel‘itance and

the method with another version that takes a .

double, then you’ve made things easier for the PO]_YI‘]OI’PIIISM. An Overloaded

caller. You'll see more of this when we look into meﬂ‘lod 1S NOT ﬂle same as

constructors in the object lifecycle chapter.

Since an overloading method isn’t trying to an OveITldden meﬂl()d-

fulfill the polymorphism contract defined by its
superclass, overloaded methods have much more

flexibility.
@ The return types can be Legal examples of method
different. overloading:
You're free to change the return types in public class Overloads {
overloaded methods, as long as the argument lists
are different. String uniquelD;
@ You can’t change ONLY the public int addNums(int a, int b) {

return a + b;

return type.

If only the return type is different, it's not a

}

valid overload—the compiler will assume public double addNums(double a, double b) (
you're trying to override the method. And even return a + b;
that won't be legal unless the return type is }
a subtype of the return type declared in the
superclass. To overload a method, you MUST public void setUniqueID(String thelID) {
change the argument list, although you can // lots of validation code, and then:
change the return type to anything. uniqueID = thelID;
}

‘ You can vary the access public void setUniqueID(int ssNumber) {

levels in any direction. String numString = “” + ssNumber;

You're free to overload a method with a method) setUniquelD (numString) ;

that's more restrictive. It doesn't matter, since the
new method isn't obligated to fulfill the contract of
the overloaded method.

you are herey 191

exerclse: Mixed Messages

» A short Java program is listed below. One block of
MlXed s the program is missing! Your challenge Is to match
ag the candidate block of code (on the left), with the
Mess e output that you'd see if the block were fnserted.
Not all the lines of output wiil be used, and some of

Sé a = 6; 56 the lines of output might be used more than once.
b=35; 11 Draw lines connecting the candidate blocks of
a=5; 65 code with their matching command-line output.

the program:
class A { class C extends B {
int ivar = 7; void m3()
void ml(} { System.out.print(“C’s m3, “+(ivar + 6));
System,out.print(“a’s ml, *); }
} }
void m2() {
System.out.print(“A’s m2, *); public class Mixed2 {
} public static void main(String (] args) {
void m3() { A a = new A{);
System,out.print(“A’s m3, “); B b= new B();
} C c =new C();
) A a2 = new C(); candidate code
/ goes nere
1 B tends A
class B extends A { (three Iines)
void ml() (
System.out.print(“B‘s ml, *“);
} }
b }
code b.mi(); output:
. c.m2();
candidates: a_m();} Asml, A’s m2, C's w3, §
c.ml(); B’s mi, A’s m2, A's m3,
c.mZ();} A’s ml, B’s m2, A’s m3,
c.m3();
B’s ml, A’s m2, C's m3, 13
a.ml(); , , ,
b.m2();} B‘’s ml, C’s m2, A’'s m3,
c.m3(); B’s ml, B’a m2, C's m3, 6
az.ml(); A'’s ml, A’s m2, C’'s m3, 13
az.m2();
az.m3();

192 chapter?

inheritance and polymorphism

. BE the Compiler

Which of the A-B pairs of methods listed on the right, i
inserted into the classes on the left, would compile and
produce the output shown? (The A method inserted into
class Monster, the B method inserted into class Vampire.)

public class MonsterTestDrive { ,
boolean frighten(int d) {

. ; . . 1
public static void main(String (] args) { Q System.out.println(*arzrgh”);

Monster () ma = new Mongter[3]: return true:

ma[0] = new Vampire():; }
ma(l) = new Dragon(); boolean frighten({int x) {
ma[2) = new Monster(); e System.out.println(”a bite?”);
for(int x = 0; x < 3; x++) { return false;
ma[x).frighten(x); }
}
) 2 boolean frighten(int x) {
) o System.out.println{“arrrgh”);
return true;
¥
class Monster (int frighten(int f£) {

e Q System.out.println(“a bite?”);

return 1;

} }
class Vampire extends Monster { 3 boclean frightea(int x) {
System.out.println(”arrrgh”);
0 Q return false;
}
} boolean scare(int x) {

e System.out.println(“a bite?”);
clasg Dragon extends Monster (return true;

boolean frighten(int degree) (}

System.out.println(“breath fire”);

return true; 4 boolean frighten(int z) {

e System.out.println(*arrrgh”);

e E81 Window He SaveYoursed

return true;

% java MonsterTestDrive }

a bite? boolean frighten(byte b) (
breath fire e System.out.println(“a bite?”);
arrrgh return true;

you are herer 193

puzzie: Pool Puzzle

public class Rowboat {
public rowTheBoat () {
System.out.print(”stroke natasha”);
}
}
public clasg {
private int ;
void () A
length = len;
}
public int getLength() {
}
public move() <
System,out.print(” “Y;
}
}

: = -
“Rowboat

Boat Testboats

len

194 chapter 7

Pool Puzzle

Your Job is to take code snippets from the pool and place them into

the blank lines in the code.You may use the same snippet more
than once, and you might not need to use all the snippets. Your
goal is to make a set of classes that will compile and run together
as a program. Don’t be fooled - this one’s harder than it looks.

public class TestBoats {

main(String(] args)({

bl = new Boat();
Sailboat b2 = new (Y;
Rowboat = new Rowboat();
b2.setLength(32);

Sallboat Subclasses

extends

return
stroke natasha rowTheBoat
cogtlnue e b intlength string move
b1 reak s int b3 void public setLength
b2 fength
b3 '€ng int b2

bl. ();
b3, 0;
move();
}
}
public class Boat {
public O A
System.out.print{* ")
}
}

D drift drift hoist sail

arift poist sail

static private getLength

inheritance and polymorphism

BE the Compiler

Set 1 will work.

Set 2 will not compile because of Vampire's return
type (int).

The Vampire's frighten() method (B) is not a legal
override OR overload of Monster's frighten() method.
Changing ONLY the return type is not enough

to make a valid overioad, and since an int is not
compatible with a boolean, the method is not a valid
overmide. (Remember, if you change ONLY the retum
type, it must be to a retumn type that ts compatible
with the superclass version's return type, and then it's
an override.

Sets 3 and 4 will compile, but produce:
arrrgh
breath fire

arrrgh

Remember, dass Vampire did not overnde class
Monster’s frighten() method. (The frighten() method
in Vampire's set 4 takes a byte, not an int.)

code
. b.ml(); output:
candidates: em2()) } p
a.m3();

\ A‘s ml, A‘'s m2, C’s m3, 6
Mix@d comif): B’s mi, A's m2, A’s m3,
c.m2(); } A‘s ml, B’8 m2, A’s m3,

P B’s ml, A’s m2, C’'s m3, 13

a.ml();

b.m2(); B‘s ml, C’s m2, A’'s m3,
c.m3();} B'’s ml, A’s m2, C’8 m3, 6
az.ml()s A’s ml, A’S m2, C’s m3, 13
a2.m2();

az.m3():;

you are here>» 195

puzzie answers

public class Rowboat extends Boat {
public void rowTheBoat() {

System.out.print (“stroke natasha”);

}
public class Boat {
private int Iength B
public void setlength (intlen) {
length = len;

}
public int getLength() {
return length ;

¥
public void move() {

System.out.print(«drift 7);

public class TestBoats {
public static void main(sString[] args){

Boat bl = new Boat();
Sailboat bz = new Sailboat();
Rowboat b3 = new Rowboat();
b2.setLength(32);
bl.move();
b3.move();
b2 .move();

}
public class Sailboat extends Boat {

public void move() {
System.out.print (~hoist sail 7);

CUILUHE drift drift hoist sail

196 chapter 7

8 interfaces and abstract classes

Serious Polymorphism

Inheritance is jUSt the beginning. To exploit polymorphism, we need interfaces
(and not the GUI kind). We need to go beyond simple inheritance to a level of flexibility and
extensibility you can get only by designing and coding to interface specifications. Some of the
coolest parts of Java wouldn't even be possible without interfaces, so even if you don't design
with them yourself, you still have to use them.But you'll want to design with them. You'll need
to design with them. You’ll wonder how you ever lived without them.What's an interface? It's
a 100% abstract class.What's an abstract class? It’s a class that can’t be instantiated. What's that
good for? You'll see in just a few moments. But if you think about the end of the last chapter,
and how we used polymorphic arguments so that a single Vet method could take Animal
subclasses of all types, well, that was just scratching the surface. Interfaces are the poly in

polymorphism.The ab in abstract.The caffeine in Java.

197

designing with inheritance

Pid we forget about something
when we designed this?

The class structure isn’t too bad. We’ve designed
it so that duplicate code is kept to a minimum,
and we’ve overridden the methods that we think
should have subclass-specific implementations.
We’ve made it nice and flexible from a
polymorphic perspective, because we can design
Animal-using programs with Animal arguments
(and array declarations), so that any Animal
subtype—including those we never imagined at the
time we wrote our code—can be passed in and used
at runtime. We’ve put the common protocol for
all Animals (the four methods that we want the
world to know all Animals have) in the Animal
superclass, and we’re ready to start making new
Lions and Tigers and Hippos.

Feline

roam()

Animal

picture
food
hunger
boundaries
location

Hippo

Lion

makeNoise()
eat()

makeNoise()
eat()

Cat

Tiger

eat()

makeNoise()

makeNoise()

eat()

198 chapter 8

makeNoise()
eat()

sleep()
roam()

Canine

roam()

Wolf

Dog

makeNoise()
eat()

makeNoise()
eat()

%

e

interfaces and polymorphism

We know we can say:

Wolf aWolf = new Wolf (),

A Wolf veferente to a | W ok
Wolf object Wolf o ooy
=

These two are the same type.

And we know we can say:

Animal aHippo = new Hippo();

Animal veferente to \ . " &
a H’iﬂ?o objcé{- Animal \ / Ppo ob\?

These two are NOT the same type.

But here’s where it gets weird:

Animal anim = new Animal () ;
A —

Animal veferente to

an Animal ob‘)ec{:. | 4’7/’ 'Qad
Animal ‘_\ / Mal ooy

These two are the same type, but..
what the heck does an Animal ob‘)cé‘f‘. look like?

you are here » 199

when objects go bad

What does a new Animal() object

look like?

What are the instance variable values?

Some classes just should not be
instantiated!

It makes sense to create a Wolf object or a Hippo
object or a Tiger object, but what exactly is an
Animal object? What shape is it? What color, size,
number of legs...

Trying to create an object of type Animal is like a
nightmare Star Trek™ transporter accident. The
one where somewhere in the beam-me—-up process
something bad happened to the buffer.

But how do we deal with this? We need an Animal
class, for inheritance and polymorphism. But we
want programmers to instantiate only the less
abstract subclasses of class Animal, not Animal itself.
We want Tiger objects and Lion objects, not Animal
objects.

Fortunately, there’s a simple way to prevent a class
from ever being instantiated. In other words, to stop
anyone from saying “new” on that type. By marking
the class as abstract, the compiler will stop any
code, anywhere, from ever creating an instance of
that type.

200 chapters

You can still use that abstract type as a reference type.
In fact,that’s a big part of why you have that abstract
class in the first place (to use it as a polymorphic
argument or return type, or to make a polymorphic
array).

When you’re designing your class inheritance
structure, you have to decide which classes are
abstract and which are concrete. Concrete classes are
those that are specific enough to be instantiated. A
concrele class just means that it’s OK to make objects
of that type.

Making a class abstract is easy—put the keyword
abstract before the class declaration:

abstract class Canine extends Animal {

public void roam() { }

interfaces and polymorphism

The compiler won't let you instantiate
an abstract class

An abstract class means that nobody can ever make a new
instance of that class. You can still use that abstract class as a
declared reference type, for the purpose of polymorphism, but
you don’t have to worry about somebody making objects of that
type. The compiler guarantees it.

abstract public class Canine extends Animal

{
public void roam() { }

}

public class MakeCanine { ean Always assion
public void go() { This s 0¥, bccaw;oﬂo su\vcvf'\ass Evamc,

(o]

ett 3
Canine c;) subelass dbje 258 15 dostratt
new Dog() ;

c = new Canine();
—_— T — tlass Cahinc is
c.roam() ;

}

File Edit Window Help BeamMeUp

% javac MakeCanine. java

MakeCanine.java:5: Canine is abstract;
cannot be instantiated

c = new Canine () ;
A

1l error

An abstract class has virtually* no use, no value, no
purpose in life, unless it is extended.

With an abstract class, the guys doing the work at runtime
are instances of a subclass of your abstract class.

¥Thevre is an exteption to this—an abstract ¢lass ean
have static members (see chapter 10).

you are here »

201

abstract and concrete classes

Abstract vs. Concrete

A class that’s not abstract is called
a concrele class. In the Animal
inheritance tree, if we make
Animal, Canine, and Feline
abstract, that leaves Hippo, Wolf,
Dog, Tiger, Lion, and Cat as the
concrete subclasses.

Flip through the Java API and
you’ll find a lot of abstract classes,
especially in the GUI library. What
does a GUI Component look

like? The Component class is the
superclass of GUI-related classes
for things like buttons, text areas,
scrollbars, dialog boxes, you name
it. You don’t make an instance of
a generic Component and put it on
the screen, you make a JButton. In
other words, you instantiate only a
concrete subclass of Component, but
never Component itself.

abstract

| Animal

abstract

cov\l',\rc{:c Canine
Hippo b \
] tontrete

o
tontrete #;:' 2

lioncrc{:c

Tiger T\
o 1!/
’ - 8

@RA“«
VOWEWw

Hmmmm... do T
feel like red or
white tonight?

202

decent year...

Hmmmm... the Camelot
Vineyards 1997 Pinot
Noir was a pretty

abstract or concrete?

How do you know when a class should be
abstract? Wine is probably abstract. But what
about Red and White? Again probably abstract
(for some of us, anyway). But at what point in the
hierarchy do things become concrete?

Do you make PinotNoir concrete, or is it abstract
too? It looks like the Camelot Vineyards 1997
Pinot Noir is probably concrete no matter what.
But how do you know for sure?

Look at the Animal inheritance tree above.Do the
choices we've made for which classes are abstract
and which are concrete seem appropriate?

Would you change anything about the Animal
inheritance tree (other than adding more Animals,
of course)?

Abstract methods

Besides classes, you can mark methods abstract, too. An abstract
class means the class must be extended; an abstract method means
the method must be overridden. You might decide that some (or all)
behaviors in an abstract class don’t make any sense unless they’re
implemented by a more specific subclass. In other words, you can’t
think of any generic method implementation that could possibly be
useful for subclasses. What would a generic eat() method look like?

An abstract method has no body!

Because you’ve already decided there isn’t any code that would make
sense in the abstract method, you won’t put in a method body. So no
curly braces— just end the declaration with a semicolon.

interfaces and

Tt really sucks to
be an abstract method.
You don't have a body.

public abstract void eat();

|
m J(',\'\od bod\I. .
g:d \c‘h with a semitolon

If you declare an abstract method, you MUST
mark the class abstract as well. You can’t have
an abstract method in a non-abstract class.

If you put even a single abstract method in a class, you have to

%

make the class abstract. But you can mix both abstract and non- |

abstract methods in the abstract class.

therejare no

QZ What is the point of an abstract method? | thought
the whole point of an abstract class was to have common
code that could be inherited by subclasses.

A: Inheritable method implementations (in other words,
methods with actual bodies) are A Good Thing to putin a
superclass. When it makes sense. And in an abstract class, it
often doesn’t make sense, because you can’t come up with
any generic code that subclasses would find useful. The
point of an abstract method is that even though you haven’t
put in any actual method code, you've still defined part of
the protocol for a group of subtypes (subclasses).

Dumb Questions

Q: Which is good because...

A: Polymorphism! Remember, what you want is the
ability to use a superclass type (often abstract) as a method
argument, return type, or array type.That way, you get to
add new subtypes (like a new Animal subclass) to your
program without having to rewrite (or add) new methods
to deal with those new types.Imagine how you'd have to
change the Vet class, if it didn’t use Animal as its argument
type for methods. You'd have to have a separate method
for every single Animal subclass! One that takes a Lion, one
that takes a Wolf, one that takes a...you get the idea. So with
an abstract method, you're saying,“All subtypes of this type
have THIS method.” for the benefit of polymorphism.

203

you must implement abstract methods

204

You MUST implement all abstract methods

I have wonderful news,
mother. Joe finally implemented
all his abstract methods! Now

everything is working just the
way we planned...

Implementing an abstract
method is just like
overriding a method.

Abstract methods don’t have a body; they exist solely for polymorphism. That
means the first concrete class in the inheritance tree must implement all abstract
methods.

You can, however, pass the buck by being abstract yourself. If both Animal and
Canine are abstract, for example, and both have abstract methods, class Canine
does not have to implement the abstract methods from Animal. But as soon as we
get to the first concrete subclass, like Dog, that subclass must implement all of the
abstract methods from both Animal and Canine.

But remember that an abstract class can have both abstract and non-abstract
methods, so Canine, for example, could implement an abstract method from
Animal, so that Dog didn’t have to. But if Canine says nothing about the abstract
methods from Animal, Dog has to implement all of Animal’s abstract methods.

When we say “you must implement the abstract method”, that means you maust
provide a body. That means you must create a non-abstract method in your class
with the same method signature (name and arguments) and a return type that is
compatible with the declared return type of the abstract method. What you put in
that method is up to you. All Java cares about is that the method is there, in your
concrete subclass.

@ oharpen vour pencil
narpenyour

Concrete

golf course simulation

satellite photo application

interfaces and

Abstract vs. Concrete Classes

Let’s put all this abstract rhetoric into some concrete use. In the middle
column we've listed some classes. Your job is to imagine applications
where the listed class might be concrete, and applications where the listed
class might be abstract. We took a shot at the first few to get you going.
For example, class Tree would be abstract in a tree nursery program, where
differences between an Oak and an Aspen matter. But in a golf simulation
program, Tree might be a concrete class (perhaps a subclass of Obstacle),
because the program doesn’t care about or distinguish between different
types of trees. (There’s no one right answer; it depends on your design.)

Sample class Abstract

Tree tree nursery application
House architect application

Town

Football Player coaching application

Chair

Customer

Sales Order

Book

Store

Supplier

Golf Club

Carburetor

Oven

205

polymorphism examples

Polyworphism in action

Let’s say that we want to write our own kind of list class, one that will hold
Dog objects, but pretend for a moment that we don’t know about the
ArrayList class. For the first pass, we’ll give it just an add() method. We’ll use
a simple Dog array (Dog []) to keep the added Dog objects, and give it a
length of 5. When we reach the limit of 5 Dog objects, you can still call the
add() method but it won’t do anything. If we’re not at the limit, the add()
method puts the Dog in the array at the next available index position, then
increments that next available index (nextIndex).

(Si
=0,

MyDogList

Dog[] dogs
int nextindex

add(Dog d)

206

Building our own Dog-specific list

(Perhaps the world’s worst attempt at making our
own ArrayList kind of class, from scratch.)

. avrray
public class MyDogList { Use 3 \a\am old D°5

(behind the stenes-
private Dog [] dogs = new Dog[5];

private int nextIndex = 0; —— 'l incrc"\cr\{: Ehis eath
Lime 3 new Dog is added-

ubli id add(Dog d i
public void add(Dog d) { £ we've not alveady at the limit

if (nextIndex < dogs.length) { of the dogs arrays add the Dog

. e.
dogs [nextIndex] = d; and Vr"‘{" a messay

System.out.println(“Dog added at “ + nextIndex) ;

nextIndex++; (\i"a’c».ehé .
)

} next index 4, a's‘ic us the

interfaces and polymorphism

Uh-oh, now we need to keep Cats, too.

We have a few options here:
1) Make a separate class, MyCatList, to hold Cat objects. Pretty clunky.

2) Make a single class, DogAndCatList, that keeps two different arrays as instance
variables and has two different add () methods: addCat(Cat c¢) and addDog(Dog
d). Another clunky solution.

3) Make heterogeneous AnimalList class, that takes any kind of Animal subclass
(since we know that if the spec changed to add Cats, sooner or later we’ll have
some other kind of animal added as well). We like this option best, so let’s change
our class to make it more generic, to take Animals instead of just Dogs. We’ve
highlighted the key changes (the logic is the same, of course, but the type has
changed from Dog to Animal everywhere in the code.

Building our own Animal-specific list ¢ vk making 3

)
DOV\,{: Yay\\(,. ‘N,c Y‘{T wc)rc ma\('mtb]
public class MyAnimalList { new Animal oby‘;c ' ¢ bype Avimal-
eislo v~ new aveady obyet & make @ new

private Animal[] animals = new Animal[5]; bev, You tann bv{i
private int nextIndex = 0; (Remer 21 abﬁyabt&ﬂvﬁ
. R 'ms{',a“t’c 0‘(: an 3 ob\')CC
MyAnimalList . . . AN make an 3 Y)
public void add(Animal a) { ow C D ‘U\QJC {ch.
. . d-h:HOL—
Animal[] animals if (nextIndex < animals.length) { dcdaYC
int nextindex animals[nextIndex] = a;
System.out.println(“Animal added at “ + nextIndex);
add(Animal a) nextIndex++;

public class AnimalTestDrive{
public static void main (String[] args) {
MyAnimalList list = new MyAnimalList();
Dog a = new Dog() ;
Cat ¢ = new Cat():;
list.add(a) ;
list.add(c);

File Edit Window Help

% java AnimalTestDrive

Animal added at 0

Animal added at 1

you are here» 207

the ultimate superclass: Object

What about non-Animals? Why not make
a class generic enough to take anything?

You know where this is heading. We want to change the

type of the array, along with the add() method argument, to
something above Animal. Something even more generic, more
abstract than Animal. But how can we do it? We don’t have a
superclass for Animal.

Then again, maybe we do...

few of the
L',s{—,...‘h\\cﬂ

(These are just 2
mc{—)\ods n AYY'B\[
ave many move:

XS/,
ROSUCH

Arraylist

Remember those methods of ArrayList?
Look how the remove, contains, and
indexOf method all use an object of type...
Object!

poolean rem
Removes 1
Every class in Java extends

ove(Object elem)
he object at the

igrue’ if the

index parameter: Returns

element was in the list.

. . i m)
class Object. poolean contams(Ob]ect t:‘i or the object parameter.
I 's a matc
Class Object is the mother of all classes; it’s Returns true i th(;ares
the superclass of everything. isEmpty .
_P e . boolean ey if the list has N0 elements
Even if you take advantage of polymorphism, Returns ‘trué
you still have to create a class with methods . f(Object elem) . rameter, Of -1.
that take and return your polymorphic type. int mdeXO (:the index of the object pa
Without a common superclass for everything Returns eithe
in Java, there’d be no way for the developers Object get(int index) _sition in the list.
of Java to create classes with methods that Returns the elementat this p
could take your custom types... types they never bject elem) ,
knew about when they wrote the ArrayList class. boolean add(Ob) to the list (returns‘true)

So you were making subclasses of class Object
from the very beginning and you didn’t even
know it. Every class you write extends Object,
without your ever having to say it. But you can

think of it as though a class you write looks like
this:

|/ more

public class Dog extends Object { }

But wait a minute, Dog already extends something, Canine.
That’s OK. The compiler will make Canine extend Object
instead. Except Canine extends Animal. No problem, then the
compiler will just make Animal extend Object.

Any class that doesn’t explicitly extend another
class, implicitly extends Object.

So, since Dog extends Canine, it doesn’t directly extend Object
(although it does extend it indirectly), and the same is true
for Canine, but Animal does directly extend Object.

208

Adds the element

fhods use the
Obcc{‘, S'mCC

\)S O‘c Ob")CL‘E)
Lake anyld\'m‘b!

of the PerayList me
morphit £yPe
Java is @ subtlas
mc{')\Ods tan

the get() and 2dd0

Many
uH','\"‘a{:c \’O\\I
every tlass in :
these Aveaylist

(Note: 3s of Java 2.0,

ctuall look a | .
I\C::o::caoncs s;lxown heve, but Lor now this

is the way Lo think about it well gc{: into
‘{:\nc £ull story a little later)

ecent

ithle diff

interfaces and polymorphism

So what’s in this ultra-super-megaclass Object?

If you were Java, what behavior would you want every

object to have? Hmmmm... let’s see... how about a
method that lets you find out if one object is equal

Object

to another object? What about a method that can
tell you the actual class type of that object? Maybe a
method that gives you a hashcode for the object, so
you can use the object in hashtables (we’ll talk about
Java’s hashtables in chapter 17 and appendix B).
Oh, here’s a good one—a method that prints out a
String message for that object.

boolean equals()
Class getClass()
int hashCode()
String toString()

—r—

Just SOME of the methods

of elass Objeet

YourClassHere

Evcry tlass Yyou write inherits all £he

And what do you know? As if by magic, class Object
does indeed have methods for those four things.
That’s not all, though, but these are the ones we

me‘éhods of elass Ochcf. The ¢lasses
Youve written inherited methods You

really care about.

(@) equals(Object o)

Dog a
Cat c

= new Dog() ;

= new Cat();

if (a.equals(c)) {
System.out.println (“true”) ;

} else {
System.out.println(“false”) ;

}

Java Testobject Ryl you if two dbjects are
ronsideved ‘equal’ (we'll talk
sbout, what ‘equal’ veally
means in appendix B):

@) getClass()

Cat ¢ = new Cat();
System.out.println(c.getClass()) ;

File Edit Window Help Faint

% java TestObject Gives You bad" the
¢lass that ob \)cc{: was
class Cat instantiated Lrom.

didn't even know You had.

@ hashCode()

Cat ¢ = new Cat();
System.out.println(c.hashCode()) ;

File Edit Window Help

vinks out 3 hashtode

$ java TestObject \Z:or the ob:)CUt (for
8202111 o Lhink of it 3s 3
W“qyc‘).

@) tostring()

Cat c =
System.out.println(c.toString()) ;

new Cat();

File Edit Window Help LapselntoComa

% java TestObject

Cat@7d277f

Prints out a String message
with the name of the tlass
and some other number we

vavely cave about:

you are here» 209

Object and

therejare no
Dumb Questions

Q:

A: No.Well, not in the formal
Java sense anyway. Object is a
non-abstract class because it's
got method implementation
code that all classes can inherit
and use out-of-the-box, without
having to override the methods.

Is class Object abstract?

Q: Then can you override
the methods in Object?

A: Some of them. But some of
them are marked fina 1, which
means you can't override them.
You're encouraged (strongly) to
override hashCode(), equals(),
and toString() in your own
classes, and you'll learn how to
do that a little later in the book.
But some of the methods, like
getClass(), do things that must
work in a specific, guaranteed
way.

. If ArrayList methods are
generic enough to use Object,
then what does it mean to say
ArrayList<DotCom>? | thought
I was restricting the ArrayList to
hold only DotCom objects?

A: You were restricting it.
Prior to Java 5.0, ArrayLists

couldn’t be restricted. They

were all essentially what you

get in Java 5.0 today if you write
ArrayList<Object>. In other
words, an ArraylList restricted

to anything that’s an Object,
which means any object in Java,
instantiated from any class type!
We'll cover the details of this new
<type> syntax later in the book.

210

Q: OK, back to class Object
being non-abstract (so | guess
that means it’s concrete), HOW
can you let somebody make an
Object object? Isn’t that just
as weird as making an Animal

object?

A: Good question! Why is

it acceptable to make a new
Object instance? Because
sometimes you just want a
generic object to use as, well, as
an object. A lightweight object.
By far, the most common use of
an instance of type Object is for
thread synchronization (which
you'll learn about in chapter 15).
For now, just stick that on the
back burner and assume that
you will rarely make objects of
type Object, even though you
can.

Q: So is it fair to say that the
main purpose for type Object

is so that you can use it for a
polymorphic argument and
return type? Like in ArrayList?

A: The Object class serves
two main purposes:to act as a
polymorphic type for methods
that need to work on any class
that you or anyone else makes,
and to provide real method code
that all objects in Java need at
runtime (and putting them in
class Object means all other
classes inherit them). Some of
the most important methods in
Object are related to threads,
and we'll see those later in the
book.

Q: If it's so good to use
polymorphic types, why
don’t you just make ALL your
methods take and return type
Object?

A: Ahhhh...think about what
would happen. For one thing,
you would defeat the whole
point of ‘type-safety’,one

of Java’s greatest protection
mechanisms for your code. With
type-safety, Java guarantees that
you won't ask the wrong object
to do something you meant to
ask of another object type. Like,
ask a Ferrari (which you think is a
Toaster) to cook itself.

But the truth is, you don’t have
to worry about that fiery Ferrari
scenario, even if you do use
Object references for everything.
Because when objects are
referred to by an Object
reference type, Java thinks it's
referring to an instance of type
Object. And that means the

only methods you're allowed to
call on that object are the ones
declared in class Object! So if
you were to say:

Object o = new Ferrari();
o.goFast(); //Not legal!

You wouldn’t even make it past
the compiler.

Because Java is a strongly-typed
language, the compiler checks
to make sure that you're calling
a method on an object that’s
actually capable of responding.
In other words, you can call a
method on an object reference
only if the class of the reference
type actually has the method.
We'll cover this in much greater
detail a little later, so don’t worry
if the picture isn't crystal clear.

interfaces and

Using polymorphic references of type Object has a price...

Before you run off and start using type Object for all your ultra-flexible argument and return
types, you need to consider a little issue of using type Object as a reference. And keep in mind
that we’re not talking about making instances of type Object; we’re talking about making
instances of some other type, but using a reference of type Object.

When you put an object into an ArrayList<Dog>, it goes in as a Dog, and comes out as a Dog:

Make an AwayLis{: detlaved
ArrayList<Dog> myDogArraylList = new ArrayList<Dog> () ;(o hold D05 ob_)“bi

Dog aDog = new Dog () ; <—Make aDos-

rypeghrrayist.add(anog) s € fod e DOSAEZS{:\“:,Y\‘;SEOS from the list to a new D°5 veferente variable

Do veturn
709 6 7 mypehrraylast. et (D) < (Think of it as though £he getO mc’cho()i detlaves a Doy
b/\?c betause you used AWB\/L\S{KDOJ?

But what happens when you declare it as ArrayList<Object>? If you want to make an ArrayList
that will literally take any kind of Object, you declare it like this:

. _ ke an AveayList declared
ArraylList<Object> myDogArrayList = new ArrayList<Object>(); K/{\;A:h:\d“an\/ b;’?c of Ob\')ct{'»

Dog aDog = new Dog(); <&—Make a Dog» . (These two steps are the same.)
myDogArrayList.add (aDog); e— Add the Dog to the list.

But what happens when you try to get the Dog object and assign it to a Dog reference?

NO!l Won't Com?ilc” When You use Arra\/Lis{xOb\)ccb, the 9et() method
veturns type Object. The Compiler knows only that the object inherits from
Object (somewhere in its inhevitante tree) but it doesn't know it's a Dog I

Everything comes out of an ArrayList<Object> as a reference of type Object, regardless of what the
actual object is, or what the reference type was when you added the object to the list.

Dog 'd = myDogArrayList.get(0) ;

The objects go IN
as SoccerBall,
Fish, Guitar, and
Car.

Objects come out of
an ArrayList<Object>
acting like they’re
generic instances

of class Object. The
ArraylList<Object> Compiler cannot
assume the object
But they come that comes out is of

OUT as though any type other than

they were of type Object.
Object.

211

When a Dog loses its Dogness

T don't know what you're
talking about. Sit? Stay?
bark? Hmmmm... T don't
recall knowing those.

When a Pog won't act like a Pog

The problem with having everything treated
polymorphically as an Object is that the objects
appear to lose (but not permanently) their

true essence. The Dog appears to lose its dogness.
Let’s see what happens when we pass a Dog to
amethod that returns a reference to the same
Dog object, but declares the return type as type
Object rather than Dog.

hod
h the met

public void go() { e L work! \’;vcv*::“’;ﬁ\' same Y9 ’c\;:

- . s lin¢ boyel
BAD Do 2003 - new Desi); T bnened & rebereie 1 ctuen S8 P fuened
Dog sameDog@etObject(aDog) g (/ v cI}gwed ' ow s\

@ a av%\"ﬁc“{" Al '\\CY' WO \ *’ \’

' eans the Lom;’“\! ing wt O\ﬂcc

public Object getObject(Object o) {

return o;) ¢ te 4o the same Dog, but as 3

) a rekeren :
Wc{:—c rfw:n:e Obgect. This part is pecfectly legal- Noicavc
P si:ln\:\av Lo how the aet0) method works th{:\ \/DO‘* ’
§h|X:raYLis£<Ob)CCb vather than an Arraylist</oy™
n

File Edit Window Help Remember

The compiler doesn't know that the
thing returned Lrom the method is
actually a Dog, so it won't let you
assign it to a Dog veferente. (Youll
see why on the next page.)

DogPolyTest.java:10: incompatible types
found : java.lang.Object

required: Dog

Dog sameDog = takeObjects (aDog) ;
1 error A

public void go() {

Dog aDog = new Dog() ; /
Object sameDog = getObject (aDog) ;

This works (al‘l:hough it may not be very
useful, as \/ou’” see in @ moment) because You
ean assign ANYTHING 1o a reference of type
OBJCC{:, sinte every tlass passes the [S-A test
for Object. Every objeet in Java is an instance
public Object getObject(Object o) ({ of type Object, because every tlass in Java has
return o; Object at the top of its inhevitante free.

400D

}
212 chapter 8

Objects dont bark.

So now we know that when an object is
referenced by a variable declared as type
Object, it can’t be assigned to a variable
declared with the actual object’s type.
And we know that this can happen when
a return type or argument is declared

as type Object, as would be the case,

for example, when the object is put

into an ArrayList of type Object using
ArrayList<Object>. But what are the
implications of this? Is it a problem to
have to use an Object reference variable
to refer to a Dog object? Let’s try to call
Dog methods on our Dog-That-Compiler-
Thinks-Is-An-Object:

Object o =

int i = o.hashCode(); <«— "

Wont Co'“\"\c!

The compiler decides whether
you can call a method based

on the reference type, not the
actual object type.

Even if you know the object is capable
(“...but it really is a Dog, honest...”), the
compiler sees it only as a generic Object.
For all the compiler knows, you put a
Button object out there. Or a Microwave
object. Or some other thing that really
doesn’t know how to bark.

The compiler checks the class of the
reference type—not the object type—to

see if you can call a method using that
reference.

al.get (index) ;

> o.bark() ; &

interfaces and

Object

When you get an object veference from
an ArrayLis{<Objccf> (or any method
that deelares Objeet as the veturn type),
it tomes batk as a ?ol\/mo\r?hic veferente
type of Object. So you have an Object
vefevente to (in this case) a Dog instance.

. has 3
\ass Objeet can £\

s kine: "
This s methods 0 yor 2
aS\\S Odcg\odcon P\N\(oo)cc‘h wn

‘h\\a 4

Can't do this!l The Ob\)cc{ tlass has no idea what

it means to bark(). Even though YOU know it's
rcally a Dog at that index, the compiler doesn't..

hGShCOde()

. ocX
Dog goye®
Object ,
The method you re Ca“ing ona

equals() vefevence MUST be in the class of
getClass() that veferente type. Doesn't matter
hashCode() what the actual object is.
toString() K

\ o.hashCode () ;

The “o” veferente was detlared as JC\/EC
Ob\)cé‘{:, so Yyou £an ¢all methods on|\/ i
those methods ave in ¢lass Object.

213

objects are Objects

He treats me like an
Object. But I can do so
much more...if only he'd see
me for what I really am.

P

Get in fouch with your inner Object.

An object contains everything it inherits from each of its
superclasses. That means every object—regardless of its
actual class type—is also an instance of class Object.That
means any object in Java can be treated not just as a Dog,
Button, or Snowboard, but also as an Object. When you
say new Snowboard (), you get a single object on the
heap—a Snowboard object—but that Snowboard wraps
itself around an inner core representing the Object
(capital “O”) portion of itself.

A single objeet
on the hca‘})?.

equals()
getClass()

hashCode()
toString()

Snowboard

Showboard inherits methods
Lrom superclass 05\):&{:, and

equals()

getClass() adds cow movre.

hashCode()

toString) Snowboard

turn() *
~eC

e Soowboard 0o\

getAir()

loseControl()

There is only ONE object on the heap here. A Snowboard
object. But it eontains both the Snowboard elass parts of
itself and the Object tlass parts of itself.

214 chapter 8

‘Polymorphism’ means
‘many forms’.

You can treat a Snhowboard as a
Snowboard or as an Object.

If a reference is like a remote control, the
remote control takes on more and more buttons
as you move down the inheritance tree. A
remote control (reference) of type Object has
only a few buttons—the buttons for the exposed
methods of class Object. But a remote control
of type Snowboard includes all the buttons from
class Object, plus any new buttons (for new
methods) of class Snowboard. The more specific
the class, the more buttons it may have.

Of course that’s not always true; a subclass might
not add any new methods, but simply override
the methods of its superclass. The key point is
that even if the object is of type Snowboard, an
Object reference to the Snowboard object can’t see
the Snowboard-specific methods.

Snowboard S_= new Snowboard() ;

Object o =

interfaces and

When you put

an object in an
ArraylList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.

When you get a
reference from an
ArraylList<Object>, the
reference is always of
type Object.

That means you get an
Object remote control.

The Snowboard remote tontrol
(vefevente) has more buttons than X
an Objcc{: vemote tontrol. The o
Snowboard remote tan see the full
Snowboardness of the Snowboard

objcc{:- [t ean aeeess all the methods

in Snowboard, im‘,ludins both the

inherited Object methods and the

methods from class Snowboard.

fewer methods heve...

The Ob\)cc{: vefevente can see _ggl_\! the
Ob\‘)cc{ ?a\r‘ts o£ the Snowboard ob\')cc{',.
[t can actess only the methods of class

Objcc{:~ [t has fewer buttons than the
Showboard \rtmo‘tc Con{',rol.

215

casting objects

Wait a minute... what good
is a Dog if it comes out of an
ArrayList<Object> and it can't do
any Dog things? There's gotta be a
way to get the Dog back to a state
of Dogness...

Casting an object reference
back to its real type.

o8
ﬂ 009 ob\e®
Object

T hope it doesn't hurt.

And what's so wrong with
staying an Object? OK, I can't
fetch, sure, but I can give you
a real nice hashcode.

It’s really still a Dog object, but if you want to call
Dog-specific methods, you need a reference declared
as type Dog. If you're sure* the object is really a
Dog, you can make a new Dog reference to it by
copying the Object reference, and forcing that
copy to go into a Dog reference variable, using a
cast (Dog). You can use the new Dog reference to
call Dog methods.

Object o = al.get(index) ;) k to
b et bat
Dog d = (Dog) o;(._w% the Ok,%f,w is there

d.roam() ; a Doy we

Cast the so—called ‘Objccf' (but

we know he’s achually a Dog) to

type D°5: so that you ean treat .

him like the Dog he veally is. Dog
*If you’re not sure it’s a Dog, you can use the
instanceof operator to check. Because if
you’re wrong when you do the cast, you'll get a
ClassCastException at runtime and come to a
grinding halt.

if (o instanceof Dog) ({
Dog d = (Dog) o;
}

216 chapter8

interfaces and

So now you’ve seen how much Java

cares about the methods in the

class of the reference variable.
e

You can call a method on an object only if
the class of the reference variable has that
method.

Think of the public methods in your class as
your contract, your promise to the outside
world about the things you can do.

When you write a class, you almost always expose some
of the methods to code outside the class. To expose a
method means you make a method accessible, usually by
marking it public.

Imagine this scenario: you’re writing code for a small
business accounting program. A custom application

for “Simon’s Surf Shop”. The good re-

Account
user that you are, you found an Account
class that appears to meet your needs debit(double amt)
perfectly, according to its documentation,
anyway. Each account instance represents credit(double amt)
an individual customer’s account with the double qetBal
store. So there you are minding your own ouble getBalance()

business invoking the credit() and debit()
methods on an account object when you realize you
need to get a balance on an account. No problem—
there’s a getBalance() method that should do nicely.

Except... when you invoke the getBalance() method,
the whole thing blows up at runtime. Forget the
documentation, the class does not have that method.
Yikes!

But that won’t happen to you, because everytime you
use the dot operator on a reference (a.doStuff()), the
compiler looks at the reference type (the type ‘a’ was
declared to be) and checks that class to guarantee the
class has the method, and that the method does indeed
take the argument you’re passing and return the kind of
value you’re expecting to get back.

Just remember that the compiler checks the class of the
reference variable, not the class of the actual object at the
other end of the reference.

217

modifying a class tree

218

What if you need to change
the contract?

OK, pretend you’re a Dog. Your Dog class
isn’t the only contract that defines who you
are. Remember, you inherit accessible (which
usually means public) methods from all of
your superclasses.

True, your Dog class defines a contract.
But not all of your contract.

Everything in class Canine is part of your
contract.

Everything in class Animal is part of your
contract.

Everything in class Object is part of your
contract.

According to the IS-A test, you are each of
those things—Canine, Animal, and Object.

But what if the person who designed your
class had in mind the Animal simulation
program, and now he wants to use you (class
Dog) for a Science Fair Tutorial on Animal
objects.

That’s OK, you’re probably reusable for that.

But what if later he wants to use you for a
PetShop program? You don’t have any Pet
behaviors. A Pet needs methods like belriendly()

and play().

OK, now pretend you’re the Dog class
programmer. No problem, right? Just add
some more methods to the Dog class. You
won’t be breaking anyone else’s code by
adding methods, since you aren’t touching
the existing methods that someone else’s code
might be calling on Dog objects.

Can you see any drawbacks to that approach
(adding Pet methods to the Dog class)?

_@?RA"«
TOawWE®R

Think about what YOU would do if YOU were
the Dog class programmer and needed to
modify the Dog so that it could do Pet things,
too. We know that simply adding new Pet be-
haviors (methods) to the Dog class will work,
and won't break anyone else's code.

But... this is a PetShop program. It has more
than just Dogs! And what if someone wants
to use your Dog class for a program that has
wild Dogs? What do you think your options
might be, and without worrying about how
Java handles things, just try to imagine how
you'd like to solve the problem of modifying
some of your Animal classes to include Pet
behaviors.

Stop right now and think about it,
before you look at the next page where we
begin to reveal everything.

(thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories)

interfaces and

Let’s explore some design options
for reusing some of our existing
classes in a PetShop program.

On the next few pages, we’re going to walk through
some possibilities. We’re not yet worried about
whether Java can actually do what we come up with.
We’ll cross that bridge once we have a good idea of
some of the tradeoffs.

@ Option one
We take the easy path, and put pet
methods in class Animal.

Pros: Y“"

All the Animals will instantly inherit "
the pet behaviors. We won't have to \’/ £
touch the existing Animal subclasses
at all, and any Animal subclasses Animal
created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets

o

oc e

%
A\ the Y: wg heee

g to

Canine

Cons:

So... when was the last time you
saw a Hippo at a pet shop? Lion? e
Wolf? Could be dangerous to give
non-pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs

and Cats tend to imple- Lion i:
ment pet behaviors 1 L

VERY differently.

219

modifying existing classes

@ Option two
We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

Pros:

That would give us all the benefits of Option One, but with-
out the drawback of having nhon-pet Animals running around
with pet methods (like beFriendly()). All Animal classes
would have the method (because it's in class Animal), but
because it's abstract the non-pet Animal classes won't
inherit any functionality. All classes MUST override the
methods, but they can make the methods “"do-nothings"”.

Cons:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the first concrete subclass
down the inheritance tree.) What a waste of time!

You have to sit there and type in each and every
pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things

Feline

ok

Animal

.

A\ Xne € o v ye 3
heee ot s M2

v V\‘ha)(’\o s’c‘fat’*"

wc’d‘“’ds

(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet

class would be announcing to the
world that it, oo, has those Cat
pet methods, even though

the methods wouldn't

actually DO anything %

when called.

This approach doesn't

look good at all. Tt just
seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to
ALL Animal subclasses.

Ask me to be friendly.
No, seriously... ask me.
I have the method.

220

interfaces and

® Option three
Put the pet methods ONLY in the
classes where they belong.

Pros:

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can
implement the methods and Cats can implement the
methods, but nobody else has to know about them.

Cons:

Two Big Problems with this approach. First off, you'd
have to agree to a protocol, and all programmers of
pet Animal classes nhow and in the future would have

to KNOW about the protocol. By protocol, we mean
the exact methods that we've decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn't in a contract,
the compiler has no way to check you to see if you've
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and find that not all of them work
quite right.

Feline

. ONL\(n the

d
.B(Put the Peb m&i ¢an be FEL®

P‘V\'\ma\ L\ass.CS
.ms,hcad O‘Q wm

P\n\ma .

| Animal

And second, you don't get to use
polymorphism for the pet methods.
Every class that needs to use
pet behaviors would have to
know about each and every]
class! In other words, -
you can't use Animal %
as the polymorphic -

type now, because the :
compiler won't let you call

a Pet method on an Animal
reference (even if it's really a
Dog object) because class Animal
doesn't have the method.

4N

221

multiple inheritance?

So what we REALLY need is:

Away to have pet behavior in just the pet classes

Away to guarantee that all pet classes have all of the same
methods defined (same name, same arguments, same return
types, no missing methods, etc.), without having to cross your
fingers and hope all the programmers get it right.

A way to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class.

It looks like we need TWO
superclasses at the top

‘os’cfa"*’ a
We ma\‘ \\ d? i ? c\'-‘\\Od '\/ /
S“Y'x t\ass)(,\\C Yc‘k, \ | / _
%\«. v — N | Animal i
-
Ve

ol

The non—?c{: Animals
don't have any inhevited

Pet stubf.

ds
Cat now exten
Lom both Animal

it oe
ND Pet, so
t\\e mc{:\\Ods \)o

222 chapter8

interfaces and polymorphism

There's just one problem with the "two superclasses” approach...

It’s called “multiple inheritance”
and it can be a Really Bad Thing.

That is, if it were possible to do in Java.

But it isn't, because multiple inheritance has a problem
known as The Deadly Diamond of Death.

Deadly Diamond of Death

both DigitalRecorder
CDBWV\CY an DV u:,::\(;cv, nti
nevit from D-‘g\{—,a\RC buen burn()
" both ovecvide T Ty
a“dﬂ\:a. Both inhert
?:s\:av\“ varidble v

CDBurner

DVDBurner

ComboDrive

Whieh bw,,‘() iple inherifa,,,:c.

o4 \runs
Wheh yOu

C

Ombolyive2

A'language that allows the Deadly Diamond of Death can lead to
some ugly complexities, because you have to have special rules to
deal with the potential ambiguities. And extra rules means extra
work for you both in learning those rules and watching out for
those “special cases”. Java is supposed to be simple, with consistent
rules that don’t blow up under some scenarios. So Java (unlike
C++) protects you from having to think about the Deadly Dia-
mond of Death. But that brings us back to the original problem!
How do we handle the Animal/Pet thing?

you are here» 223

interfaces

Interface to the rescue!

Java gives you a solution. An interface. Not a GUI interface, not the generic
use of the word interface as in, “That’s the public interface for the Button
class APL,” but the Java keyword interface.

A Java interface solves your multiple inheritance problem by giving you
much of the polymorphic benefits of multiple inheritance without the pain
and suffering from the Deadly Diamond of Death (DDD).

The way in which interfaces side-step the DDD is surprisingly simple: make
all the methods abstract! That way, the subclass must implement the methods
(remember, abstract methods must be implemented by the first concrete
subclass), so at runtime the JVM isn’t confused about which of the two
inherited versions it’s supposed to call.

Pet A Java interface is like a

100% pure abstract class.

abstract void beFriendly(); . e
Iy an m{.ﬁﬁacc a

hods " ¢

N\ "‘Ct: so any tass that IS I:dc
a;stvl‘al\u,g‘r '\m‘?\Cvncvx{', (i.e. over

J(;\c methods ok Pet

abstract void play();

To DEFINE an interface:

public interface Pet {...}

Use the k
. (4 «.
Tt

S

To IMPLEMENT an interface:

public class Dog extends Canine implements Pet {...}

}\ {',S” ‘c o“O‘NCd
NO{'/C £h8£

224

Making and lmplementing

the Pet interface

) skead
. ce nste
on sa\[W c\"ca

o£ « (,\355) heve

interfaces and

interface meth

abs i ‘ |

: otﬁ;{;’ s; t Ping in (Pub,ic’ ar?ldP;tl,w’sli ahd'

s.éy’c‘ i Ih 1aet, its not Considey dr(ad:

e © type the words in, but we ;d s

ﬁ reintorce it, and because wc'vlc ntm
ver

een slaves 4, Fashion)

ods are implie;

Ry

public interface Pet ({

- _ —— — 3

ods ave

A mkeckate meth

sostratt, s they

public abstract void beFriendly(); ¢ gemeolons K¢

<__/ no \)od\[l.

public abstract void play() ;

MMST end N
mCm\)CY) H‘c\' have

}
{mplements
jmd| ow say ‘implemen
D \S’P\ A'“ r “ Cd b {\\C name
3:(? DO‘,’) \S’P\ Pc{l‘ [‘ OE Z\;‘e 'm{\l‘f‘caée‘
public class Dog extends Canine implements Pet {
public void beFriendly() {...}
ublic void play() {..} ~ You SAID you a
P play .. € implement the P:z a Pet, <o ou MUST
vortraet Notice fpg ped, ¥ your
hstead of Semicolops w’)’ braces
public void roam() {...})
public void eat() {...} &— These are Just normal
overviding methods.
}
there

are _no 5
Dumb Questions

Q:Wait a minute, interfaces don’t
really give you multiple inheritance,
because you can’t put any
implementation code in them. If all
the methods are abstract, what does
an interface really buy you?

A: Polymorphism, polymorphism,
polymorphism.Interfaces are the
ultimate in flexibility, because if you
use interfaces instead of concrete
subclasses (or even abstract superclass
types) as arguments and return

types, you can pass anything that
implements that interface. And think
about it—with an interface, a class
doesn't have to come from just one
inheritance tree. A class can extend
one class, and implement an interface.
But another class might implement
the same interface, yet come from a
completely different inheritance tree!
So you get to treat an object by the
role it plays, rather than by the class
type from which it was instantiated.

In fact, if you wrote your code to use
interfaces, you wouldn’t even have to
give anyone a superclass that they had

to extend. You could just give them
the interface and say,”Here,’| don't
care what kind of class inheritance
structure you come from, just
implement this interface and you'll be
good to go.”

The fact that you can't put in
implementation code turns out not to
be a problem for most good designs,
because most interface methods
wouldn't make sense if implemented
in a generic way. In other words, most
interface methods would need to

be overridden even if the methods
weren't forced to be abstract.

225

interface polymorphism

Classes from different inheritance trees
can implement the same interface.

Robot

Class ROboDo does’
tome firom, {}.2 A:'i';"l:

inhevity i
e Zicaﬂfr;:{’ /bu{ it still

Animal

Canine

Feline

When you use a class as a polymorphic type (like an
array of type Animal or a method that takes a Canine
argument), the objects you can stick in that type
must be from the same inheritance tree. But not just
anywhere in the inheritance tree; the objects must be

from a class that is a subclass of the polymorphic type.

An argument of type Canine can accept a Wolf and a
Dog, but not a Cat or a Hippo.

But when you use an interface as a polymorphic

type (like an array of Pets), the objects can be

from anywherein the inheritance tree. The only
requirement is that the objects are from a class that
implements the interface. Allowing classes in different
inheritance trees to implement a common interface
is crucial in the Java API. Do you want an object

to be able to save its state to a file? Implement the
Serializable interface. Do you need objects to run

226

their methods in a separate thread of execution?
Implement Runnable. You get the idea. You’ll
learn more about Serializable and Runnable in later

chapters, but for now, remember that classes from
any place in the inheritance tree might need to
implement those interfaces. Nearly any class might
want to be saveable or runnable.

Better still, a class can implement
multiple interfaces!

A Dog object IS-A Canine, and IS-A Animal, and
IS-A Object, all through inheritance. But a Dog IS-A
Pet through interface implementation, and the Dog
might implement other interfaces as well. You could
say:

public class Dog extends Animal implements
Pet, Saveable, Paintable { ... }

interfaces and

How do you know whether to make a
class, a subclass, an abstract class, or
an interface?

) Make a class that doesn't extend anything
(other than Object) when your new class doesn't
pass the IS-A test for any other type.

) Make a subclass (in other words, extend a class)
only when you need to make a more specific
version of a class and need to override or add
new behaviors.

) Use an abstract class when you want to define
a template for a group of subclasses, and you
have at least some implementation code that all
subclasses could use. Make the class abstract
when you want o guarantee that nobody can
make objects of that type.

) Use an interface when you want to define a role
that other classes can play, regardless of where
those classes are in the inheritance tree.

227

using super

Invoking the superclass
version of a method

- What if you make a concrete subclass
and you need to override a method, but you
want the behavior in the superclass version of
the method? In other words, what if you don’t
need to replace the method with an override,
but you just want to add to it with some }
additional specific code. }

}

A: Ahhh...think about the meaning of the
word ‘extends’. One area of good OO design looks
at how to design concrete code that's meant to
be overridden. In other words, you write method
code in, say, an abstract class, that does work
that’s generic enough to support typical concrete
implementations. But, the concrete code isn't }
enough to handle all of the subclass-specific

work. So the subclass overrides the method }
and extends it by adding the rest of the code.

The keyword super lets you invoke a superclass

version of an overridden method, from within the
subclass.

I£ method tode inside a
BuzzwordReport subelass says:

super.runReport () ;

the runReport() method inside
the supertlass Report will vun

super.runReport();

A veferente to the subclass ob\)ecf
(Buzz.wo\rdRCPor'{:) will alwa\/s eall
the subtlass version of an overridden
method. That's polymorphism.

But the subtlass code ean call
super-runReport() to invoke the

superelass version.

228

abstract class Report {
void runReport() {

void runReport() {

// set-up report

void printReport() {

// generic printing

class BuzzwordsReport extends Report {

evtlass Versio

super . runReport () ; (— tf\i\cz“:omc batk and

buzzwordCompliance () ;
printReport() ;

void buzzwordCompliance() {...}

ethod 4 Cov ervides
wm

sot\ass Plass version

Lhe swpert

runReport()

buzzwordCompliance() suycvc\ass methods

(intluding the overvidden

% runReport() wunl ep o0

printReport()
Report

BuzzwordReport

The super keyword is veally a veference
to the supertlass portion of an object.
When subtlass tode uses super, as in
super-runReport(), the supertlass version of
the method will vun.

— BULLET POIN'IEQ

vVYvyYy

\ A 4

vvyy

A\ A 4

When you don’t want a class to be instantiated (in other words, you don’t
want anyone to make a new object of that class type) mark the class with the
abstract keyword.

An abstract class can have both abstract and non-abstract methods.
If a class has even one abstract method, the class must be marked abstract.

An abstract method has no body, and the declaration ends with a semicolon (no
curly braces).

All abstract methods must be implemented in the first concrete subclass in the
inheritance tree.

Every class in Java is either a direct or indirect subclass of class Object (java.lang.
Object).

Methods can be declared with Object arguments and/or return types.

You can call methods on an object only if the methods are in the class (or interface)
used as the reference variable type, regardless of the actual object type. So, a
reference variable of type Object can be used only to call methods defined in class
Object, regardless of the type of the object to which the reference refers.

A reference variable of type Object can’t be assigned to any other reference type
without a cast. A cast can be used to assign a reference variable of one type to a
reference variable of a subtype, but at runtime the cast will fail if the object on the
heap is NOT of a type compatible with the cast.

Example: Dog d = (Dog) x.getObject (aDog) ;

All objects come out of an ArrayList<Object> as type Object (meaning, they can be
referenced only by an Object reference variable, unless you use a cast).

Multiple inheritance is not allowed in Java, because of the problems associated with
the “Deadly Diamond of Death”. That means you can extend only one class (i.e. you
can have only one immediate superclass).

An interface is like a 100% pure abstract class. It defines only abstract methods.
Create an interface using the interface keyword instead of the word class.

Implement an interface using the keyword implements
Example: Dog implements Pet

Your class can implement multiple interfaces.

A class that implements an interface must implement all the methods of the
interface, since all interface methods are implicitly public and abstract.

To invoke the superclass version of a method from a subclass that's overridden the
method, use the super keyword. Example: super . runReport () ;

interfaces and

Q}There's still something
strange here... you never
explained how it is that
ArrayList<Dog> gives back Dog
references that don’t need to be
cast, yet the ArrayList class uses
Object in its methods, not Dog
(or DotCom or anything else).
What'’s the special trick going on
when you say ArrayList<Dog>?

A: You're right for calling it a
special trick. In fact it is a special

trick that ArrayList<Dog> gives
back Dogs without you having

to do any cast, since it looks like
ArrayList methods don’'t know
anything about Dogs, or any type
besides Object.

The short answer is that the
compiler puts in the cast for you!
When you say ArrayList<Dog>,
there is no special class that has
methods to take and return Dog
objects, but instead the <Dog>

is a signal to the compiler that
you want the compiler to let

you put ONLY Dog objects in

and to stop you if you try to add
any other type to the list. And
since the compiler stops you
from adding anything but Dogs
to the ArrayList, the compiler
also knows that its safe to cast
anything that comes out of that
ArrayList do a Dog reference. In
other words, using ArrayList<Dog>
saves you from having to cast
the Dog you get back.But it’s
much more important than that...
because remember, a cast can

fail at runtime, and wouldn't you
rather have your errors happen
at compile time rather than, say,
when your customer is using it for
something critical?

But there’s a lot more to this story,
and we'll get into all the details in
the Collections chapter.

229

exercise: What’s the Picture?

Given:

]) public

public

public

2)

public

3) public

public

public

4) public

public

public

H) public
public
public
public

public

Here's your chance to demonstrate your artistic abilities. On the left you'll
find sets of class and interface declarations. Your job is to draw the associated
class diagrams on the right. We did the first one for you.Use a dashed line for
“implements”and a solid line for “extends”.

What$ the Picture ?
JE—
1) (interface)
Foo
interface Foo { }
class Bar implements Foo { }
| | 2) 0
interface Vinn { } '
e
abstract class Vout implements Vinn { } Bar
abstract class Muffie implements Whuffie { }
class Fluffie extends Muffie { } 3)
interface Whuffie { }
class Zoop { } 4)
class Boop extends Zoop { }
class Goop extends Boop { }
class Gamma extends Delta implements Epsilon { }
interface Epsilon { }
9)

interface Beta { }
class Alpha extends Gamma implements Beta { }

class Delta { }

230

interfaces and polymorphism

On the left you'll find sets of class diagrams. Your job is to turn
these into valid Java declarations. We did number 1 for you
(and it was a tough one).
What$ the Declaration ?
Given:
| Click 1) public elass Cliek { }
publie ¢lass Clack extends Click { }
2 Top
2)
Clack
Fee
3
4)
Foo
4
Fi
Bar 9)
Zeta
9
Baz
Beta i
KEY
T extends
E implements
class
interface
abstract class

you are here » 231

puzzle: Pool Puzzle

Nose {

Poo]

Puzzle

\ Your job is to take code snippets from the pool and

// place them into the blank lines in the code and out-
// put.You may use the same snippet more than once,

and you won't need to use all the snippets. Your

goal is to make a set of classes that will compile
and run and produce the output listed.

public extends Clowns {
} public static void main(String [] args) {
abstract class Picasso implements {
i[0] = new
return 7;] =new
} i[2] = new
} for(int x = 0; x < 3; x++) {
System.out.println(
class {1} NN g .getClass());
}
class { }
} Output File Edit Window Help BeAfraid
return 5; % java

Note: Each snippet
from the pool can be
used more than once!

Acts();
Nose();
Of76();
Clowns();
Picasso();

Of76 [1i = new Nose[3];
of76 [311;

Nose []i=new Nose();
Nose []i=new Nose[3];

232

chapter 8

__../—_

5 class Acts

7 class Clowns
Of76

class

extends i
interface i0)
implements j(y)

ilx] class
5 class
7 class Acts
public int iMethod() ; 7 public class Nose
public int iMethod {} 0f76
public int iMethod () { i.iMethod(x) Clowns
public int iMethod () {} i(x).iMethod[]

Picasso
i[x].iMethod() :
ilx].iMethod[]

interfaces and polymorphism

14

Exercise Soutions

What$ the Pieture 7

2) (in{‘,erlxcacc)
3) | Gnterkaeo

Whuffie

i

" B What$ the Peclaration 7

Mu-cFie
%) public abstract elass Top { }

T publie ¢lass Tip extends Top { }
4 — . [Pt
3) publie abstract ¢lass Fee { }
) public abstract elass Fi extends Fee { 1
’_,B-:OP
4) ?ublic in‘{:cv"ca(,c Foo { }
/N
Publit elass Bar imylcrncv\‘(:s Foo { }
’\—’6:0\’ ?ub|ic ¢lass Baz extends Bar { }

5) public interface Zeta { }
9) ~——— @ publie elass Alpha implements Zeta { }
tk . public interface Beta { }
~i public ¢lass Delta extends Alpha implements Beta { }
amma Beta

N2

¢

you are here» 233

puzzle solution

&

interface Nose {

public int iMethod() :

}

abstract class Picasso implements Nose |
public int iMethod() {

return 7;

}
class Clowns extends Picasso { }

class Acts extends Picasso ¢

public int iMethod() {

return 5;

234 chapter8

public class Of76 extends Clowns {

public static void main(String [] args)
Nose []i = new Nose [3]:
i[0] = new Acts():
i[1] = new Clowns():
i[2] = new Of76();
for(int x = 0; x < 3; x++) {

System.out.println(i [x].iMethod()
+ % N + i[X].getClass());

{

Output | File Edit Window Help KillTheMime

%$java 0f76
5 class Acts

7 class Clowns
7 class O0f76

9 constructors and garbage collection

Life and Death
of an Object

...then he said,
*I can't feel my legs!” and

T said “Joel Syay with me Joel”
But it was... Yoo late. The gerbage
{ collector came and... he was gone.

" Best object I ever had.

Objects are born and objects die. You're in charge of an object’s lifecycle.

You decide when and how to construct it You decide when to dastroy it. Except you don’t
actually destroy the object yourself, you simply abandor it. But once it’s abandoned, the
heartiess Garbage Cotlector (gc) can vaporize it, reclaiming the memory that object was
using. If you're gonna write Java, you're gonna create objects. Sooner or later, you're gonna
have 10 let some of them go, or risk running out of RAM. In this chapter we look at how objects
are created, where they live while they're alive, and how to keep or abandon them efficiently.
That means we’ll talk about the heap, the stack, scope, constructors, super constructors, null
references, and more, Warning: this chapter contains material about object death that some

may find disturbing. Best not to get too attached.

this is a new chapter 235

the stack and the heap

The Stack and the Heap: where things live

Before we can understand what reatly happens when
you create an object, we have to step back a bit. We
need to learn more about where everything lives
(and for how Jong) in Java. That means we need to
learn more about the Stack and the Heap. In Java, we
(programmers) care about two areas of memory—the
one where objects live (the heap), and the one
where method invocations and local variables live
(the stack). When a JVM starts up, it gets a chunk of
memory from the underlying OS, and uses it to run
your Java program. How much memory, and whether
or not you can tweak it, is dependent on which
version of the JVM (and on which platform) you’re

The Stack

Where method invocations
and local varlables live

running. But usually you wen t have anything to say
about it. And with good programming, you probably
won't care (more on that a little later).

We know that all objects live on the garbage-collectible
heap, but we haven’t yet looked at where variables
live. And where a variable lives depends on what kind
of variable it is. And by “kind”, we don’t mean fype
(i.e. primitve or object reference). The two kinds of
variables whose lives we care about now are instance
variables and local variables. Local variables are also
known as stack variables, which is a big clue for where
they live.

The Heap
Where ALL objects live

Instance Variables

Instance varlables are declared inside a class but not
inside a method. They represent the *fields” that each
indlvidual object has (which can be filled with different
values for each instance of the class). Instance variables
live Inside the object they belong to.

public class Duck (
\\as a “S.U'-LI

int size; ey Duk
able.

} “\5*3 wie var"

Local Variables

Local variables are declared inside a method, Including
method parameters. They're temporary, and live only as
long as the method is on the stack iin other words, as fong as
the method has not reached the closing curly brace).

public void foo(int x)

and
int L= x4 37 qpepane® L
= - ‘-
boolean b = true; the gavigbles "
| \oeal vard

} ax

2368 chapter9

Methods are stacked

When you call a method, the method lands on
the top of a call stack. That new thing that’s
actually pushed onto the stack is the stack
frame, and it holds the state of the method
including which line of code is executing, and
the values of al] Jocal variables.

The method at the fop of the stack is always

the currently-running method for that stack
(for now, assume there's only one stack,but in
chapter 14 we’ll add more.) A method stays on
the stack until the method hits its closing curly
brace (which means the method’s done). If
method foo() calls method bar(), method bar() is
stacked on top of method foo().

constructors and gc

A call stack with two methods
k‘h’? of the stack

™~ loeal vaviables
(induding
parameter w)

bottom of the stask
The method on the top of the

stack is always the currently-
executing method.

public void doStuff() { A stack seenarfo
boolean b = true:;
go(d); The code on the left is a snippet (we don't care what the rest of the
} class tooks like) with three methods. The first method (doStuff(}) calls
public void go(int x) { the second method (go()), and the second method calls the third
int z = x + 24; (crazy()). Each method declares one local variable within the body
crazy() : of the method, and method go() also declares a parameter variable
// imagine more code here (which means go() has two local variables).

)

public void crazy() {
char e = ‘a’;

)

0 Code from another doStuff() calls go{), go() calls crazy(), crazy() completes,

class calls doStuff(), go() is pushed on crazy() is now on the and its stack frame is
and doStuff() goes top of the stack. top of the stack, popped of f the stack.
into a stack frame Variables 'x’ and 'z’ with variable '¢' in Execution goes back
at the Yop of the are in the go() stack the frame. to the go() method,
stack.The boolean freme. and picks up at the
variable named b’ line following the call
goes on the deStuff() to crazy().

stack frame.

\

JoSEFL0. b

Rl

you are here » 237

&

object references on the stack

What about local variables that are objects?

e ———

Remember, a non-primitive variable holds a nference to an

object, not the object itself. You already know where objects
live—on the heap. It doesn’t matter where they're declared or
created. If the local variable is a reference to an object, only
the variable (the reference/remote control) goes on the stack.

The object itself still goes in the heap.

publiec class StackRaef {
public void foof () {(
barf () ;
}

public void barf() {
Duck d = new Duck (24) ;
}

Ddz?ﬁqel?e llestions

» One more time, WHY are we learning the
whole stack/heap thing? How doas this help ma?
Do I really need to learn about it?

A: Knowing the fundamentals of the Java
Stack and Heap Is cruclal if you want to understand
variable scope, object creation Issues, memory
management, threads, and exception handlIng.

We cover threads and exception handling In later
chapters but the others you'll learn In thls one.You
do not need to know anything about how the Stack
and Heap are Implemented in any particular JVM
and/or platform. Everything you need to know
about the Stack and Heap Is on this page and the
previous one.If you nall these pages, all the other
toplcs that depend on your knowing this stuff will
go much, much, much easier. Once again, some day
you will SO thank us for shoving Stacks and Heaps
down your throat.

238 chapter9

ba
b

ACL\ oY CA

entt
wside

2 ‘\A L(Ca s
k0 dE"c\Yyﬁ qar'\a\)\c ¢ le >\
utk €

No "‘a&ﬂ' WHERE

reterense

. - S

) 2

) 4

Java has two areas of memory we care about:
the Stack and the Heap.

Instance variables are variables declared
inside a class but outside any method.

Local variables are variables declared inside a
mathod or method parameter.

All local variables live on the stack, in the
frame corresponding to the method where the
variables are declared.

Object reference variables work just like primi-
tive variablas—if the reference is declared as a
local vanable, it goes on the stack.

All objects live In the heap, regardless of
whether the referencs is a local or instance
vanable.

If loecal variables live on the stack,
where do instance variables live?

When you say new CellPhone(), Java has to make
space on the Heap for that CellPhone. But how much
space? Enough for the object, which means enough to
house all of the object’s instance variables. That's right,
instance variables live on the Heap, inside the object
they belong to.

Remember that the values of an object’s instance
variables live inside the object. If the instance variables
are al] primitives, Java makes space for the instance
variables based on the primitive type. An int needs

32 bits, a long 64 bits, etc. Java doesn’t care about the
value inside primitive variables; the bit-size of an int
variable is the same (32 bits) whether the value of the
int is 32,000,000 or 32.

But what if the instance variables are objects? What if
CellPhone HAS-A Antenna? In other words, CellPhone
has a reference variable of type Antenna.

When the new object has instance variables that are
object references rather than primitives, the real
question is: does the object need space for all of

the objects it holds references to? The answer is, no!
exactly. No matter what, Java has to make space for the
instance variable values. But remember that a reference
variable value is not the whole object, but merely a remote
control to the object. So if CellPhone has an instance
variable declared as the non-primitive type Antenna,
Java makes space within the CellPhone object only for
the Antenna’s remote control (i.e. reference variable) but
not the Antenna object.

Well then when does the Antenna object get space on
the Heap? First we have o find out when the Antenna
object itself is created. That depends on the instance
vaniable declaration. If the instance variable is declared
but no object is assigned to it, then only the space for
the reference variable (the remote control) is created.

private Antenna ant;

No actual Antenna object is made on the heap unless
or undl the reference variable is assigned a new
Antenna object.

private Antenna ant = new Antenna () ;

constructors and gc

e

Objc(.{: with two Primiﬁvc instance vaviables.
Space for the variables lives in the objcct

Objett with one non—primitive instante variable—
3 vekerence to an Antenna object, but no actual
Antenna object This is what you get b You
deelave the variable but don't initialize it with
an attual An{tm\a objec{‘,

public class CellPhone {
private Antenna ant;
}

Object with one non—primitive instanee vaviable,
and the Antenna variable is assigned 3 new
Av\ftnna object

public class CellPhone (
private Antenna ant = new Antenna();

}

you are here» 239

object creation

The wmiracle of object creation

Now that you know where variables and objects live, we can dive into
the mysterious world of object creation. Remember the three steps
of object declaration and assignment: declare a reference variable,
create an object, and assign the object to the reference.

But until now, step two—where a miracle occurs and the new object
is “born"—has remained a Big Mystery. Prepare to learn the facts of
object life. Hope you 're not squeamish.

Review the 3 steps of object
declaration, creation and assignment:

Declare a reference

Coventt variable
e

e
Ma\cebacnw;c\ass oc Duck myDuck = new Duck():
19
q'\::ﬂsabc me.

Duck reference

e Create an object
‘\'35\6 A Duck myDuck = new Duck () ;
v\ -
here:

oLV Duck object

ke me¥ e Link the object and

p@s:)c Lo ke the reference
o:!ge“e‘\u_ Duck myDuck @new Duck () ;

Duck object

Duck reference

240 chapter9

constructors and gc

Are we calling a method named Duck()?
Because it sure looks like it. .
\ Yaoks ke wc'rch«Z““L‘E?
wed VWD
Duck myDuck = new Duck(); 3 mebhod 12 srentheses:
pecause oF e ¥
No.

We’re calling the Duck constructor.

A constructor doeslook and feel a lot Jike a method, but it’s not
a method. It’s got the code that runs when you say new. In other
words, the code that runs when you instantiate an object.

The only way to invoke a constructor is with the keyword new
followed by the class name. The JVM finds that class and invokes
the constructor in that class. (OK, technically this isn't the only
way to invoke a constructor, But it’s the only way to do it from
ouiside a constructor. You ecan call a constructor from within
another constructor, with restrictions, but we’ll get into all that
Jater in the chapter.)

But where is the constructor?
If we didn’t write It, who did?

You can write a constructor for your class (we're about to do
that), but if you don’t, the compriler writes one for you!

Here’s what the compiler’s default constructor looks like:
public Dueck()

}
Notice something missing? How is this

the
different from a method? Lhe same 3
o . Thats mandaber
tlass wa™
, public™ Duck() {
;}/}'ges the return fypc? // constructor code goes hera
' ©)

you are here» 241

constructing a new Duck

Construet a Duek

The key fearure of a constructor is that it runs
before the object can be assigned to a reference.
That means you get a chance to step in and

do things to get the object ready for use. In
other words, before anyone can use the remote
contro] for an object, the object has a chance to
help construct itself. In our Duck constructor,
we're not doing anything useful, but it still
demonstrates the sequence of events.

If it Quacks like a
constructor..

public class Duck {

public Duck({) {
System.out.println(“Quack”) ;

} The constructor gives
S Lov tode you a chance to step into
Comstrvt the middle of new.

Flla Edlt Window Help Quack
% java UseADuck
public static void main (String[] args) { Quack
Duck d = new Duck{() ;
} ~—— This alls
y Eonstrue foy,

public class UseADuck ({

3 Increment a counter 1o track how many objects of this class type
have been made.

(J Assign runtime-specific state (data about what's happening NOW).
O Assign values to the object’s important instance variables.

0] Get and save a reference 1o the object that’s craating the new object.
(] Add the object to an ArrayList.

(O Create HAS-A objects.

a {your idea here)

- Q\Sbgrpen your pencil
Ny,

A constructor lets you jump Into the middle
of the object creation step—into the middle
of naw. Can you imagine conditions where
that would be useful? Which of these might
be useful in a Car class constructor, if the Car
is part of a Racing Game? Check off the ones
that you came up with a scenario for.

242 chapler9

Initializing the state of a new Puck

Most people use constructors to initialize the state of an object.
In other words, to make and assign values to the object’s
instance variables.

public Duck() {
size = 34;

}

That’s all well and good when the Duck class developer knows
how big the Duck object should be. But what if we want the
programmer who is using Duck to decide how big a particular
Duck should be?

Imagine the Duck has a size instance variable, and you want the
programmer using your Duck class to set the size of the new
Duck. How could you do it?

Well, you could add a setSize() setter method to the class. But
that leaves the Duck temporarily without a size*, and forces the
Duck user to write two statements-—one to create the Duck, and
one to call the setSize () method. The code below uses a setter
method to set the initial size of the new Duck.

public class Duck { ble
int size; . .ctante vavia

public Duck() {
System.out.println(“Quack”) ; wy.sk‘f“"{"w
) AN

public void setSize(int newSize) { e cckter mc\-,\\od
s

gize = newSize;

}

public class UseADuck {

public static void main (String[] args){
Duck d = new Duck() ;

(’\\ R : ad .
d.setSize (42) ; A:: Point iy, the c’lﬂdrtr - The D

*Instance variables do have a default value. 0 or
0.0 for numeric primitives, false for booleans, and
null for references.

constructors and gc

therejare po
Dumb Questions

* Why do you need to write
a constructor if the compiler
writes one for you?

A: If you need code to help
initialize your object and get

it ready for use, you'll have to
write your own constructor. You
might, for example, be depen-
dent on input from the user
before you can finish making
the object ready. There’s another
reason you might have to write
a constructor, even if you don’t
need any constructor code
yourself. It has to do with your
superclass constructor, and we'll
talk about that in a few minutes.

. How can you tell a con-
structor from a method? Can
you also have a method that’s
the same name as the class?

A: Java lets you declare a
method with the same name as
your class. That doesn’t make it
a constructor, though.The thing
that separates a method from a
constructor is the return type.
Methods must have a return
type, but constructors cannot
have a return type.

(Qé: Are constructors inher-
ited? If you don’t provide a
constructor but your superclass
does, do you get the superclass
constructor instead of the
default?

A: Nope. Constructors are
not inherited. We'll look at that in
just a few pages.

you are here» 243

initializing object state

Using the constructor to initialize
important Duck state*

If an object shouldn’t be used until one or

more parts of its state (instance variables) have
been initialized, don't let anyone get ahold of

a Duck object until you're finished initializing!
It’s usually way too risky to let someone make—
and get a reference to—a new Duck object that
isn’t quite ready for use until that someone turns
around and calls the setSize() method. How will
the Duck-user even know that he's required to call
the setter method after making the new Duck?

Let the user make a new Duck
and set the Duck's size all in
one call. The call to new.
The call 1o the Duck
canstructor.

The best place to put initialization code is in the

constructor. And all you need to do is make a

constructor with arguments. ¢
gu o OV

we ¥
public elass Duck { 0 .
int size; P\dé “S‘\,",\.LW

public Duck(int duckSize) {

System.out.println(“Quack”) ; Use the a\-gumcn{" value to set

sizea = duckSize; the size instance vaviable.

System.out.println(“size is “ + size);

public class UseADuck {

public static void main (String(] args) {
§ Duck d = new Duck (42) ;
‘S 0‘\\ } &

Pass a vale to the

. *,\\C“ ¢ 3v_(_
S e
ot s‘.\cﬂ Dub\L 3:uumc“b File Edt Windaw Help Hank
Jd:; gzt or¢ % java UseADuck
N

Quack

size is 42

“Not to imply that not all Duck siale Is not unimportant.

244 chapter9

Make it easy to make a Puck
Be sure you have a no-arq constrvetor

What happens if the Duck constructor takes an argument?
Think about it. On the previous page, there’s only one Duck
constructor—and it takes an int argument for the sizz of the
Duck. That might not be a big problem, but it does make it
harder for a programmer to create a new Duck object, especially
if the programmer doesn’t know what the size of a Duck should
be. Wouldn't it be helpful to have a default size for a Duck, so
that if the user doesn’t know an appropriate size, he can still
raake a Duck that works?

Imagine that you want Duck users to have TWO options
for making a Duck—one where they supply the Duck
size (as the constructor argument) and one where they
don’t specify a slze and thus get your default Duck size.

You can’t do this cleanly with just a single constructor.
Remember, if 2 method (or constructor—same rules) has

a parameter, you must pass an appropriate argument when
you invoke that method or constructor. You can'’t just say, “If
someone doesn’t pass anything to the constructor, then use
the default size”, because they won’t even be able to compile
without sending an int argument to the constructor call. You
could do something clunkly like this:

‘public class Duck ({
int mize;

public Duck (int newSize) { ;zrm Y 2z, OENETE
if (newSize = 0) ({ ' dch“ sv c\:ﬂva\“‘ o
aiza = 27; ?;t?:z'“NoT 3 vey 3""6

} alsa {
siza = nawSize; oo™

}
)

But that means the programmer making a new Duck object has
to know that passing a “0” is the protocol for getting the default
Duck size. Pretty ugly. What if the other programmer doesn’t
know that? Or what if he really does want a zero-size Duck?
{Assuming a zero-sized Duck is allowed. If you don't want
zero-sized Duck objects, put validaton code in the constructor
to prevent it.) The point is, it might not always be possible

to distinguish between a genuine “I want zero for the size”
constructor argument and a “I’'m sending zero so you'll give
me the default size, whatever that is” constructor argument.

constructors and gc

You really want TWO ways to
make a new Duck:

| public class Duck2 (
int gize;

public Duck2() ({
// supply default size
size = 27;

}

public Duck2 (int duckSiza) {
// uvse duckSize paramatar
size = duckSize;

To make a Duck when you know the size:
Duck2 d = new Duck2 (15);

To make a Duck when you do not know
| the size:

Duck?2 d2 = new Duck2 () ;

So this two-options-to-make-a-Duck idea
needs two constructors. One that takes
an int and one that doesn’t. /f you have
more than one constructor In a class,

it means you have overloaded
constructors.

you are here» 245

overloaded and default canstructors

Doesn’t the compiler always

make a no-arg constructor OK, let's see here... “You
h he right to you

foryou? N/OI ave the right to your own

constructor.” Makes sense.
You might think that if you write only
a constructor with arguments, the
compiler will see that you don't have a
no-arg constructor, and stick ove ia for
you. But that's not how it works, The
compiler gets involved with constructor-
making only if you don’t say anything at all
about constructors.

“If you cannot afford a constructor,
one will be provided for you by the
compiter.” Goad to know.

If you write a constructor that
takes arguments, and you stil
want a no-arg constructor,
you'll have to build the no-arg
constructor yourself!

As soon as you provide a constructor,
ANY kind of constructor, the compiler
backs off and says, “OK Buddy, looks like

you're in charge of constructors now.”

if you have more than one
constructor in a class, the
constructors MUST have
different argument lists.

The argument list includes the order
and types of the arguments. As long as
they're different, you can have more
than one constructor. You can do this
with methods as well, but we’ll get to that
in another chapter.

246 chapter 9

constructors and gc

Overloaded constructors means you have

T -
more than one constructor in your class.

To compile, each constructor must have a
different argument listl

The class below is legal because all four constructors have
different argument lists. If you had two constructors that took
only an int, for example, the class wouldn’t compile. What you
name the parameter variable doesn’t count. It’s the variable
type (int, Dog, etc.) and order that rnatters. You can have two
constructors that have idenncal types, as long as the order is
different. A constructor that takes a String followed by an int, is
not the same as one that takes an int followed by a String.

o

public Mushreom {int size) ()

public clags Mushroom {

hen you don £ know anythind
public msh.toom() () v v £ e maﬁ“t' .8 not,
when Ya.)‘{_' ;::'\l {-'hg izL
publiec Mushroom (booclean isMagic) () but don
. . . . when Yoﬂ know ,
nave the (public Mushroom (boolean isMagic, int size) (} not ks
same avas, ovTin magics you
di““""t order, o (public Mushroom (int size, boolean isMagic) { } T sine 25 well
s 0¥ }
BULLET POINTS \%
» [Instance variables live within the object they belong to,on 'y, f you want a no-arg constructor, and you've already put
the Heap. in a constructor with arguments, you'll have to build the
» Ifthe instance variable is a reference to an object, both no-arg constructor yourself.
the reference and the object it refers to are on the Heap. » Always provide a no-arg constructor if you can, to make it
» Aconstructor is the code that runs when you say new on easy for programmers to make a working object. Supply
a class type. defaull values.
» Aconstructor must have the same name as the class, and > Overloaded constructors means you have more than one
must not have a return typs, constructor in your class.
» You can use a constructar to Initalize the state (ie. the » Qverloaded constructors must have different argument
instance variables) of the object belng constructed. lsts.
If you don't put a constructor in your class, the compiler » You cannot have two constructors with the same
> wiﬁ putin a zefault constructor. d P argument lists. An argument list includes the order and/or
' type of arguments.
» The default constructor is always a no-arg constructor. o
. » Instance variables are assigned a default value, even
» Ifyou put a constructor—any constructor—in your class, when you don't explicitly assign one. The default values

the compiler will not build the default constructor.

but you

when You know the siz¢,

don't know if it's magie

are 0/0.0/false for primitives, and null for references.

you are here »

247

overloaded constructors

S \k Match the new Duck () call with the constructor
that runs when that Duck is instantiated. We did
the easy one to get you started.

public claas TestDuck {
public static void main(String[] args)

int weight = 8;
float density = 2.3F;
String name = “Donald”;
long[] feathers = {1,2,3,4,5,6});
boolean canFly = true;
int airspeed = 22;
Duck[] d = new Duck[7):;
d(0] = new Duck() ;
d[1] = new Duck (density, weight):;
d[2] = new Duck(pame, feathers);

d[3] = new Duck (canFly) ;

d[4] = new Duck(3.3F, airspeed);

d[5] = new Duck(falsa);

d[6] = naw Duck (airspeed, density);

class Duck {

int pounds = 6;

float floatability = 2.1F;

String name = “Generic”;

long[] feathers = (1,2,3,4,5,6,7};
boolean canFly = true;

int maxSpeed = 25;

public Duck() {(
System.out.println(“type 1 duck”);
)

public Duck (boolean fiy) {
canFly = fly;
System.out.println (“type 2 duck”);
}

public Duck(String n,
name = n;
feathers = £;
System.out.println(“type 3 duck”);

long[] £) |

)

public Duck({int w, float £) {
pounds = w;
floatability = £;
System.out.println(“type 4 duck”}:
}

public Duck(float density, int max) {
floatability = density;
maxSpeed = max;
System.out.println(“type S duck”);
}
}

Q: Earlier you sald that it’s good to have a no-argu-
ment constructor so that if people call the no-arg con-
structor, we can supply default values for tha “missing”
arguments. But aren’t there times when it’s impossible to
come up with defaults? Are there times when you should
not have a no-arg constructor in your class?

A: You're right. There are times when a no-arg construc-
tor doesn't make sense, You'll see this in the Java AP[—some
classes don't have a no-arg constructor. The Color class, for
example, represents a... color. Color objects are used to, for
example, set or change the color of a screen font or GUI
button. When you make a Color Instance, that instance Is

of a particular color (you know, Death-by-Chocolate Brown,
Blue-Screen-of-Death Blue, Scandalous Red, etc.). if you

make a Color object, you must specify the color in some way.

Color ¢ = new Colorx(3,45,200);

248 chapter @

(We're using three Ints for RGB values here.We’ll get into
using Color later, in the Swing chapters.) Otherwise, what
would you get? The Java APl programmers could have de-
cided that if you call a no-arg Color constructor you’ll get a
lovely shade of mauve. But good taste prevailed.

If you try to make a Color without supplying an argument:

Color ¢ = new Colorx{):

The compiler freaks out because it can't find a matching no-
arg constructor in the Color class,

fle £dilt Window Halp

cannot resolve symbol
;constructor Color ()
location: class

java.awt.Color
Color ¢ = new Color():
A

1 ervror

Nanoreview: four things to
remember about constructors

O A constructor is the code that runs when

somebody says new on @ class type

Duck d = new Duck();
P — ——

A constructor must have the same name
as the class, and no return type

public Duck({int size) { }

———

If you don't put a constructor in your class,
the compiler puts in a default constructor.
The default construcyor is always a no-arg
constructor.

public Duck{) { }

You can have more than one constructor in your class,
as long as the argument lists are different, Having
more than one constructor in a class means you have

overloaded constructors,
overioaded

public Duck() { }
public Duck(int size) { }

public Duck (String name) (}

public Duck(String name, int size) { }

Doling all the Brain Barbells has been shown 0 producs a 42% increase in
nauron size. And you know what they say, “Big neurons...”

constructors and gc

SR RANN
P aweEw

What about superclasses?
When you make a Dog,
should the Canine
constructor run too?

If the superclass is abstract,
should it even havea
cnnstrudor?

We'll look at this on the next
few pages, so stop now and
think about the implications of
constructors and superclasses.

OB Blestions

Q: Do constructors have to be public?

A: No. Constructors can be public,
private, or default (which means no access
modifier at all). We'll ook more at default
access in chapter 16 and appendix B.

+ How could a private constructor
ever be useful? Nobody could ever call it,
so nobody could ever make a new object!

A: But that's not exactly right. Marking
something private doesn't mean nobody
can access it, i Just means that nobody
outside the class can access it. Bet you're
thinking “Catch 22" Only code from the
same class as the class-with-private-con-
structor can make a new object from that
class, but without first making an object,
how do you ever get 1o run code from that
class in the first place? How do you ever get
to anything in that class? Patlence grasshop-
per, We'll get there in the next chapter.

you are herer 248

space for an object’s superclass parts

Wait a minute... we never IV talk about
superclasses and inheritance and how that all
fits tn with construetors.

Here's where it gets fun, Remember from the last chapter, the part where we looked at
the Snowboard object wrapping around an inner core representing the Object portion
of the Snowboard class? The Big Point there was that every object holds not just its own
declared instance variables, but also everything from its superclasses (which, at a minimum,
means class Object, since every class extends Object).

So when an object is created (because somebody said new; there is no other way to create
an object other than someone, somewhere saying new on the class type), the object
gets space for all the instance variables, from all the way up the inheritance tree. Think
about it for a moment... a superclass might have setter methods encapsulating a private
variable. But that variable has to live somewhere. When an object is created, it’s almost as
though multiple objects materialize—the object being new'd and one object per each
superclass. Conceptually, though, it’s much better to think of it like the picture below,
where the object being created has layers of itself representing each superclass.

250

Snowboard

()

shrad()

getAlr)
losaControl()

chapter 9

Object has instante vaviables
encapsulated by ateess methods.
Those instante variables are
eveated when any subtlass is
instantiated. (These aven't the
REAL Objeet vaviables, but we
don't tare what 'Ehey ave sinte
they've encapsulated)

Snowboard also has instante
vaviables of its own, so to make
a Snowboard objc.‘.f we need
space kor the instante variables
of ho_{:h_ elasses.

There is only ONE objett on the heap here. A
Snowboard ob\}e&‘[‘, But it ¢ontains both the
Snowboard parts of itself and the Object parts of
itselT. Al instance variables from both elasses have
to be here.

The role of superelass construectors

in an object’s life.

All the constructors in an object’s inheritance
tree must run when you make a new object.

Let thatsink in.

That means every superclass has a constructor
(because every class has a constructor), and each
constructor up the hierarchy runs at the time an
object of a subclass is created.

Saying new is a Big Deal. It starts the
whole constructor chain reacton. And yes,
even abstract classes have constructors.
Although you can never say new on an
abstract class, an abstract class is sdll

a superclass, so its constructor runs

when someone makes an instance of a
concrete subclass.

The super constructors run to build

out the superclass parts of the object.
Remember, a subclass might inherit

methods that depend on superclass state

(in other words, the value of instance variables
in the superclass). For an object to be fully-
formed, all the superclass parts of itself must be
fully-formed, and that's why the super constructor
must run. All instance variables from every class

in the inheritance tree have to be declared and
initialized. Even if Animal has instance variables
that Hippo doesn’t inherit (if the variables are
private, for example), the Hippo still depends on
the Animal methods that use those variables.

When a constructor runs, it immediately calls it
superclass constructor, all the way up the chain
untl you get to the class Object constructor.

On the next few pages, you'll learn how superclass
constructors are called, and how you can call
them yourself. You'll also learn what to do if your
superclass constructor has arguments!

constructors and gc

Object

Animal

Hi

A singe Hippo object on the hesp

A new Hippo object also I1S-A Animal
and IS-A Objact. If you want to make a
Hippo, you must also make the Animal
and Object parts of the Hippo.

This all happens In a process called
Constructor Chaining.

you are here » 251

object construction

Making a Hippo means making the
Animal and Object parts too...

public class Animal (
public Animal() {
System.out.println(“Making an Animal”) ;
}

— o\&ﬁgr\pen your pencil ——

What’s the real output? Given the
code on the left, what prints out
when you run TestHippo? A or B?

(the answer Is at the bottom of the page)

Flle EdR Window Help

% java TestHippo

public class Hippo axtends Animal {
public Hippo{) {
System.out.println(“Making a Hippo”):
}

public class TastHippo {
public static voild main (String[] args) (
System.out.printlin(“Starting...”):
Hippo h = new Hippo();

A Starting. ..
Making an Animal
Making a Hippo
Flle Edit Window Help Swear

B % java TestHippo

Starting. ..

Making a Hippo
Making an Animal

‘ Code from another O Hippo() invokes @ Animal() invokes Object() completes,
class says new the superclass the superclass and its stack frame
Hippo () and the canstructor which constructor which is popped off the
Hippo() constructor pushes the Animal() pushes the Object() stack. Execution goes

constructor onto the
top of the stack

goes into a stack
frame at the top of
the stack.

252 chapter 9

the top of the stack,
since Object is the

back ta the Animal()
constructor, and
picks up at the line
following Animal’s
call to its superclass
constructor

constructor onto

superclass of Animal.

S0y S8YS|UY 1B} JOPANSUCO [ew |y I §))
INQ 1S) PEX0AU 5} 2010N45UCT (JoddiH 6y) v "eu0 81y By |

How do you invoke a superclass constructor?

You might think that somewhere in, say, a Duck constructor,
if Duck extends Animal you'd call Animal (). But that’s not
how it works:

public class Duck extends Animal (

int size;

public Duck(int newSize) {

D Animal () ; Mot 7.
* This ¢

ot legal/

siza = nawSiza;

}

The only way to call a super constructor is by calling super().
That's right—super() calls the super constructor.

What are the odds?

public class Duck extends Animal (

int size;

public Duck (int newSize) (

super () ; €E— y°“J“S{: say super()

size = newSizeae;

A call to super()in your constructor puts the superclass
constructor on the top of the Stack. And what do you
think that superclass constructor does? Calls its superclass
constructor. And so it goes until the Object constructor is
on the top of the Stack, Once Object() finishes, it's popped
off the Stack and the next thing down the Swuack (the
subclass constructor that called Object()) is now on top.
That constructor finishes and so it goes untl the original
constructor is on the top of the Stack, where it can now
finish.

constructors and gc

And how is it that we’ve
gotten away without
doing it?

You probably figured that out.

Our good friend the compiler
puts in a call to super() if you
don't.

So the compller gets involved In
constructor-making in two ways:

@ If you don‘t provide a constructor
The compiler puts one in that looks like:

public ClassName () {
super () ;

@ If you do provide a constructor
but you do not put in the call to
super()

The compiler will put a call to super() in
each of your overloaded constructors.®
The compiler-supplied call looks like:

super () ;

It always tooks like that. The compiler-
inserted call to super() Is always a no-arg
call.If the superclass has overioaded
constructors, only the no-arg one is called.

*Unless the construclor calls another overoaded
constructor (you'll see that in a few pages).

you are here» 253

object lifecycle

Can the child exist before
the parents? Eesmman... that

If you think of a superclass as the parent to the subclass child, is 50 creepy. There's
you can figure out which has to exist first. The superclass parts no way T could have been
of an object have to be fully-formed (completely built) before the born befare my parents.

subdlass parts can be constructed. Remember,
the subclass object might depend on things it
inherits from the superclass, so it’s important
that those inherited things be finished. No
way around it. The superclass constructor

must finish before its subclass constructor.

That's just wrong.

Look at the Stack series on page 248 again,
and you can see that while the Hippo
constructor is the first to be invoked (it's
the first thing on the Stack), it's the last one
to completel Each subclass constructor
immediately invokes its own superclass
constructor, until the Object constructor

is on the top of the Stack. Then Object’s
constructor completes and we bounce

back down the Stack to Animal’s
constructor. Only after Animal’s constructor completes
do we finally come back down to finish the rest of the Hippo
constructor. For that reason:

The call to super() must be the first statement
In each constructor!®

Possible constructors for class Boop
[] public Boop() {

V] public Boop() { } &~ These Sre OK 4,
super () ; 6\ ca"e Compiler will ;iz&e
) Z,}“‘ re OK b, M public Boop(int 1) { §i to super() in 3¢ 11
e duse iret sty as éke
lie ?"""*'m ex— size = i; ment
y Oded -é}.c C&” !

[V] public Boop (int i) { ,.éa,z:kr()’ 3 the firot }

ment
super () ; <_

aize = i; @public Boop (int i) { BAD// This won't
} size = i; \L_h:u Can'{ explieid) Compile]
Call Lo cyperry) PUE
super () ; an)»{-},;hﬂ else. P beloy,

*There's an exception to thig rule; you'll team it on page 252.

264 chapter 9

Superclass constructors with arguments

What if the superclass constructor has arguments? Can you pass something in to
the super() call? Of course. If you couldn't, you'd never be able to extend a class
that didn’t have a no-arg constructor. Imagine this scenario: all animals have a
name. There’s a getName() method in class Animal that rerurns the value of the
name instance variable. The instance variable is marked private, but the subclass
(in this case, Hippo) inherits the getName() method. So here’s the problem:
Hippo has a getName() method (through inheritance), but does not have the name
instance variable. Hippo has to depend on the Animal part of himself to keep the
name instance variable, and return it when someone calls getName() on a Hippo
object. But... how does the Animal part get the name? The only reference Hippo
has to the Animal part of himself is through super(), so that's the place where
Hippo sends the Hippo’s name up to the Animal part of himself, so that the
Animal part can store it in the private nameinstance variable.

public abstract class Animal {

. . 1 arimals (ineloding
private String name; L————-ﬁwzw) have 3 name

public String getName() { &— A getier ethod ¢
method {4, ¢

return name; Hlppo inhey it

)

public Animal (String theNams) (

T"‘C COnsfy
= ; uetor
neme = theNama; «——— takec), name 3 ﬁhat‘
} " the ngmp g0 95Signs
) variab)e nie
public class Hippo extends Animal {
ublic Ri Strid a name
P c Rippo | . ing name) { Wiopo wnstvuchov Lakes
super (name) ; | R
) .
: it send, the nom

rimal ¢q tc uiihc Stack to

e

public class MakeHippo (
public static void main(String[] args) (Make 4 ;

) 3
Hippo h = new Bippo (“Buffy”); < —— na"‘c B (ZP” {osi‘l:\? the

Systam.out.println(h.getName ()) ; H PPOS : Thcn cal éif’
)) : in chfcd ﬂchame()

Hippo constructor, then pass

constructors and gc¢

Animal

private String name

Animal(String n)

String getName(}

Hippo

Hippo(String n)

[other Hippo-spe-
clfic methods]

The Animal part of
me needs Yo know my name,
so I take a name in my awn

the name to super()

Flle Edit_Wingow Help Hida

%$java MakeHippo
Buffy

you are here » 255

L 4

calling overioaded constructors

Invoking one overloaded constructor
trom another

What if you have overloaded constructors that, with

the exception of handling different argument types,

all do the same thing? You know that you don’t want
duplicate code sitting in each of the constructors (pain
to maintain, etc.), so you’d like to put the bulk of the
constructor code (including the call to super()) in only
one of the overloaded constructors. You want whichever
constructor is first invoked to call The Real Constructor
and let The Real Constructor finish the job of
construction. It’s simple: just say this(). Or this(aString).
Or this(27, x). In other words, just imagine that the
keyword thisis a reference to the current object

You can say ¢kis()} only within a constructor, and it must
be the first statement in the constructor!

But that’s a problem, isn't it? Earlier we said that
super() must be the first statement in the constructor.
Well, that means you get a choice.

Every constructor can have a call to super()
or this(), but never both!

class Mini extends Car {

Coloxr color:

The wo—avh
public Mini() {

Comstrue tor
Faulk Color and

lies a de
ms ae overloaded Real

Use lh_'g._‘;g) o ca“ a

£ Y 1011
cnnslructor {rom anot

0\-’01‘\0&1(‘0(1 COuSlt‘uclor 10

l'_he same class.

The cau o l\n_is()

can ‘)Q liSQ(! Oﬂ.\.}" imna

uclor’, and must be

constt -
fina

lhe Lirst statemen
cons’truclov.

4 ave a
A constructor €an have ¢

call to su\)erU OR thist),

iy
Lut never hoth!

this (Colox.Red) ; &—— me{p* ({he one that

) ealls su\wf().

public Mini (Color c) (

super (“Mini”) ; (——~ This is The Reat Construc tor that

color = ¢;
// more initialization

)

public Mini(int size) {
this (Color.Red) :
super (size) ;

Won't workl/ Can't have

supev() and this() in the same

} must be the first dzﬁer;’e:zdﬂ

) COhS{'_M{;m-‘ bctam the

256 chapter 9

do.es Th; Real Work of
ochc{: (mf_]udin3 the ealf fo supcr())

initiglizing the

Flla Edlt Window Help Drva

javac Mini.java

Mini.java:16: call to super must
be first statement in constructor

super();

A

constructors and gc

ﬁrpen your penci

Some of the constructors in the SonOfBoo class will not
complle. See if you can recognize which constructors are
not legal. Match the compiler errors with the SonOfBoo
constructors that caused them, by drawing a line from the
compiler errar to the “bad” constructor.

public class Boo {
public Boo(int i) { }
public Boo(String s) { }
public Boo (8tring 8, int i) {)

clana SonOfBoo axtends Boo |

%javac SonOfBoo. java

publie SonOfBoo () (

super (“boo”) ; cannot resolve symbol
' symbol : constructor Boo
public SonOfBoo (int i) { {java.lang.String, java.la
super (“Fred”) ; ng.String)

)

publie SenOfBoo (String s) { Fle EdiWindow Help Yadays

supar (42) ;
}

%javac SonOfBoo.java

cannot resolve symbol
public SonOfBoo(int i, String 8) (
} symbol : constructor Boo

{(int, java.lang.String)
public SonOfBoo(String a, String b, String ¢) {
super (a,b) ;
}

Filg Edit Window Help ImNoiListening
public SonOfBoo(int i, int j) {

supaer (“man”, 3j); %javac SonOfBoo.)ava
}

cannot resolve symbol

public SenOfBoo(int i, int x, int y) { symbol:constructor Boo ()
super (i, “star”);
)

you are here » 257

object lifespan

Now we know how an object is born,
but how long does an object /ive?

An object’s life depends entirely on the life of references
referring to it. If the reference is considered “alive”, the
object is still alive on the Heap. If the reference dies

(and we’ll look at what that means in just a mmoment), the
object will die.

So if an object’ life depends on the reference
variable’s life, how long does a variable live?

That depends on whether the variable is a local variable
or an instance variable. The code below shows the life of a
local variable. In the example, the variable is a primitive,
but variable lifetime js the same whether it's a primitive
or reference variable,

public class TaatLifeOne (

public void read() {

:::e;():;dz; mety, C0Ped h
} P Jsoifda ac"cad()
nyw he"" else nt be used
public void sleep() {
s =17;
Y \\arf..
ust

258 chapter9

@ A local variable lives only

within the method that
declared the variable.

public void read() (

int s = 42;

// ‘8’ can be used only

// within this method.

// When this mathod ends,

// ‘s’ disappears completely.
}

Variable’s’ can be used only within the
read() method. In other words, the variable
Is In scope only within its own method.No
other code In the class (or any other class)
can see’s’

@ An instance variable lives

as long as the object
does. If the object is still
alive, so are its instance
variables.

public class Life {(
int size;

public void getSize(int s) ¢
size = g;
// ‘s’ disappears at the
// end of this method,
// but ‘size’ can be used
// anywhere in the class

}

Varlable’s’ {this time a method parameter)
Is In scope only within the setSize()
method. 8ut instance variable size is
scoped to the life of the object as opposed
ta the life of the method.

constructors and gc

The difference between life and
scope for local variables:

public void doStuff() (

boolean b = true;
Life

go(4);
Alocal variable is alfve as long as its Stack }
frame is on the Stack. In other words)
X ’ public void go{int x) {
until the method completes. int z = x + 24;
crazy () ;
Scope // imagine more code here

}

public void erazy() (
char ¢c = ‘a’;

A local variable is in scope only within the
method in which the variable was declared.
When its own method calls another, the
variable s alive, but not in scope until its
method resumes. You can use a variable only
when it is in scope.

}

doStuff() goes on the go{) plops on top of e crazy() Is pushed onto e crazy() completes and
Stack. Variable ‘b’ is the Stack. ‘x’and 7 the Stack, with ‘c’ now Is popped off the Stack,
allve and In scope. are alive and in scope, alive and in scope. The 80 ‘¢’ is out of scope
and ‘b’ is alive but nof other three variables and dead. When go(}
in scope. are alive but out of resumes where it left
scopa. off, x' and ‘z' are both
alive and back in scope.
Varlable ‘b’ Is still alive
While a local variable is alive, its state persists. but out of scope (untli
As long as method doStuff() is on the Stack, for go() completes).

example, the ‘b’ variable keeps its value. But the
‘b’ vaniable can be used only white doStuff()’s
Stack frame is at the top. In other words, you can
use a Jocal variable only while that local variable's
method is actually running (as opposed to
waiting for higher Stack frames to complete).

you are here» 259

object lifecycle

What about reference variables?

The rules are the same for primtives and references. A reference
variabte can be used only when it’s in scope, which means you can’t use
an object’s remote control unless you've got a reference variable that’s
in scope. The real question is,

“How does variable life affect object life?”

An object is alive as long as there are Jive references to it. If a reference
variable goes out of scope but is still alive, the object it refers to is still
alive on the Heap. And then you have to ask... “What happens when the
Stack frame holding the reference gets popped off the Stack at the end
of the method?”

If that was the only live reference to the object, the object is now
abandoned on the Heap. The reference variable disintegrated with

the Stack frame, so the abandoned object is now, officially, toast. The
trick is to know the point at which an object becomes ehigible for garbage
collection.

Once an object is eligible for garbage collection (GC), you don't have
to worry about reclaiming the memory that object was using. If your
program gets low on memeory, GC will destroy some or all of the eligible
objects, to keep you from running out of RAM. You can stll run out of
memory, but not before all eligible objects have been hauled off to the
dump. Your job is to make sure that you abandon objects (i.e, make
them eligible for GC) when you’re done with them, so that the garbage
collector has something to reclaim. If you hang on to objects, GC can’t
help you and you run the risk of your program dying a painful
out-of-memory death.

An object becomes
eligible for GC when
its last live reference
disappears.)

void go () {

Life z = naw Life();
z = new Life ()

Life 2z = new Lifa (),
2z = null;

The reference goes out of scope, permanently

@ The reference is assigned another object

@) The reference is explicitly set to null

An object’s lite has no
value, no meaning, no
point, unleas somebody
has a reference to it

1f you can't get to it,
you can't ask it to do

anything and it's just a
big fat waste of bita.

But if an object is
unreachable, the
Garbage Collector will
figure that out. Socner
or later, that object’s
goin’ down.

Three ways to get rid of an object’s reference:

[N | £
Lebevence '® dies?

Life z = new Life();{// anoc mekthod

4 is doandoned
the First ?\’J"'k * abatd‘ ke

" ‘wogYa"‘“

260 chaplerd

constructors and gc¢

Object-killer #1

Reference goes
out of scope,
permanently.

public class StackRef {
publiec void foof{) {
barf () ;
}

I don’t like where
this is headed.

public void barf () ({
Duck d = new Duck();

foof{) is pushed onto the
Stack, no variables are
declarad.

e barf() is pushed onto the
Stack, where it declares

a reference variable, and
creates a new object as-
signed to that reference.
The object {s created on
the Heap, and the refer-
ence Is alive and In scope.

Uh—oh. The 'd’ varigble
went away when the barf()
Staek frame was blown
off the stack, so the Duck
is abandoned. Qarbage-
tollector bait

e barfl) completes and pops
off the Stack. lts frame

disintegrates, so 'd’ is now
dead and gona. Exacutlon
retuns to foof{), but foof()
can't use ‘d'.

you are here » 261

object lifecycie

Object-killer #2

Assign the reference
to another object

public class ReRef {
Duck d = new D“ck();

public void go() {
d = naw Duck() ;

The new Duck goes on the Heap, vefevented
by ‘d’. Since 'd’ is an instance vaviable, the
Duck will live as long as the ReRek ob\‘)cf.{:
that instantiated it is alive. Unless-.-

4 i _ bieet, leaving the
4 s ass;gv\cd 3 new Duek obj

original (§ivst) Duck objcc’c abandened. That
Fivst Duck is now as good as dead.

262 chapter9

Dude, all you
had to do was reset
the r=ference, Guess
they didn’t have memory
management back then,

Object-killer #3

Explicitly set the
reference to null

public class ReRef {
Duck d = naw Duck() ;

public void go() {
d = null;

}

The meaning of null

When you set a reference to null, you're
deprogramming the remote control.

in other words, you've got a remote
control, but no TV at the other end. A nuill
reference has bits representing ‘null’ (we
don't know or care what those bits are, as
long as the JVM knows).

if you have an unprogrammed remote
control, In the real world, the buttons don't
do anything when you press them. But

in Java, you can't press the buttons (i.e.

use the dot operator) on a null reference,
because the JVM knows (this is a runtime
Issue, not a compller error) that you're
expecting a bark but there'’s no Dog there
to do tl

If you use the dot operator on

a null reference, you'll get a
NullPolnterExcaption at runtime. You'll
learn all about Exceptlons in the Risky
Behavior chapter.

constructors and gc

The new Duzk qoes on the Peap, veferented
by ‘d’- Since ‘d' is an instanze variable, the
Duek waill live as]ons as the RLRC‘C ob")cc{'_
that instantisted it s alive. Unless...

This Duek 8 dandoned:

\/ Wis only vebevente 1o been
: ko vull:

@ is seb to null, which is just fike having 3 ma’)u
conbrol that unt programmed to ah‘f{'.}\ir:g-, You’r.e Tof
even allowed £o use the dot operator on d wnbil it's

veprogrammed (3ssigned an 0‘{')“-{')-

you are here »

263

object lifecycle

Fireside Chats

Instance Variable

Id like to go first, because I tend to be more
important 1o 2 program than a Jocal variable.
I'm there to support an object, usually
throughout the object’s entire life. After all,
what’s an object without state? And what is
state? Values kept in instence variables.

No, don'’t get me wrong, I do understand your
role in a method, it's just that your life is so
short. So temporary. That’s why they call you
guys “temporary variables”.

My apologies. I understand completely.

I never really thought about it like that. What
are you doing while the other methods are
running and you're waiting for your frame to
be the top of the Stack again?

284 chapter9

Tonight's Talk: An instance variable and
a looal variable discuss life and death
(with remarkable civility)

Loocal Variable

I appreciate your point of view, and I certainly
appreciate the value of object state and all,
but I don’t want folks to be misled. Local
variables are really important. To use your
phrase, “After all, what's an object witbout
behavior™ And what is behavior? Algorithms
in methods. And you can bet your bits there'll
be some local variables in there to make those
algorithms work.

Within the local-variable community, the
phrase “temporary variable” is considered
derogatory. We prefer “local”, “stack”, “auto-
matic”, or "Scope~challénged”.

Anyway, it's true that we don’t bave a Jong
life, and it's not a particularly good life either.
First, we're shoved into a Stack frame with

all the other local variables. And then, if the
method we're part of calls another method,
another frame is pushed on top of us. And if
that method calls another method... and so on.
Sometimes we have to wait forever for all the
other methods on top of the Stack to com-
plete so that our method can run again.

Nothing. Nothing at all. It’s like being in
stasis—that thing they do to people in science
fiction movies when they have to travel long
distances. Suspended animation, really. We
just sit there on hold. As long as our frame is
sdll there, we're safe and the value we hold

is secure, but it’s a mixed blessing when our -

Instance Variable

We saw an educational video about it once.
Looks like a pretty brutal ending. I mean,
when that method hits its ending curly brace,
the frame is literally blown off the Stack! Now
that’s gotta hurt.

I live on the Heap, with the objects. Well, not
with the objects, actually in an object. The
object whose state I store. I have to admit life
can be pretty luxurious on the Heap. A lot of
us feel guilty, especially around the holidays.

OK, hypothetically, yes, if I'm an instance
variable of the Collar and the Collar gets
GC’d, then the Collar’s instance variables
would indeed be tossed out like so many pizza
boxes. But I was told that this almost never
happens.

They let us drink?

constructors and gc¢

Local Variable

frame gets to run again. On the one hand, we
get to be active again. On the other hand, the
clock starts ticking again on our short lives.
The more time our method spends running,
the closer we get to the end of the method.
We all know what happens then.

Tell me about it. In computer science they use
the term popped as in “the frame was popped
off the Stack”. That makes it sound fun, or
maybe like an extreme sport. But, well, you
saw the footage. So why don’t we talk about
you? I know what my little Stack frame looks
like, but where do you live?

But you don’t always live as long as the object
who declared you, right? Say there’s a Dog
object with a Collar instance variable. Imagine
you'’re an instance variable of the Collar object,
maybe a reference to a Buckle or something,
sitting there all happy inside the Collar object
who’s all happy inside the Dog object. But...
what happens if the Dog wants a new Collar,
or nulls out its Collar instance variable? That
makes the Collar object eligible for GC. So...
if you re an instance variable inside the Collar,
and the whole Collaris abandoned, what
happens to you?

And you believed it? That’s what they say to
keep us motivated and productive. But aren’t
you forgetting something else? What if you’re
an instance variable inside an object, and that
object is referenced only by a local variable? If
I’'m the only reference to the object you're in,
when I go, you’re coming with me. Like it or
not, our fates may be connected. So I say we
forget about all this and go get drunk while
we still can. Carpe RAM and all that.

you are hera »

265

exercise: Be the Garbage Collector

BE the Garbage Cellector

Which of the lines of code on the right, if added

to the class on the left at point 4, would canse
exact]y one additiona] ohject to be e]igible for the
Garbage Collector? (Assume that point A (//call
more methods) wil] execnte for a long time, giving the
Garbage Collector time to do its stof}.)

public class GC {
public static GC doStuff () {
GC newGC = new GC(); 1 copyGC = null;
doStuff2 (newGC) ;

return newGe; 2 gc2 = null;
}
3 newGC = gc3;
public statlc vold main(String () args) {
GC gcl; 4 gel = null;
GC ge2 = new GC();
GC ge3 = new GC(); 5 newGC = null;

GC gc4d = gc3;

gcl = doStuff(); 6 gc4d = null;

A

// call more methods

7 ge3 = ge2;

} 8 gcl = gca;

public static void doStuff2(GC copyGC) | 9 ge3 = null;

GC localGC

288 chapter 9

constructors and gc

In this code example, several new objects are created.

. = u Your challenge is to find the object thatis ‘most popular;
j mse @ a.r i.e.the one that has the most reference variables referring

1o it. Then list how many total references there are for

I that object, and what they are! We'll start by pointing out
ect—s one of the new objects, and its reference variable.

Good Luck!

class Bees {
Honey [] beeHA;

class Raccoon {
Kit k;
Boney rh;

class Rit (
Boney kh;

class Bear ¢
Boney hunny;

public class Honey {
public static vold main(String (] args) {
Honey honeyPot = new Honey();
Boney [] ha = {honeyPot, honeyPot, honeyPot, honeyPot};
Bees bl = new Bees();
bl.beeRA = ha;
Bear [) ba = new Bear([5];
for (int x=0; x < 5; x++)
ba{x] = new Bear();
ba(x].hunny = honeyPot;

})

Kit k = new Kit(); H":oso:ont:i:cﬂ
k.kxh = honeyPot;

Raccoon r = new Raccoon();

Here's its reference

r.rh = honeyPot; variable ‘r'.
r.k = k;
k = null;

} // end of main

you are here» 267

puzzle: Five Minute Mystery

“We've run the simulation four times, and the main module’s temperature consistently
dnfts out of nomina} towards cold”, Sarah said, exasperated. “We installed the pew temp-bots last
week. The readings on the radiator bots, designed to cool the living quarters, seem to be within
spec, so we’ve focused our analysis on the heat retention bots, the bots that help to warm the quar-
ters.” Tom sighed, at ficst it had seemed that nano-technology was going to really put them ahead
of schedule. Now, with only five weeks left until launch, some of the orbiter's key life support

Mj systems were still not passing the simulation gauntlet.

“What ratios are you simulating?”, Tom asked.

MystePy “Well if] see where you're going, we already thought of that”, Sarah replied. “Mis-
sion control will not sign off on critical systems if we run them out of spec. We are
required to run the v3 radiator bot’s SimUnits in a 2:] ratio with the v2 radiator’s
SimUnits"”, Sarah continued, “Overall, the ratio of retention bots to radiator bots is

supposed to run 4:3.”

“How’s power consumption Sarah?", Tom asked. Sarah paused, “Well that’s
another thipg, power consumption is running higher than anticipated. We've got a team
tracking that down too, but because the nanos are wireless it’s been hard to isolate the power
consumption of the radiators from the retention bots.” “Overall power copsumption ratios™, Sarah
continued, “are designed to run 3:2 with the radiators pulling more power from the wireless grid.”

“OK Sarah”, Tom said “Let’s take a look at some of the simulation initiation code.
We’ve got to find this problem, and find it quick!”

import java.util.=;
class V2Radiator {
V2Radiator (ArrayList liat) {
for(int x=0; x<5; x++) {
ligt.add(new Simunit({*“VZRadiator”));

class V3Radlator extends VZRadiator (
V3Radiator (ArraylLlist lglist) (
super(lglist);
for(int g=0; g<l0; g++) {
lglist.add{new SimUnit(“V3Radiatar~));

class RetentionBot (
RetentionBot (ArrayList rlist) {
rlist.add(new SimOnit(“Retention”));

268 chapter9

constructors and go

public class TestLifeSupportSim {

];HSKETIYIiIIIIt(E public static void main(String [] args) {

ArrayList alist = new ArrayList();

M}’S‘tel’y V2Radiator v2 = new V2Radiator(aList);
- o V3Radiator v3 = new V3Radiator(alist);
conttinued. .. '

for(int z=0; z<20; z++) {
RetentionBot ret = new RetentionBot(aList);

class SimUnit {
String botType;
SimUnit(String type) {
botType = type;
}
int powerUse() {
if (“Retention”.equals(botType)) {
return 2;
} else {

return 4;

Tom gave the code a quick look and a small smile creeped across his lips. I think I've
found the problem Sarah, and I bet I know by what percentage your power usage readings are off
too!

What did Tom suspect? How could he guess the power readings errors, and what few
lines of code could you add to help debug this program?

yvouare herey 269

object lifecycle

1 copyGC = null; No - this line attempts ta access a variable
that is out of scope.
Exercise Solutions 2 gc2 = null; OK - gc2 was the only reference variable
referring to that object.
3 newGC = gc3; No - another out of scope variable.

4 gcl = null; OK - g¢l had the only reference because
G’.C. new6C is out of scope.

5 newGC = null; No - newbC is out of scope.

6 gcd = null; No - gc3 is still referring to that object.
7

gc3 = gez; No - gc4 is still referring to that object.
8 gel = ged; OK - Reassigning the only reference to
that object.

9 gec3 = null; No - gc4 is still referring to that object.

It probably wasn't too hard to figure out that the Honey object first referred to by the honeyPot variable is by
P@PUI&P far the most ‘popular’object in this ¢lass. But maybe it was a little trickier to see that all of the variables that
o point from the code to the Honey object refer to the same object! There are a total of 12 active references to
Ob]ects this object right before the main() method completes. The kkh variable is valid for a while, but k gets nulled
at the end. Since 7.k stlll refers to the Kit object, r.ikh (although never explicity declared), cefers to the object!

public class Honey (
public static void main(String {] args)
Honey honeyPot = new Roney();
Honey [] ha = {honeyPot, honeyPot,
honeyPot, honeyPot};

Bees bl = new Bees{);
l l l | bl.beeHA = ha;

Bear [) ba = new Bear{5];

Hon for (int x=0; x < S; x++) {
— ey baf{x] = new Bear():
— Object ba[x].bunny = honeyPot;

T }

[J l(_end§_uplﬂ|)_ Kit k = new Kit();

l L k.xh = honeyPot;

- - — Raccoon r = new Raccoon();

r.rh = honeyPot;
r.k = Xk;

k = null;

} // end of main

270 chapter9

constructors and 3

Five-Minute Mystery Selutisn

Tom noticed that the constructor for the V2Radiator class took an
ArrayList. That meant that every time the V3Radiator constructor was called,
it passed an ArrayList in its super() call to the V2Radiator constructor. That
meant that an extra five V2Radiator SimUnits were created. If Tom was right,
total power use would have been 120, not the 100 that Sarah’s expected ratios
predicted.

Since all the Bot classes create SimUnits, writing a constructor for
the SimUnit class, that printed out a line everytime a Si